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ABSTRACT 

Uncertainty in production prediction has been subject to numerous investigations. Geological and 
reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, 
uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is 
worthy to present the desired quantity with a probability distribution instead of a single sharp value. 

For the case-study, numbers of parameters which are believed to contribute largely the uncertainty of 
Field Gas Production Total are recognized. A sensitivity analysis was done to find the most significant initial 
parameters. Screening experiments are designed in order to recognize the main factors and the significant 
interactions of factors that we need to certainly include in the response function. Later, experiments of 
response surface are designed objective to model the response surface function of Field Gas Production 
Total. This has been done based on applying two methods, Response Surface Methodology and Artificial 
Neural Networks. The probability distribution of Total Field Gas Production was then plotted using Monte 
Carlo simulation. 
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1.  INTRODUCTION 

Based on the field owner reports which are marked as 
confidential, the filed is a gas field with 20 km length and 
6 to 10 km width.  It was discovered in 1988.  Gas in 
place and recoverable gas were estimated to be about 1.47 
and 1.19 TSCF, respectively. The condensate gas ratio in 
this field is about 9.77 BBL/MMCF. This field is known 
to be a dry gas reservoir. 

The reservoir, i.e., Asmari formation, is a fractured 
carbonate type and the production takes place through 
fractures. The main production mechanism is believed to 
be gas expansion drive. It is not certain whether it is a 
combined process of aquifer and gas expansion drive. 

Depth of fluid contact was petrophysically estimated 
to be at 5400 ft. Average total thickness for zone 2 of the 
Asmari formation is 170.6 ft. The maximum Net-to-Gross 
(NTG) value for zone 2 is 0.72. This uncertainty in NTG 
values is crucial through its effect on Initial Gas in Place. 
Maximum effective porosity for zone 2 is 17.9%. 
Uncertainty of this parameter is also crucial through its 
effect on Initial Gas in Place. Water saturation of zone 2 

attains an average value of 38%. 
Based on the field reports, no rock compressibility test 

was done in this field. This value was estimated utilizing 
two methods of Hall and Knaap. There was neither 
routine nor special core analysis done. Corey method was 
utilized to calculate the relative permeabilities for this 
field by means of a plot of Permeability vs. Porosity of a 
well of the field. The vertical permeability was 
considered to be half times the horizontal permeability. 
This multiple value is not certain. 

There is a requirement to investigate the reliability of 
fracture parameters; permeability, porosity, size of matrix 
blocks, and fractures shape factor. 

These described sources of uncertainties, along with 
several other un-described ones, are led to the results of 
simulation model highly uncertain to rely on, which 
brings necessity of performing an uncertainty study for 
production prediction in this field. The desired parameter 
is Total Field Gas Production (FGPT). 

2.  SENSITIVITY ANALYSIS 

A sensitivity study was done to determine the main 
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uncertain factors among the following uncertainties 
choices: aquifer, net to gross ratio, porosity, rock 
compressibility, permeability in X direction, ratio of 
vertical to horizontal permeability, and fracture 
parameters (permeability, porosity, size of matrix block 
and sigma factor). The standard approach is to vary one 
parameter at a time, keeping all other parameters at the 
base-case value [2]. 

The results show aquifer, net to gross ratio, porosity, 
permeability, fracture permeability, and fracture porosity 
as the main uncertain parameters. For each parameter, 
based on the field reports, sufficient number of 
uncertainty levels (two or three) and their probability of 
occurrence are specified (Table 2). 

A.  Aquifer 
There has been no report for water production of wells 

in this field and it is therefore believed that the aquifer 
has little effects on gas production. The main production 
mechanism is believed to be gas expansion drive. 
However, there is no firm reason to neglect the effect of 
aquifer on gas production. This issue has been studied 
under two different cases: either the reservoir is 
connected to the aquifer (which is the base case) or either 
the aquifer is not connected to the reservoir (and therefore 
it does not play a role in production). This factor is noted 
by "Aquifer" in the response functions. 

B.  Net to Gross Ratio 
The amount of production depends strongly on the 

Initial Gas in Place; therefore the uncertainty of net to 
gross ratio affects the production prediction. To 
investigate the effect of this parameter, other than the 
base case, two lower and upper cases have been 
considered for this factor. "NTG" notation in response 
functions refer to this parameter. 

C.  Matrix Porosity 
Porosity has been known as the second most uncertain 

parameter which contributes to uncertainty in production 
prediction by affecting the amount of Initial Gas in Place.  
This factor is also a three-level factor and is noted as 
"PHI" in the response functions. 

D.  Matrix Permeability 
In this field, matrix permeability is considered to be 

isotropic in XY-plane. The sensitivity of production to 
permeability in x-direction, kx, is investigated. Its 
downside, base and upside values are specified. ky is set 
equal to kx and kz  is equal to 0.5kx. "KX" represents this 
factor in response functions. 

E.  Fracture Parameters 
In a fracture reservoir, the production takes place 

through the fractures; the fracture parameters are 
therefore quite noticeable to be considered as an uncertain 
parameter. The model showed to be sensitive to fracture 
permeability and porosity. These parameters are also 
considered as three-level factors. "KF" and "PHI_FRAC" 
express fracture permeability and fracture porosity in 
response functions, respectively.  

TABLE 1: PARAMETERS ABBREVIATIONS. 
Abbreviation Description 
FGPT Total field gas production 
NTG Net to gross 
AQU Aquifer 
PHI Matrix porosity 
KX Matrix permeability in X direction 
KF Fracture permeability 
PHI_FRAC Fracture porosity 
RSM Response Surface Methodlogy 
ANN Artificial Neural Network 
Sigma  Fracture shape factor 

 
TABLE 2: MAIN UNCERTAIN PARAMETERS ALONG WITH THEIR PROBABILITY OF OCCURRENCE 

Main 
Uncertainties 

Cases Probability 
of 

Occurrence 

Aquifer NTG PHI KF KX PHI_FRAC 

Base-Case 0.6 Y 0 0 0 0 0 Aquifer 
NO_AQU 0.4 N 0 0 0 0 0 

NTG_LOW 0.2 Y -1 0 0 0 0 
Base-Case 0.6 Y 0 0 0 0 0 

NTG 

NTG_UP 0.2 Y 1 0 0 0 0 
IGP_PHI_LOW 0.2 Y 0 -1 0 0 0 

Base-Case 0.6 Y 0 0 0 0 0 
PHI 

IGP_PHI_UP 0.2 Y 0 1 0 0 0 
KF_LOW 0.2 Y 0 0 -1 0 0 
Base-Case 0.6 Y 0 0 0 0 0 

KF 

KF_UP 0.2 Y 0 0 1 0 0 
KX_LOW 0.2 Y 0 0 0 -1 0 
Base-Case 0.6 Y 0 0 0 0 0 

KX 

KX_UP 0.2 Y 0 0 0 1 0 
PHI_FRAC_LOW 0.2 Y 0 0 0 0 -1 

Base-Case 0.6 Y 0 0 0 0 0 
PHI_FRAC 

PHI_FRAC_UP 0.2 Y 0 0 0 0 1 
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3.  EXPERIMENTAL DESIGN 

Experimental Design is a well-known technique to 
maximize the information obtained from a set of 
experiments [3]. In this work, the experimental design 
was applied for two purposes; screening and modeling. 

A.  Screening Design 
We refer to a design as a screening design if its 

primary purpose is to identify significant main effects, 
rather than interaction effects, the latter being assumed an 
order of magnitude less important [8]. For this purpose, a 
resolution VI fractional factorial experiment with 32 runs 
was designed. This response function was fit to data with 
R2 adjusted of 0.995: 
 

(1) 

FGPT = b0 + b1*NTG + b2*PHI + b3*KF + b4*KX 
+ b5*PHI_FRAC + b6*Aquifer + b7*NTG*PHI + 
b8*NTG*KF + b9*PHI*KF + b10*PHI*Aquifer + 
b11*NTG*Aquifer 
 
Table 3 shows the coefficients (b0 to b11) and their 

significance for the above function. According to this 
table, KX is the least significant factor followed by 
PHI_FRAC. Response surface functions will be fitted 
based on this design, i.e., it has to include all the factors 
and considerable interactions, i.e., NTG*PHI, NTG*KF, 
PHI*KF, PHI*Aquifer and NTG*Aquifer, in response 
surface models. 

 
TABLE 3: TABLE OF COEFFICIENTS AND THEIR SIGNIFICANCE FOR 

THE RESOLUTION VI FRACTIONAL FACTORIAL DESIGN. 
Coefficients Value of 

Coefficients 
P-value 

b0 1038.4 2.49467E-36 
b1 209.66 1.82972E-22 
b2 209.34 1.8847E-22 
b3 95.66 9.00421E-16 
b4 4.656 0.281 
b5 11.66 0.01171 
b6 61.09 4.27496E-12 
b7 38.22 1.52091E-08 
b8 23.66 1.64651E-05 
b9 23.59 1.70225E-05 
b10 -17.47 0.000487 
b11 -16.66 0.000766 

B.  Modeling Designs 
A response surface expresses a response variable as an 

empirical function of one or more quantitative factors. A 
general form of this type of response function is 

y = f (x1, x2, …, xk) 
Where y is the response and x1, x2, …, xk are 

quantitative levels of the factors of interest  [10]. 
Four response surface functions based on four different 

designs were modeled; Full Factorial, Box-Behnken, 
Central Composite and D-optimal designs. 

    I)  Full Factorial Design 
A Full Factorial design is a design with all possible 

high/low combinations of all the input factors. For this 
design 35×2 runs is needed [8]. This design will generate 
the population sample. Following model with R2 adjusted 
of 0.995 is fit to the model: 

 

(2) 

FGPT = 1135.3 + 219.11*PHI + 218.94*NTG + 
95.58*KF + 69.09*Aquifer – 72.98*KF*KF + 
39.25*NTG*PHI + 23.40*PHI*KF + 
22.44*NTG*KF – 15.74*PHI*Aquifer – 
14.77*NTG*Aquifer + 12.56*PHI_FRAC + 
10.81*KF*Aquifer – 11.99*NTG*NTG – 
10.58*PHI*PHI + 4.917*KX*Aquifer + 
3.620*KX 

It is expected that this model to be the best 
representative of the population sample and therefore it 
has been selected as the basis for comparing following 
models to. 
    II)  Box-Behnken Design 

Box-Behnken design is formed by combining 2k 
factorials with incomplete block designs [10]. This design 
needs 46×2 number of runs [10]. A model with R2 
adjusted of 0.997 fits the data with this response function: 
 

(3) 

FGPT = 1131.8 + 232.22*NTG + 232.13*PHI + 
75.90*Aquifer + 95.81*KF – 71.77*KF*KF + 
42.13*NTG*PHI + 13.00*KF*Aquifer + 
12.59*PHI_FRAC – 12.06*PHI*Aquifer + 
24.13*PHI*KF – 11.59*NTG*Aquifer + 
23.00*NTG*KF – 6.312*NTG*NTG – 
6.104*PHI*PHI + 3.625*KX*Aquifer + 
3.500*KX 

 
Based on this response surface function, utilizing 

Monte Carlo simulation for 1000 samples, probability 
distribution of FGPT is sketched and compared to that of 
Full Factorial as the population space (Figure 1). 

RSM Box-Behnken & RSM Full Fac.

0

0.2

0.4

0.6

0.8

1
450 650 850 1050 1250 1450 1650 1850

FGPT (MMMSCF)

Q
ua

nt
ile Full Fact. FGPT

Box-Behnken FGPT

 
Figure 1: Comparison of RSM Full Factorial FGPT with RSM 
Box-Behnken FGPT. 
 
    III)  Central Composite Design 

A Box-Wilson Central Composite Design contains an 
imbedded Factorial or Fractional Factorial design with 
center points that is augmented with a group of 'star 
points' that allow us to estimate the curvature [8]. A total 
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number of 2× (25+2×5+8) runs is needed for this design 
[10]. The following response function is fitting the data 
with R2 adjusted of 0.995: 
 

(4) 

FGPT = 1130.8 + 211.44*NTG + 211.09*PHI + 
95.74*KF + 68.12*Aquifer – 91.28*KF*KF + 
38.05*NTG*PHI + 23.77*PHI*KF + 
23.73*NTG*KF - 16.97*PHI*Aquifer – 
16.38*NTG*Aquifer + 12.00*PHI_FRAC + 
6.941*KF*Aquifer + 5.088*KX*Aquifer + 
4.441*KX 
 
Based on this response surface function, Monte Carlo 

simulation was utilized to plot the FGPT probability 
distribution (Figure 2). 
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Figure 2: Comparison of RSM Full Factorial FGPT with RSM 
Central Composite FGPT. 
 
    IV)  D-optimal Design 

D-optimal design is one form of design provided by a 
computer algorithm. The optimality criterion used in 
generating D-optimal deigns is maximizing |XTX|, the 
determinant of the information matrix XTX. This design 
need 67 runs; least number of runs is the main advantage 
of this design [10]. 

The response surface function obtained from the D-
optimal design is: 

 

)5(  

FGPT = 1131.3 + 221.24*NTG + 221.21*PHI + 
104.00*KF + 4.320*KX + 14.45*PHI_FRAC + 
72.85*Aquifer – 69.31*KF*KF + 43.05*NTG*PHI 
+ 30.70*NTG*KF + 18.25*KF*Aquifer + 
20.45*PHI*KF – 14.51*NTG*Aquifer – 
16.95*PHI*Aquifer – 15.82*NTG*NTG. 

 
The R2 adjusted for this response surface function is 

0.988. Monte Carlo simulation was used to plot FGPT 
probability distribution based on this function. Figure 3 
illustrates comparison between FGPT obtained by Full 
Factorial vs. FGPT obtained by D-optimal. 
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Figure 3: Comparison of RSM Full Factorial FGPT with RSM 
D-optimal FGPT. 

4.  NEURAL NETWORK 

One can think of Artificial Neural Network (ANN) as 
an alternative to the Response Surface Methodology [7]. 
ANN is no magic math; the most commonly used artificial 
neural network are nothing more than non-linear 
regressions and discriminate analysis models that can be 
implemented with standard statistical softwares [7]. A 
dataset containing the variable input parameters and the 
corresponding output is used to train the ANN and test 
with a number of additional simulation runs in a further 
step [7]. According to each response surface design, an 
ANN was trained with three hidden nodes (Figure 4), and 
tested utilizing K-fold crossvalidation method [5]. Then 
For each model, the FGPT probability distribution was 
sketched and compared with the population space (Figure 
5, Figure 6, Figure 7 and Figure 8). 
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Figure 4: The Model JMP6 Utilizes to build the Neural 
Networks. 
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Figure 5: Comparison of RSM and ANN drawn probability 
distribution of the FGPT; basis: Full Factorial Design. 
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Figure 6: Comparison of RSM and ANN drawn probability 
distribution of the FGPT; basis: Box-Behnken Design. 
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Figure 7: Comparison of RSM and ANN drawn probability 
distribution of the FGPT; basis: Central Composite Design. 
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Figure 8: Comparison of RSM and ANN drawn probability 
distribution of the FGPT; basis: D-optimal Design. 

5.  DISCUSSION 

Comparing FGPT probability distribution sketched 
based on RSM-derived response surface function with the 
population sample, for each of the Box-Behnken, Central 
Composite and D-optimal design, illustrates close 
correspondence with the FGPT probability distribution 
sketched based on full Factorial design (Figure 1, Figure 2 
and Figure 3;Table 4 ). However, the probability 
distribution sketched based on D-optimal design better 
estimates the population sample than the other two. This 
design also possesses the advantage of requiring least 
number of runs. 

Comparison of FGPT probability distribution sketched 
from both Neural Network and Response Surface 
Methodology (Figure 5, Figure 6, Figure 7 and Figure 8) 
does not show worthy results. Only in case of Box-
Behnken design an excellent correspondence between 
FGPT probability distributions from both RSM and ANN 

is observed. Not observing this in case of Full Factorial 
can be justified as having the ANN model overfit. Full 
Factorial design requires 35×2 number of runs [8]. This 
introduces a large number of data with large variety to the 
ANN model and, consequently, contaminates the ability 
of model to predict for non-introduced data.  

For case of D-optimal design, justification is that the 
ANN model is underfit due to the fact that model is not 
trained with adequate number of data, 67 in this case. 
Meanwhile, it is expected that Central Composite design 
illustrates better correspondence between its RSM- and 
ANN-derived probability distribution than the other two; 
and Figure 7 provides good expectation. 

To model the ANN based on each of Box-Behnken, 
Central Composite and D-optimal designs, the Box-
Behnken model better represents the population space of 
FGPT (Figure 9, Figure 10 and Figure 11 and Table 5). 
As expressed above, this can be justified in regards to 
adequate number of data introduced to the ANN model. 
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Figure 9: Comparison of RSM Full Factorial FGPT with NN 
Box-Behnken FGPT. 
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Figure 10: Comparison of RSM Full Factorial FGPT with NN 
Central Composite FGPT. 
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Figure 11: Comparison of RSM Full Factorial FGPT with NN D-
optimal FGPT. 
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TABLE 4: NUMERIC COMPARISON OF RSM BOX-BEHNKEN, CENTRAL COMPOSITE AND D-OPTIMAL WITH RSM FULL FACTORIAL FGPT. 
 RSM Box-Behnken RSM Cent. Comp. RSM D-opt. RSM Full Fact. 

Mean 1032.66587 1033.472663 1033.46226 1035.868392 

P10 1293.523 1290.74 1282.7 1289.227 

P20 1214.825 1198.92 1204.15 1204.39 

P30 1145.469 1150.401 1138.49 1133.233 

P40 1056.025 1062.68 1060.44 1067.507 

P50 1043.31 1048.199 1039.68 1053.65 

P60 994.436 1003.86 998.14 999.2 

P70 913.91 894.601 917.84 921.02 

P80 817.951 835.267 820.74 825.933 

P90 793.188 822.62 802.56 809.247 
 

TABLE 5: NUMERIC COMPARISON OF NN BOX-BEHNKEN, NN CENTRAL COMPOSITE AND NN D-OPTIMAL WITH RSM FULL FACTORIAL 
FGPT. 

 NN Box-Behnken NN Cent. Comp. NN D-opt. RSM Full Fact. 

Mean 1034.754208 1019.927307 1014.65898 1035.868392 
P10 1304.447427 1304.604939 1300.74843 1289.227 

P20 1216.425817 1209.217144 1184.14175 1204.39 

P30 1155.766981 1151.499749 1144.62911 1133.233 

P40 1049.426803 1048.264999 1019.31429 1067.507 

P50 1034.999081 1012.809431 999.290226 1053.65 

P60 996.0394781 982.3751629 976.233124 999.2 

P70 904.1340492 871.9452471 865.652627 921.02 

P80 826.084712 813.6972471 821.316628 825.933 

P90 796.5525969 777.0703089 783.785759 809.247 

 

6.  CONCLUSIONS 

Numerous uncertain parameters are contributing to the 
simulation model of this gas field. More investigation in 
order to study the influence of these uncertainties in 
prediction of FGPT is needed. Based on this 
investigation, the following results are acquired: 

1) Sensitivity analysis recognized Net to Gross 
Ratio, Porosity, Fracture Permeability, Fracture 
Porosity, Permeability (kx) and Aquifer as the 
main uncertain factors. 

2) A resolution VI Fractional Factorial screening 
design introduced NTG*PHI, NTG*KF, 
PHI*KF, PHI*Aquifer, and NTG*Aquifer as 
considerable interactions and that we have to 
account for in response surface models. 

3) We recommend D-optimal design as representing 
the best estimation for population space utilizing 
Response Surface Methodology. This design also 
possesses the advantage of requiring least 
number of runs comparing to other designs. 

4) A design giving the most reliable probability 
distribution utilizing Response Surface 
Methodology will not necessarily result in the 
most reliable probability distribution utilizing 
ANN. An ANN model trained by Box-Behnken 
design best estimates the population space. 
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