[1] Y. P. Aneja and M. Parlar, “Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel,” Transportation Science, vol. 28, pp. 70–76, 1994.

[2] A. Antunes and D. Peeters, “On solving complex multi-period location models using simulated annealing,” European Journal of Operational Research, vol. 130, pp. 190–201, 2001.

[3] L. Aupperle and J. M. Keil, “Polynomial algorithms for restricted Euclidean p-centre problems,” Discrete Applied Mathematics, vol. 23, pp. 25–31, 1989.

[4] R. Batta, A. Ghose and U. Palekar, "Locating facilities on the Manhattan metric with arbitrarily shaped barriers and convex forbidden regions," Transportation Science, vol. 23, pp. 26–36, 1989.

[5] M. Bischoff, T. Fleischmann and K. Klamroth, “The multi-facility location–allocation problem with polyhedral barriers,” Computers and Operations Research, vol. 36, pp. 1376 –1392, 2009.

[6] M. Bischoff and K. Klamroth, “An efficient solution method for Weber problems with barriers based on genetic algorithms,” European Journal of Operational Research, vol. 177, pp. 22–41, 2007.

[7] S. E. Butt and T. M. Cavalier, “An efficient algorithm for facility location in the presence of forbidden regions,” European Journal of Operational Research, vol. 9011, pp. 56–70, 1996.

[8] M. S. Canbolat and G. O. Wesolowsky, “The rectilinear distance Weber problem in the presence of a probabilistic line barrier,” European Journal of Operational Research, vol. 2021, pp. 114–121, 2010.

[9] C. Canel, B. M. Khumawala, J. Law and A. Loh, “An algorithm for the capacitated, multi-commodity multi-period facility location problem,” Computers and Operations Research, vol. 28, pp. 411–427, 2001.

[10] N. R. Chakrabarty and P. K. Chaudhuri, “Geometric solution of a constrained rectilinear distance minimax location problem,” Asia-Pacific Journal of Operations Research, vol. 7, pp. 163-171, 1990.

[11] N. R. Chakrabarty and P. K. Chaudhuri, “Geometrical solution to some planar constrained minimax problems involving the weighted rectilinear metric,” Asia-Pacific Journal of Operations Research, vol. 9, pp. 135-144, 1992.

[12] J. Current, S. Ratick, and C. ReVelle, “Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach,” European Journal of Operational Research, vol. 110, pp. 597–609, 1997.

[13] P. M. Dearing and Jr., R. Segars, “An equivalence result for single facility planar location problems with rectilinear distance and barriers,” Annals of Operations Research, vol. 111, pp. 89-110, 2002.

[14] P. M. Dearing and Jr., R. Segars, “Solving rectilinear planar location problems with barriers by a polynomial partitioning,” Annals of Operations Research, vol. 111, pp. 111-133, 2002.

[15] P. M. Dearing, H. W. Hamacher and K. Klamroth, “Dominating sets for rectilinear center location problems with polyhedral barriers,” Naval Research Logistics, vol. 49, pp. 647–665, 2002.

[16] P. M. Dearing, K. Klamroth, and Jr., R. Segars, “Planar location problems with block distance and barriers,” Annals of Operations Research, vol. 136, pp. 117–143, 2005.

[17] J. Dias, M. E. Captivo and J. Clímaco, “Efficient primal-dual heuristic for a dynamic location problem,” Computers and Operations Research vol. 34, pp. 1800–1823, 2007.

[18] J. Dias, M. E. Captivo, and J. Clímaco, “A memetic algorithm for multi-objective dynamic location problems,” Journal of Global Optimization, vol. 42, pp. 221–253, 2009.

[19] Z. Drezner and G. P. Wesolowsky, “Facility location when demand is time dependent,” Naval Research Logistics, vol. 38, pp. 763–777, 1991.

[20] D. Erlenkotter, “A comparative study of approaches to dynamic location problems,” European Journal of Operational Research, vol. 6, pp. 133–143, 1981.

[21] R. Z. Farahani, Z. Drezner, and N. Asgari, “Single facility location and relocation problem with time dependent weights and discrete planning horizon,” Annals of Operations Research, vol. 167, pp. 353–368, 2009.

[22] M. Frantzeskakis and C. D. T. Watson-Gandy, “The use of state space relaxation for the dynamic facility location problem,” Annals of Operations Research, vol. 18, 1989.

[23] L. Frieß, K. Klamroth and M. Sprau, “A wavefront approach to center location problems with barriers,” Annals of Operations Research, vol. 136, pp. 35–48, 2005.

[24] R. D. Galvão, E. Santibañez-Gonzalez, and R. Del, “A Lagrangean heuristic for the P-median dynamic location problem,” EuropeanJournal of Operational Research, vol. 58, pp. 250–62, 1992.

[25] R. D. Galvão, E. Santibañez-Gonzalez, and R. Del, “The p_{k}-median dynamic location problem: formulation and a heuristic solution method, Investigación Operativa, vol. 1, pp. 295–308, 1990.

[26] H. W. Hamacher, and K. Klamroth, “Planar Weber location problems with barriers and block norms,” Annals of Operations Research, vol. 96, pp. 191–208, 2000.

[27] H. W. Hamacher, and S. Nickel, “Multicriteria planar location problems,” European Journal of Operational Research, vol. 94, pp. 66–86, 1996.

[28] H. W. Hamacher, and S. Nickel, “Classification of location problems,” Location Science, vol. 6, pp. 229–242, 1998.

[29] P. Hansen, D. Peeters and J. Thisse, “On the location of an obnoxious facility,” Sistemi Urbani, vol. 3, pp. 299–317, 1981.

[30] Y. Hinojosa, J. Puerto, and F. R. Fernández, “A multiperiod two-echelon multicommodity capacitated plant location problem,” European Journal of Operational Research, vol. 123, pp. 271–291, 2000.

[31] A. M. Hormozi and B. M. Khumawala, “An improved algorithm for solving a multi-period facility location problem,” IIE Transactions, vol. 28, pp. 105–114, 1996.

[32] I. N. Katz and L. Cooper, “Formulation and the case of Euclidean distance with one forbidden circle,” European Journal of Operational Research, vol. 6, pp. 166–173, 1981.

[33] H. Kelachankuttu, R. Batta, and R. Nagi, “Contour line construction for a new rectangular facility in an existing layout with rectangular departments,” European Journal of Operational Research, vol. 180, pp. 149–162, 2007.

[34] D. L. Kelly and A. S. Marucheck, “Planning horizon results for the dynamic warehouse location problem,” Journal of Operations Management, vol. 4, pp. 279–294, 1984.

[35] Klamroth, K. “A reduction result for location problems with polyhedral barriers,” European Journal of Operational Research, vol. 130, pp. 486–497, 2001.

[36] K. Klamroth, “Planar Weber location problems with line barriers,” Optimization, vol. 49, pp. 517–527, 2001.

[37] K. Klamroth, “Algebraic properties of location problems with one circular barrier,” European Journal of Operational Research, vol. 154, pp. 20–35, 2004.

[38] K. Klamroth and M. M. Wiecek, “A bi-objective median location problem with a line barrier,” Operations Research, vol. 50(4), pp. 670–679, 2002.

[39] R. C. Larson and G. Sadiq, “Facility location with the Manhattan metric in the presence of barriers to travel,” Operations Research, vol. 31, pp. 652–669, 1983.

[40] R.G. McGarvey and T.M. Cavalier, “A global optimal approach to facility location in the presence of forbidden regions,” Computers and Industrial Engineering, vol. 45, pp. 1–15, 2003.

[41] E. Melachrinoudis, H. Min, and A. Messac, “The Relocation of a Manufacturing/Distribution Facility from Supply Chain Perspectives: A Physical programming Approach,” Multi-Criteria Applications, vol. 10, pp. 15–39, 2000.

[42] H. Min, “The dynamic expansion and relocation of capacitated public facilities: A multi-objective approach,” Computers and Operations Research, vol. 15, pp. 243–252, 1988.

[43] P. Nandikonda, R. Batta and R. Nagi, “Locating a 1-center on a Manhattan plane with ‘arbitrarily’ shaped barriers,” Annals of Operations Research, vol. 123, pp. 157–172, 2003.

[44] S. Nickel, “Restricted center problems under polyhedral gauges,” European Journal of Operational Research, vol. 104, pp. 343–357, 1998.

[45] J. Puerto and A. M. Rodríguez-Chía, “New models for locating a moving service facility,” Mathematical Methods of Operations Research, vol. 63, pp. 31–51, 2006.

[46] A. Sarkar, R. Batta and R. Nagi, “Placing a finite size facility with a center objective on a rectangular plane with barriers,” European Journal of Operational Research, vol. 179, pp. 1160–1176, 2007.

[47] S. Savaş, R. Batta and R. Nagi, “Finite-size facility placement in the presence of barriers to rectilinear travel. Operations Research, vol. 50(6), pp. 1018–1031, 2002.

[48] A. Shulman, “An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes,” Operations research, vol. 39(3), pp. 423–436, 1991.

[49] J. J. Sylvester, “A question in the geometry of situation,” Quarterly Journal of Pure and Applied Mathematics, vol. 1, pp. 79–80, 1857.

[50] B. C. Tansel, R. L. Francis, and T. J. Lowe, “Location on networks: A survey. Part I: The p-center and p-median problems,” Management Science, vol. 29, pp. 482–497, 1983.

[51] T. Van Roy, D. Erlenkotter, “A dual-based procedure for dynamic facility location,” Management Science, vol. 28, pp. 1091–1105, 1982.

[52] S. J. Wang, J. Bhadury, R. Nagi, “Supply facility and input/output point locations in the presence of barriers,” Computers and Operations Research, vol. 29, pp. 685–699, 2002.

[53] G. O. Wesolowsky, “Dynamic facility location,” Management Science, vol. 19, pp. 1241–1248, 1973.

*Books:*

[54] R. Z. Farahani and M. Hekmatfar, Facility location: Concepts, models, algorithms and case studies, Berlin: Physica-Verlag, 2009, p. 347.

[55] K. Klamroth, Single-facility location problems with barriers, Springer Series in Operations Research, 2002, p. 17.

*Papers from Conference Proceedings (Published):*

[56] S. Shiripour, I .Mahdavi, M. Amiri-Aref, M. Mohammadnia-Otaghsara, “A Nonlinear Programming Model for a Multi-Facility Location Problem with a Probabilistic Line Barrier” in Proc. International Conference on Industrial Engineering and Engineering Management (IEEM) 2010 IEEE, pp. 630-634.