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ABSTRACT: This paper provides an automated system based on machine learn-
ing and computer vision to detect cellphone usage during driving. We used Wavelet
Scattering Networks, which is a simple and efficient type of architecture. The pre-
sented model is straightforward and compact and requires little hyper-parameter
tuning. The speed of this model is similar to the Convolutional Neural Networks.
We monitored the driver from two viewpoints: a frontal view of the driver’s face and
a side view of the driver’s whole body. We created a new dataset for the first view-
point, and used a publicly available dataset for the second viewpoint. Our model
achieved the test accuracy of 91% for our new dataset and 99% for the publicly
available one.
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1. Introduction

Phone usage by drivers causes distraction and deviates attention from road hazards. About one-third of accidents
caused by distraction involve a collision with a pedestrian, in which the driver had identified the pedestrian too
late [47]. Accidents severity correlates with the type of inattention [45, 46, 57]. Inattention was the root of a third
of severe accidents between 2011 and 2015 in Norway [7]. 80% of traffic accidents and 65% of close collisions are
due to the distraction of the drivers for a period of 3 seconds before the accident [7]. On average, it takes 5 seconds
to make a call, and if the car is moving at a speed of 100 km/h, it will travel 140 m during this time [5], so every
pedestrian or vehicle in this distance is a potential cause of an accident. In Brazil, the fine for using mobile phones
has increased by 150% in 5 years [40]. Using cell phones and texting while driving is responsible for 28% of accidents
in the United States [16]. Every hour of the day, at least 5% of American drivers are using their cell phones while
driving, which increases the risk of a crash 4-6 times [36], [31].
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The technological capability for level-5 autonomous vehicles (AV) will be available by 2025, but the commercial
availability will not happen until 2050 or even later [2]. This delay in availability has two reasons: first, the lack of
substructions, like highway infrastructure [38] or 5G needed for AVs [19], and second, legislation challenges, like the
legislative evolutions required in terms of administrative, civil, and criminal law [22]. Advanced Driver Assistance
Systems (ADAS) are making progress in both of these spheres. Some examples of ADAS are compensating for the
lack of attention for driving like cruise control [50], automatic car parking [12], and collision avoidance systems [18]
or assisting the driver or correcting her/his behavior via warnings like drowsiness detection systems [11], [39] and
drunkenness detection systems [41]. Such setups could be used for legislation or insurance related purposes [23].
The system proposed in this paper is an ADAS that could be used for warning, analyzing, and reporting drivers’
behavior to authorities or insurance companies.

Distraction is defined as the deviation of the driver's focus to a marginal task instead of basic activities of driving
[24]. Driver distraction can be divided into 4 categories: visual, auditory, manual, and cognitive [58]. Distraction
caused by mobile phone includes all 4 types: looking at the phone screen (visual distraction), talking (auditory),
texting (manual), and thinking about the discussed issues (cognitive) [58]. Sometimes drivers have compensatory
beliefs [58] that a risky behavior is neutralized by performing a safe behavior. So the person thinks s/he can use
the mobile phone because s/he drives at a low speed. Such a belief is dangerous or causes damage in many cases
even at low speeds [58].

Several studies proposed methods for drivers’ cellphone usage detection. Wagner et al [51] installed a head
tracking camera (OptiTrack V120:Duo) in a test car on top of the dashboard’s center console. They used 2 IR
cameras (Flir FL3-U3- 13Y3M-C) with active IR illumination (two Osram SFH 4725S LEDs per side) to have a
bright view of the driver’s face. They claimed that their system remains fully functional during day and night
light. They used a Raspberry Pi 3 Model B+ for image acquisition and brightness control. They presented 2
datasets for head position and driver posture. They made use of 4 different CNN architectures for classification
using different cameras. He et al [20] established a dataset of 545 relevant images. For classification, they proposed
the CornetNet-Lite network, which is based on the Hourglass module backbone to localize the cellphone in the
image. They utilized 4 types of noise to measure the robustness of their model. Their training procedure included
penalizing negative positions that are in a certain radius to positive positions. Rajput et al [34] extended the
goal of “driver cellphone usage detection” to cellphone detection in all scenarios. For this purpose, they used the
State Farm Distracted Driver Detection Kaggle dataset [27] as well as their own dataset named “IITH-dataset on
mobile phone usage” (IITH-DMU), which has 618 images of 6000× 4000 resolution. They annotated all images in
both datasets and used Faster-RCNN and SSD with different backbones for transfer learning. The backbones they
used were pre-trained on the COCO dataset. Likewise, Xiong et al [52] proposed a deep-learning-based approach.
First, they used Progressive Calibration Networks [43] to detect and track the face and determine the candidate’s
mobile phone usage region. They used the YOLOV3 [35] network for the classification part. They also introduced
their own experimental data, which was collected from 50 drivers under different lighting conditions through an
infrared camera. It included 22216 calling behavior images and 25464 normal images. For the training of the neural
network, they used the NVIDIA Jetson TX2 artificial intelligence supercomputer module. Behati et al [4] utilized
the VGG16 architecture for this purpose. They used the Distracted Driver Dataset [1] to train their classifier. They
also presented a shrunk version of VGG16, which is multiple times smaller than the original one but yields 1% less
accuracy. Le et al [25] performed a robust deep-learning method to detect cellphone. They proposed a Multiple
Scale Region-based CNN (RCNN) to detect the presence of a mobile phone near the face as well as the position of
the hands and the steering wheel to ensure that both hands are placed on the steering wheel. As well as observing
the steering wheel, they employed the same method to observe the face and localize the hand near the face. They
used SHRP-2 Database and VIVA Hand Database for their experiment. Torres et al [49] also used a CNN trained
on the first 4 classes of the State Farm dataset to perform the classification.

While recent studies in this field rely mostly on deep-learning-based approaches, most older studies employed
classical methods for this classification. Xu et al [53] used a Near Infra-Red (NIR) imaging system described in
[54] located on the roadside. Since the infrared light is absorbed by some vehicles windshield, they incorporated
a powerful IR illuminator to compensate for the loss of light. They used Fisher vectors to categorize the driver's
windshield as either cell phone usage violation or non-violation. Elqattan et al [13] used CNNs to diagnose this
problem. They used UI-5240CP Rev.2 IDS camera with a zoom lens on the police cars and an Axis Q1645 camera
on the roadside for this purpose. They made use of the YOLO algorithm trained on the COCO dataset to localize
the car and the driver. To categorize the images, they cut and pre-processed each received image using contrast
limited adaptive histogram equalization for enhancement and 3 × 3 Gaussian kernel for blurring. They utilized
the transfer learning method to categorize the images. They used Xception [9] model pre-trained on ImageNet
[10] dataset for transfer learning. Berri et al [6] proposed a hybrid system of pattern recognition and movement
detection based on the fact that when drivers use their cell phones, they have a tendency to direct their gaze towards
a point ahead, which limits the field of vision and affects the drivability. They implemented the detection using a
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camera attached to the dashboard of a car. First, their movement detection process classified the camera feed into
3 classes: “motionless”, “cell phone to the ear”, and “withdraw cell phone”. Then, their pattern recognition process
evaluated the image. The movement detection parametrized the pattern recognition by setting the classification
threshold based on its output. They utilized a dataset of 100 positive images and 100 negative images. They
used an MLP neural network with Gaussian and Sigmoid activation functions and applied a binary-coded genetic
algorithm to find the best parameters for their network. Seshadri et al [42] used a supervised descent method (SDM)
and Viola-Jones algorithm to track different points for investigating the desired area of the face, then the resulting
images were given to the pre-trained classifier. For feature extraction, they utilized normalized raw pixels as well
as features obtained from the histogram of oriented gradients. For the classification part, they used an ensemble of
the Real Adaboost Classifier and SVM. Yaser et al [56] used a dataset of 49 positive and 30 negative images. Their
images were taken from outside of a vehicle. They used cascade detectors for the classification part and reached
the accuracy of 75%.

In this paper, first, we used a type of architecture known as Wavelet Scattering Network (WSN). Second, we
showed that this network achieves higher accuracy like the widely used CNNs but using fewer parameters and
relying only on strong feature extraction property of the wavelet transform. Moreover, it achieved high accuracy
without applying image augmentation techniques to the images. Third, we produced a new dataset based on frontal
view images of drivers using their cellphones.

The structure of this paper is as follows: In section 2, we provide a short description of the WSN and present
the architecture used for this study. Also, we describe the datasets used for this study. In section 3, we explain
the results of our method and compare the performance of our WSN with the widely used CNN backbones on the
2 datasets. In section 4, we compare our contribution with those of previous studies and we conclude the paper in
section 5.

2. Materials and Methods

In this paper, we present a method based on machine learning to automatically detect driver cellphone usage. We
created a dataset for this purpose and also used a publicly available dataset to improve the system’s generalization.
For classification, we used WSN and compared its results with the widely used CNN architectures. We show that
our WSN architecture reaches the accuracy of the State of the Art (SOTA) models with its simple architecture and
fewer number of parameters.

2.1. Ear Dataset

Like any other machine learning algorithm, our method requires a tremendous amount of data to learn the difference
between “phone usage” and “safe behavior” [17]. First, we apply a HAAR cascade object detector [48] to the image
to locate the subject’s face and measure its size based on the distance from the camera. Then, using the face
location and its size, we estimate the potential regions of the ears (Figure 1). There is a linear relationship between
human face size and hand size [26]. So, after measuring the coefficients 0.4 and 1.2 for one subject, we can use it
for other subjects. It enables us to robustly track the regions of interest (ROI)s, especially when the subject gets
closer or farther to the camera.

Image acquisition protocol We had the subjects sitting at a distance of 40-80cm from the camera. Hence,
they held a cell phone in one hand beside the corresponding ear and gradually leaned to the left and right and
also rotated their necks to the side while we took their images. We further asked each subject to repeat the same
procedure with the same side of the face but using the opposite hand to have all possible cases in which a driver
can use a phone while driving. The subjects were supposed to perform the moves gradually and we took 2 images
from either side every second.

We only saved regions of ears to minimize memory usage and further processing. We took positive images from
one hand and negative ones from the other. Due to the symmetry of the problem, there was no need to run the
protocol on the other hand. Every image, whether positive or negative, could be flipped to represent that state for
the opposite ear. This will be further discussed in the next subsection.

We gathered 18537 images from 48 subjects, 41 males and 7 females, using the protocol1. All images were taken
with the subject's consent with a variety of indoor lighting setups.

Image Augmentation. First, we resized all images to 150 × 50 (Figure 2). Then, we applied several image
augmentation techniques to investigate the unsearched regions in the data space (Figure 3) [32]. Due to the
horizontal symmetry of the human body, we applied the horizontal flip transform with a high probability of 0.9.

1The dataset is available at: https://www.kaggle.com/datasets/aliarch808/drivers-cellphone-usage-detection-via-ear-images
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Figure 1: Left: Subject holding a phone in the left hand. The cascade detector locates the head (the circle) and measures the size
(the square). Middle: We estimate the potential regions where the subject may have a phone based on the locations extracted by the
cascade detector. Right: Extracted images for classifier decision

Figure 2: Raw images used for the validation set.

Figure 3: Transformed images used for the training set.

2.2. State Farm Datasets

We also used the first 5 classes of the publicly available Kaggle State Farm Dataset [27] (Figure 4). The total
number of images used was 11745.
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Figure 4: The first 5 classes of Kaggle State Farm Dataset [20]

2.3. Classifier

We implemented a WSN [30] for each of the datasets. The WSN is a computationally efficient network based on
wavelet filters that is invariant to translation and rotation [30]. The scattering transform requires 3 parameters
for the transformation: number of samples or input size (T), the averaging scale (2J), and the number of wavelets
per octave, Q [3]. For our problem, T is the size of the images. We chose the numbers 3 and 8 for J and
Q respectively. The scattering layer is a technique that involves several steps to encode important information
about input images. The first step is the wavelet transform, which convolves the input image of the driver’s
face with a set of wavelet filters at different scales to capture facial features at different spatial frequencies and
orientations. The wavelet coefficients are then processed to compute the scattering coefficients, which represent
the result of cascading wavelet convolutions with non-linear modulus operations. After each wavelet convolution,
the scattering layer performs a down-sampling operation to reduce the spatial dimensions of the coefficients and
capture information at different scales. The layer then applies a non-linear modulus operation to the wavelet
coefficients to capture amplitude information while discarding phase information, making the scattering transform
translation-invariant. This process is repeated multiple times (3 times in this case, as specified by J = 3 in the
layer definition), creating a cascade of transformations that capture increasingly higher-scale information while
maintaining translation-invariance. Finally, the scattering layer outputs a set of scattering coefficients that encodes
important information about the input images and pass them to the next layer for further processing [30], [3].
Figure 5 depicts the architectures we used for either of the datasets.

We also used three CNNs to have a comparison amongst different architectures. We claim that our WSN
achieves the same accuracy as SOTA architectures but with far fewer parameters.

We resized all images in Ear Dataset to 150x50 and all images in State Farm dataset to 64x64. We used grayscale
images for the WSN and RGB augmented images for the CNNs. Both datasets were split in 2 (90% of the data
was used for training and 10% for validation) and we shuffled the data during training to avoid overfitting. The
first model we used for this purpose was a baseline CNN with 7 layers and 620K and 1.28M parameters for the
State Farm and the Ear dataset, respectively. The other two were VGG16 [44] and ResNet50 [21], which are two
well-known architectures widely used in machine vision tasks. We trained all networks for 50 epochs with Adam
optimizer.

2.4. Tools

All the codes were written in Python. The fundamental libraries were OpenCV for image processing tasks and
PyTorch, Tensorflow, and Keras for machine learning tasks [15].

All of the trainings of the Neural Networks were done using Google CoLaboratoryTM data analysis tool and its
Tesla T4 GPU. For inferencing, we used a laptop computer with an Intel Core i7 CPU, 8 GB RAM, and a webcam.

3. Results

In this section, we provide the results of our models both in the training and the inference phase:

261



A. Besharati et al., AUT J. Math. Comput., 6(3) (2025) 257-268, DOI:10.22060/AJMC.2023.22580.1177

Figure 5: WSN Architectures used for the classification of: Left: State Farm data classifier and Right: Ear data Classifier

3.1. Training

All the CNNs we used reached 99% accuracy. Figures 6 and 7 compare the accuracy and loss of the CNNs with
the WSN for the Ear dataset and State Farm dataset respectively for training for 50 epochs. The high validation
accuracy reached by the WSN shows that it surmounted overfit to a high degree. For the Ear dataset, due to
high similarity between classes, it falls behind the CNNs in terms of validation accuracy but for the State Farm
dataset, it accomplishes the same validation accuracy. The fluctuations of models in loss and accuracy plots could
be attributed to two factors. First, the high similarity between the images of the two classes of the ear dataset makes
the learning challenging and creates temporary wrong directions for the network. Secondly, the more prominent
reason for the fluctuations could be attributed to the small number of parameters in the SWN models. Due to this
sparsity of the parameters, the networks are forced to make their weights more fluid, and result in high fluctuations
in the loss and accuracy metrics.

Figure 6: Loss and Accuracy of WSN, Resnet50, VGG16 and the baseline CNN for the Ear dataset (Dashed lines show the validation
loss and accuracy)

3.2. Inferencing

Table 1 shows the correctness metrics of SWN model on each of the Ear and State Farm datasets.
Table 2 provides the utility metrics for the models trained on Ear Dataset and State Farm Dataset. It provides

a comparison between the WSN and the CNNs in terms of volume and speed and shows that WSN is many times
smaller than the other networks.

262



A. Besharati et al., AUT J. Math. Comput., 6(3) (2025) 257-268, DOI:10.22060/AJMC.2023.22580.1177

Figure 7: Loss and Accuracy of WSN, Resnet50, VGG16 and the baseline CNN for the State Farm dataset (Dashed lines show the
validation loss and accuracy)

Table 1: SWN Correction Metrics for each of the datasets

Dataset % Accuracy % Precision % Sensitivity % Specificity

Ear 91 87 94 89

State Farm 99 99 99 99

Figure 8: Confusion matrices for the classification of Ear dataset (Left) and the State Farm dataset (Right)

Table 2: Utility metrics

Ear Dataset State Farm Dataset

Model fps Volume (MB) fps Volume (MB)

WSN 5 0.57 5 0.84

VGG16 3 174.9 7 179.1

Resnet50 8 330.7 8 301.8
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4. Discussions

In this section, we elaborate on our results and compare our method with previous studies. Table 3 compares the
performance of this paper with other research works. It indicates that this study achieved the correctness metrics
of the previous studies.

Table 4 compares the backbones used in other studies. It shows that the number of parameters in WSN is 300
times less than the smallest model used by previous authors (ResNeXt-50 in [51]) for this classification. In addition,
it is about 12 times smaller in volume. Most recent studies tried to tackle the problem using CNNs and achieved
SOTA results. Our method gained the same accuracy, but with far fewer parameters. Additionally, as illustrated
in figure 5, its 2-layer architecture is a lot simpler than the CNNs and does not require pooling or drop out layers.
As indicated in figures 7 and 8, small differences between validation and training graphs show that the proposed
architecture and hyperparameters were suitable for the datasets without overfitting.

Table 3: Correctness metrics and fps for other studies and this study

Study % Accuracy % Precision % Sensitivity fps

Wagner et al. 2022 92.8 & 90 − − 44 & 28

He et al. 2021 86.2 81.4 & 86.2 75.3 & 83.8 33

Rajput et el. 2020 98 & 95 − 57.5 & 82.4 −

Xiong et al. 2019 96 − − 25

Elqattan et al. 2019 89 & 95 46 100 −

Baheti et al. 2018 95.5 − − −

This study 91 & 99 87 & 99 94 & 99 5 & 5

Table 4: The volume and the number of parameters of the backbone architectures for previous studies and this study

Study Model Name Model Volume Number of Parameters

Wagner et al. 2022 ResNeXt-50 10.84 MB 23 M

He et al. 2021 CornerNet-Lite ∼ 600 MB −

Rajput et el. 2020 Inception-v2 92 MB 23.9 M

Xiong et al. 2019 & Elqattan et al. 2019 YOLOV3 235 MB 62.25 M

Baheti et al. 2018 VGG16 528 MB 138.4 M

This study WSN 0.84MB 69.4 k

As explained in section 2.3, we used RGB augmented images for CNNs training, but we trained the WSNs with
grayscale images without any augmentation. This highlights the high potential of the WSN in feature extraction.
From this point of view and with a consideration of the results achieved for the State Farm dataset, we observe that
the WSN accomplishes SOTA accuracy by training on one-third of the information used for the CNNs (grayscale
images versus RGB images).

The main challenge we faced in this study was the weaknesses of the HAAR cascade detector that affected the
performance of the classifier for the frontal view. Face occlusions or dark skin harms the functionality of the cascade
detector, hence we would lose the track of the face and the ears’ ROIs. In this regard, we refer to the studies that
worked on occluded face detection [8], [33]. The error rate of our system increases if the environment is too dark.
Also, we cannot detect cellphone usage if the subject uses a hands-free gadget for the phone call.

The proposed system has short- and long-term benefits on the behavior of drivers. In the short-term, the
proposed system along with a warning and/or ticketing protocol will make drivers think twice before reaching to
their cell phones and focus on the task of driving. It is also possible to couple the warning system with the speed
limiter subsystem of the vehicle. In the long run, not using cell phones while driving will become a social norm
similar to the existing habit of wearing seat belts.
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5. Conclusion

In this paper, we presented a new dataset for mobile cellphone usage detection. Also, we used WSN for the
classification of the images in our presented dataset as well as the publicly available Kaggle State Farm dataset.
We illustrated that the WSN outperforms the accuracy of well-known SOTA CNN models, but with a very small
and simple architecture and far fewer parameters. We reached the accuracy of 91% for our domestic dataset and
99% for the State Farm publicly available dataset. We also showed that it can achieve even better results in image
classification by training on grayscale images without image augmentations.

For future works, we will apply WSN for the localization of cellphone usage. Also, the same classification
approach can be further improved by merging the datasets from the frontal view (like the dataset created by [24])
to the side view of the driver (Kaggle State Farm and dataset used by [14]). To compensate for the inability of the
system in object detection in low light, architectures proposed by [29] and [28] are powerful solutions. For detection
of other ways of using cellphones like hands-frees or speakers, an ensemble of vision-based techniques with methods
like [37] and [55] may overcome the problem.
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