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ABSTRACT: We continue [8] and we discuss approximately left ϕ-biprojectivity
for θ-Lau product algebras. We give some Banach algebras among the category of
θ-Lau product algebras which are not approximately left ϕ-biprojective. In fact,
some class of matrix algebras under the notion of approximate left ϕ-biprojectivity
is also discussed here.
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1. Introduction and Preliminaries

Helemskii studied the structure of Banach algebras by homological theory. There are two important notions in the
homological theory, namely biflatness and biprojectivity. A Banach algebra A is called biprojective if there exists
a bounded A-bimodule morphism ρ : A → A⊗̂A such that πA ◦ ρ(a) = a, for all a ∈ A. Here A⊗̂A denotes the
projective tensor product of A with A and πA : A⊗̂A→ A is the product morphism which is given by πA(a⊗b) = ab
for all a, b ∈ A. For more information about homological Banach algebra’s history see [6].

Zhang gave an approximate version of biprojectivity for Banach algebras. In fact A is approximately biprojective
if there exists a net of A-bimodule morphism ρα : A → A⊗̂A such that πA ◦ ρα(a) → a for all a ∈ A. He studied
nilpotent ideals of Banach algebra using this notion, see [9].

Motivated by Zhang and Helemskii, Sahami and Pourabbas defined a notion of Banach homology with respect to
a non-zero multiplicative linear functional. In fact for a non-zero multiplicative linear functional ϕ on A, the Banach
algebras A is called approximate left ϕ-biprojective if there exists a net of bounded linear map ρα : A −→ A⊗̂A
such that

ρα(ab)− a · ρα(b) → 0, ρα(ab)− ϕ(b)ρα(a) → 0 and ϕ ◦ πA ◦ ρα(a)− ϕ(a) → 0,
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for all a, b ∈ A. They studied approximately left ϕ-biprojectivity of group algebras, Segal algebras and measure
algebras over a locally compact group.

In this paper, We continue [8] and we discuss approximately left ϕ-biprojectivity for θ-Lau product algebras.
The relations with its subalgebras also studied here. We give some Banach algebras among the category of θ-Lau
product algebras which are not approximately left ϕ-biprojective.

We remind some definitions and notations which we need in this paper. For an arbitrary Banach algebra A, the
character space is denoted by σ(A) consists of all non-zero multiplicative linear functionals on A and any element
of σ(A) is called a character. The θ-Lau product was first introduced by Lau [4] for F-algebras. Monfared [5]
introduced and investigated θ-Lau product space A ×θ B, for Banach algebras in general. Indeed for two Banach
algebras A and B such that σ(B) ̸= ∅ and θ be a non-zero character on B, the Cartesian product A×B by following
multiplication and norm

(a, b)(a′, b′) = (aa′ + θ(b′)a+ θ(b)a′, bb′),

∥(a, b)∥ = ∥a∥A + ∥b∥B ,

is a Banach algebra, for all a, a′ ∈ A and b, b′ ∈ B. The Cartesian product A×B with the above properties called
the θ−Lau product of A and B which is denoted by A×θB. From [5] we identify A×{0} with A, and {0}×B with
B. Thus, it is clear that A is a closed two-sided ideal while B is a closed subalgebra of A×θ B, and (A×θ B)/A is
isometrically isomorphic to B. If θ = 0, then we obtain the usual direct product of A and B. Since direct products
often exhibit different properties, we have excluded the possibility that θ = 0. Moreover, if B = C, the complex
numbers, and θ is the identity map on C, then A ×θ B is the unitization A♯ of A. Note that, by [5, Proposition
2.4], the character space σ(A×θ B) of A×θ B is equal to

{(ϕ, θ) : ϕ ∈ σ(A)}
⋃

{(0, ψ) : ψ ∈ σ(B)}.

Also, the dual space (A×θ B)∗ of A×θ B is identified with A∗ × B∗ such that for each (a, b) ∈ A×θ B, ϕ ∈ σ(A)
and ψ ∈ σ(B) we have

⟨(ϕ, ψ), (a, b)⟩ = ϕ(a) + ψ(b).

Now, suppose that A∗∗, B∗∗ and (A ×θ B)∗∗ are equipped with their first Arens products. Then (A ×θ B)∗∗ is
isometrically isomorphic with A∗∗×θB

∗∗. Also, for all (m,n), (p, q) ∈ (A×θB)∗∗ the first Arens product is defined
by

(m,n)□(p, q) = (m□p+ n(θ)p+ q(θ)m,n□q);

see [5, Proposition 2.12]. Note that every ϕ ∈ σ(A) has a unique extension to a character on A∗∗ is given by ϕ̃
where ϕ̃(m) = m(ϕ), for all m ∈ A∗∗.

Note that A and B are closed two-sided ideal and closed subalgebra of L := A ×θ B, respectively. So, we can
write a = (a, 0) and b = (0, b) for all a ∈ A and b ∈ B. Therefore, L = A×θ B is a Banach A-bimodule and also is
a Banach B-bimodule.

We recall that if X is a Banach A-bimodule, then with the following actions X∗ is also a Banach A-bimodule:

a · f(x) = f(x · a), f · a(x) = f(a · x) (a ∈ A, x ∈ X, f ∈ X∗).

The projective tensor product of A with A is denoted by A⊗̂A. The Banach algebra A⊗̂A is a Banach A-bimodule
with the following actions

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

Let ϕ ∈ σ(A). Then ϕ has a unique extension on A∗∗ denoted by ϕ̃ and defined by ϕ̃(F ) = F (ϕ) for every F ∈ A∗∗.
Clearly this extension remains to be a character on A∗∗.

2. Approximate left ϕ-biprojectivity

Here p
A
: L −→ A and p

B
: L −→ B denote the usual projections defined by p

A
(a, b) = a and p

B
(a, b) = b for all

a ∈ A and b ∈ B. Let q
A
: A −→ L and q

B
: B −→ L be injections given by q

A
(a) = (a, 0) and q

B
(b) = (0, b). Thus

for q
A
and p

B
we define

q
A
⊗q

A
: A⊗̂A −→ L⊗̂L

and
p

B
⊗p

B
: L⊗̂L −→ B⊗̂B

with
(q

A
⊗q

A
)(a⊗ c) = (a, 0)⊗ (c, 0)

112



S. Babayi et al., AUT J. Math. Comput., 5(2) (2024) 111-116, DOI:10.22060/AJMC.2022.21637.1093

and
(p

B
⊗p

B
)((a, b)⊗ (c, d)) = b⊗ d,

for all a, c ∈ A and b, d ∈ B, respectively. One can show that q
A
and q

A
⊗q

A
are A-bimodule morphisms and also

p
B
, q

B
and p

B
⊗ p

B
are B-bimodule morphisms.

For a unital Banach algebra A with unit e. Set r
A
: L −→ A and S

B
: B −→ L with r

A
(a, b) = a + θ(b)e and

S
B
(b) = (−θ(b)e, b), respectively, for every a ∈ A, b ∈ B. Now

r
A
⊗r

A
: L⊗̂L −→ A⊗̂A

and
S

B
⊗S

B
: B⊗̂B −→ L⊗̂L

follows that
(r

A
⊗r

A
)((a, b)⊗ (c, d)) = (a+ θ(b)e)⊗ (c+ θ(d)e)

and
(S

B
⊗S

B
)(b⊗ d) = (−θ(b)e, b)⊗ (−θ(d)e, d),

respectively. Clearly r
A
and r

A
⊗r

A
are A-bimodule morphism and S

B
is a B-bimodule morphism.

Proposition 2.1. Suppose that A and B are Banach algebras. Let A has a unit e. Also let ϕ ∈ σ(A) and θ ∈ σ(B).
If L is approximately left (ϕ, θ)-biprojective. Then A is approximately left ϕ-biprojective.

Proof. Let L be left (ϕ, θ)-biprojective. Then there exists a net of bounded linear maps ρα : L −→ L⊗̂L such that

ρα(xy)− x · ρα(y) → 0 ρα(xy)− ϕ(y)ρα(x) → 0, ϕ ◦ πL ◦ ρα(x)− ϕ(x) → 0, (x, y ∈ L).

It is easy to see that
r
A
◦ π

L
= πA ◦ (r

A
⊗r

A
), ϕ ◦ r

A
= (ϕ, θ).

Now define ηα : A −→ A⊗̂A by ηα = (r
A
⊗r

A
) ◦ ρα ◦ q

A
. Consider

ηα(a1a2)− a1ηα(a2) = (r
A
⊗r

A
) ◦ ρα ◦ q

A
(a1a2)− a1 · (rA⊗rA) ◦ ρα ◦ q

A
(a2)

= (r
A
⊗r

A
) ◦ ρα ◦ q

A
(a1a2)− (r

A
⊗r

A
) ◦ ρα(a1 · qA(a2)) → 0

and

ηα(a1a2)− ϕ(a2)ηα(a1) = (r
A
⊗r

A
) ◦ ρα ◦ q

A
(a1a2)− ϕ(a2)(rA⊗rA) ◦ ρα ◦ q

A
(a1)

= (r
A
⊗r

A
) ◦ ρα(qA(a1) · a2)− ϕ(a2)(rA⊗rA) ◦ ρα ◦ q

A
(a1)

= (r
A
⊗r

A
) ◦ ρα(qA(a1) · a2)− (r

A
⊗r

A
)(ϕ(a2)ρα(qA(a1))) → 0

for every a1 and a2 in A. Also we have

ϕ ◦ πA ◦ ηα(a)− ϕ(a) = ϕ ◦ πA ◦ (r
A
⊗r

A
) ◦ ρα ◦ q

A
(a)− ϕ(a)

= (ϕ ◦ r
A
◦ πL ◦ ρα)(a, 0)− ϕ(a)

= ((ϕ, θ) ◦ πL ◦ ρα)(a, 0)− ϕ(a) → 0

for all a ∈ A. So A is approximately left ϕ-biprojective. □

Proposition 2.2. Suppose that A and B are Banach algebras and ψ ∈ σ(B). If L is approximtely left (0, ψ)-
biprojective, then B is approximaately left ψ-biprojective. Converse holds whenever A is unital.

Proof. Since L is approximately left (0, ψ)-biprojective, there exists a net of bounded linear maps ραL : L −→ L⊗̂L
such that (0, ψ) ◦ πL ◦ ραL − (0, ψ) → 0 and

ραL(l1l2)− l1 · ραL(l2) → 0, ραL(l1l2)− (0, ψ)(l2) · ραL(l1) → 0, (l1, l2 ∈ L).

Set ραB : B −→ B⊗̂B which is given by ραB = (p
B
⊗ p

B
) ◦ ραL ◦ q

B
. It is easy to see that

πB ◦ (p
B
⊗ p

B
) = p

B
◦ πL, ψ ◦ p

B
= (0, ψ).

Now consider

ραB(b1b2)− ψ(b2)ρ
α
B(a1) = (p

B
⊗ p

B
) ◦ ραL ◦ q

B
(b1b2)− ψ(b2)(pB

⊗ p
B
) ◦ ραL ◦ q

B
(a1)

= (p
B
⊗ p

B
) ◦ ραL(qB (b1) · b2)− ψ(b2)(pB

⊗ p
B
) ◦ ραL(qB (b1)) → 0
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and

ραB(b1b2)− b1 · ραB(b2) = (p
B
⊗ p

B
) ◦ ραL ◦ q

B
(b1b2)− b1 · (pB

⊗ p
B
) ◦ ραL ◦ q

B
(b2)

= (p
B
⊗ p

B
) ◦ ραL ◦ q

B
(b1b2)− (p

B
⊗ p

B
) ◦ ραL(b1 · qB (b2)) → 0

for every b1 and b2 in B. Also we have(
ψ ◦ πB ◦ ραB

)
(b)− ψ(b) =

(
ψ ◦ πB ◦ (p

B
⊗ p

B
)ραL ◦ q

B

)
(b)− ψ(b)

=
(
ψ ◦ p

B
◦ πL ◦ ραL

)
(0, b)− ψ(b)

=
(
(0, ψ) ◦ πL ◦ ραL

)
(0, b)− ψ(b) → 0,

for each b ∈ B.
For converse, suppose that B is approximately left ψ-biprojective. Then there exists a net of bounded linear

maps ρB : B −→ B⊗̂B such that

ραB(ab)− a · ραB(b) → 0, ραB(ab)− ψ(b)ραB(a) → 0

and
ψ ◦ πB ◦ ραB(b)− ψ(b) → 0

for each a, b ∈ B. Define ραL : L −→ L⊗̂L by

ραL(a, b) := (S
B
⊗ S

B
) ◦ ραB(b),

for all a ∈ A and b ∈ B. It is easy to see that

πL ◦ (S
B
⊗ S

B
) = S

B
◦ πB , (0, ψ) ◦ S

B
= ψ, ((S

B
⊗ S

B
) ◦ λB(b)) · x = 0,

for all b ∈ B and x ∈ A. By these facts we can show that ραL is a net of bounded linear maps such that

ραL(l1l2)− (0, ψ)(l2)ρ
α
L(l1) → 0, ραL(l1l2)− l1 · ραL(l2) → 0

for all l1, l2 ∈ L. Also we have
(0, ψ) ◦ πL ◦ ραL(l)− (0, ψ)(l) → 0,

for each l ∈ L. It follows that L is approximately left (0, ψ)-biprojective. □

Remark 2.3. We show that approximately left (ϕ, θ)-biprojectivity of L implies that B is approximately left θ-
biprojective. To see this, we know that there exists a net of bounded linear maps ραL : L −→ L⊗̂L such that

ραL(ab)− a · ραL(b) → 0, ραL(ab)− (ϕ, θ)(b)ραL(a) → 0

and
(ϕ, θ) ◦ πL ◦ ρL(a)− (ϕ, θ)(a) → 0, (a, b ∈ L).

Note that, we have

p
B
◦ πL = πB ◦ (p

B
⊗p

B
), rA ◦ πL = πA ◦ (rA⊗rA), θ ◦ p

B
= (0, θ).

Define ραB : B −→ B⊗̂B by ραB := (p
B
⊗p

B
) ◦ ραL ◦ q

B
. So by using(

(ϕ, 0) ◦ πL ◦ ραL
)
(0, b) → 0,

we have (
θ ◦ πB ◦ ραB

)
(b)− θ(b) = ⟨(ϕ, θ), (0, b)⟩ −

(
(ϕ, 0) ◦ πL ◦ ραL

)
(0, b)− θ(b)

=
(
(ϕ, 0) ◦ πL ◦ ραL

)
(0, b) → 0,

for every b ∈ B. Also we have

ραB(b1b2)− b1 · ραB(b2) → 0, ραB(b1b2)− θ(b2)ρB(b1) → 0, (b1, b2 ∈ B).

It follows that B is approximately left θ-biprojective.
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3. Applications and examples

Suppose that A is a Banach algebra and ϕ ∈ σ(A). We remind that a Banach algebra A is approximately left
ϕ-amenable if there exists a net (mα) in A such that amα − ϕ(a)mα → 0 and ϕ(mα) → 1 for all a ∈ A, see [1].
A Banach algebra A is called approximately left character amenable, if A is approximately left ϕ-amenable for all
ϕ ∈ σ(A) and A posses a left approximate identity see [1].

Example 3.1. We give a Lau product Banach algebra which is not approximately left ϕ-biprojective.
To see this, suppose that C1[0, 1] is the set of all differentiable functions which its derivation is continuous. With the
point-wise multiplication and the sup-norm, C1[0, 1] becomes a Banach algebra. It is well-known that σ(C1[0, 1]) =
{ϕt : t ∈ [0, 1]}, where ϕt(f) = f(t) for all t ∈ [0, 1]. We assume conversely that C1[0, 1]×θC

1[0, 1] is approximately
left (ϕt, θ)-biprojective or approximatley left (0, ϕt)-biprojective, where ϕt(f) = f(t) for each t ∈ [0, 1]. It is easy
to see that function 1 is an identity for C1[0, 1]. Using Proposition 2.1 and Proposition 2.2 follows that C1[0, 1] is
approximatley left ϕt-biprojective. So there exists a net of bounded linear map ραC1[0,1] : C

1[0, 1] −→ C1[0, 1]⊗̂C1[0, 1]
such that

ραC1[0,1](fg)− f · ραC1[0,1](g) → 0, ραC1[0,1](fg)− ϕt(g)ρ
α
C1[0,1](f) → 0

and
ϕ̃t ◦ πC1[0,1] ◦ ραC1[0,1](f)− ϕt(f) → 0

for all f, g ∈ C[0, 1]. Define mα = πC[0,1]
◦ ραC1[0,1](1) ∈ A. Then

f ·mα − ϕt(f)mα = f · πC[0,1]
◦ ραC1[0,1](1)− ϕt(f)πC[0,1]

◦ ραC1[0,1](1)

= πC[0,1]
(f · ραC1[0,1](1))− πC[0,1]

(ϕt(f)ρ
α
C1[0,1](1)) → 0

and
ϕt(mα)− 1 = ϕt ◦ πC[0,1]

◦ ραC1[0,1](1)− 1 → ϕ(1)− 1 = 0,

for all f ∈ C1[0, 1]. It follows that C1[0, 1] is approximately left ϕt-amenable which is impossible by similar arguments
as in [3, Example 2.5].

The Banach algebra A is called approximately left character biprojective if A is approximately left ϕ-biprojective
for each ϕ ∈ σ(A), respectively, see [8].

Proposition 3.1. Suppose that G is a locally compact group and also M(G) is the measure algebra with respect to
G. Let θ ∈ σ(M(G)). Then M(G)×θ M(G) is approximately left character biprojective if and only if G is discrete
and amenable.

Proof. Suppose that M(G) ×θ M(G) is approximtely left character biprojective. Since M(G) has an identity,
Proposition 2.1 implies that M(G) is approximately left ϕ-biprojective for all ϕ ∈ σ(M(G)). Following the argu-
ments of previous Example, gives that M(G) is approximately character amenable. Now by [1, Theorem 7.2], G is
discrete and amenable.
For converse, suppose that G is discrete and amenable. Then we have M(G) = ℓ1(G). Thus by Johnson Theorem
ℓ1(G) is amenable. So [2, Corollary 2.1] finishes the proof. □

Example 3.2. Let A =
{(

a b
0 c

)
: a, b, c ∈ C

}
be a matrix algebra. With matrix operation and ℓ1-norm A

becomes a Banach algebra. Define ϕ : A −→ C by

ϕ(

(
a b
0 c

)
) = c.

It is easy to see that is a character on A. We claim that A ×θ A is neither approximately (ϕ, θ)-biprojective nor
is approximately left (0, ϕ)-biprojective, where θ ∈ σ(A). Suppose conversely that A ×θ A is approximately left
(ϕ, θ)-biprojective or approximately left (0, ϕ)-biprojective. Since A is unital, by Proposition 2.1 and Proposition 2.2
A is approximately left ϕ-biprojective. The existence of unit for A gives that A is approximately left ϕ-amenable.
Define

J :=
{(

0 b
0 d

)
: b, d ∈ C

}
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One can see that J is a closed ideal of A and ϕ|J ̸= 0. Since A is left ϕ-amenable, by [3, Lemma 3.1] we have that
J is ϕ|J -amenable. Now [7, Proposition 5.1] follows that, there exists a net (uα) in J such that juα −ϕ(j)uα −→ 0

and ϕ(uα) → 1 for all j ∈ J . Set j =

(
0 j1
0 j2

)
and uα =

(
0 wα

0 vα

)
, for some j1, j2, wα, vα ∈ C. Thus,

juα − ϕ(j)uα =

(
0 j1wα

0 j2vα

)
−

(
0 j2wα

0 j2vα

)
−→ 0.

It gives that j1vα − j2wα −→ 0. If we put j1 = 1 and j2 = 0, then we have vα → 0 which contradicts with
ϕ(uα) = vα → 1.
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