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ABSTRACT  

In this paper a mesh-free model of the functionally graded material (FGM) plate is presented.  The 

piezoelectric material as a sensor and actuator has been distributed on the top and bottom of the plate, 

respectively. The formulation of the problem is based on the classical laminated plate theory (CLPT) and the 

principle of virtual displacements. Moreover, the Particle Swarm optimization (PSO) algorithm is used for 

the vibration control of the (FGM) plate. In this study a function of the sliding surface is considered as an 

objective function and then the control effort is produced by the particle swarm method and sliding mode 

control strategy. To verify the accuracy and stability of the proposed control system, a traditional sliding 

mode control system is designed to suppressing the vibration of the FGM plate. Besides, a genetic algorithm 

sliding mode (GASM) control system is also implemented to suppress the vibration of the FGM plate. The 

performance of the proposed PSO sliding mode than the GASM and traditional sliding mode control system 

are demonstrated by some simulations. 
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1. INTRODUCTION   

The area of smart materials and structures has 

experienced rapid growth. Numerous researches and 

methods have been developed to analysis the dynamic 

response of the FGM and the composite plates and shells. 

Zhao [1] developed a free vibration analysis of metal and 

ceramic functionally graded plates that uses the element-

free kp-Ritz method. Various numerical methods have 

been improved to constructing the shape function in the 

vibration analysis of plates and shells. The traditional 

numerical methods, including Ritz method, finite 

difference method (FDM), finite element method (FEM), 

etc., are applied efficiency in solving plate problems but 

there are still some limitations in engineering applications 

[2], therefore various mesh-free methods have been 

developed to improve the accuracy in numerical 

calculation of materials, including element-free Galerkin 

(EFG) method [3], smooth particle hydrodynamic (SPH) 

method [4], etc. Moreover, Liu [5] proposed the 

reproducing kernel particle method (RKPM), Batra et al 

[6] developed a modified smoothed-particle 

hydrodynamics (MSPH), Atluri [7] introduced meshless 

local Petrov-Galerkin (MLPG) method, corrective 

smoothed particle method (CSPM) and point interpolation 

methods (PIM) have been proposed by Chen [8] and 

Wang [9]. Bui [10] improved mesh-free methods 

approximation by the moving Kriging interpolation 

method which possesses the Kronecker’s delta property. 

The EFG method is a method which uses the moving 

least squares (MLS) approach for field approximation. In 

the general least-squares problem, the output of a linear 

model is given by the linearly parameterized expression. 

Although the least-squares methods for linear 

approximation are the most widely used techniques for 

fitting a set of data, occasionally it is appropriate to 

assume that the data are related through a system with 

nonlinear parameters, Therefore quadratic polynomial 

basis is utilized to improve approximation and to satisfy 

C1 continuity [11].  

In the current work, the particle swarm optimization 

technique is employed for the vibration control of the 

(FGM) plate. PSO is a population-based stochastic search 

algorithm. When analytical approaches either do not apply 

or do not guarantee a global solution for nonlinear 

systems, stochastic search algorithms may provide a 

promising alternative to these traditional approaches. PSO 

is a relatively new stochastic optimization technique. It 

was first introduced by Kennedy and Eberhart [12]. The 

algorithm is theoretically simple and computationally 

efficient. It exhibits advantages for many complex 

engineering problems.  

 Newly, some methods based on particle swarm 

optimization have been introduced in the systems 

identification and the control problems. Jiang [13] 

proposed a chaos particle swarm optimization (CPSO) 

which involves combining the strengths of chaos 

optimization algorithm and PSO. Marinaki [14] developed 

a Particle Swarm Optimization vibration control 

mechanism for a beam with bonded piezoelectric sensors 

and actuators. Bachlaus [15] improved chaos particle 

swarm optimization (CPSO) using nonlinear 

programming to avoid trapping in local minima and T–S 

fuzzy modeling approaches for constrained predictive 

control. 

2. MODEL DESCRIPTION  

A cantilevered (CFFF) FGM plate with the integrated 

sensors and actuators is demonstrated in Fig.1. Top and 

bottom layers of the laminated plate are piezoelectric 

actuator layer and piezoelectric sensor layer, respectively. 

The region between the two surfaces is made of the 

combined aluminum oxide and Ti-6A1-4V materials. It is 

common to considering that its properties are graded 

through the thickness direction according to a volume 

fraction power law distribution. The material properties 

can be found in literature [16, 17, 18]. 

 

Fig. 1. The block diagram of a PSOSM control system and 2D plote 

of the FGM plate with distributed piezoelectric layer as an 

actuatore on top and a sensor on bottom. 

A.  Shape Functions Construction 

Consider an approximation of function u(x) that is 

denoted by uh and expressed in discrete form as  

1

( )
NP

hu 


 uI I

I

x

 

(1) 

here ψI(x) and uI are the shape function and coefficient 

associated with node I and NP is the number of nodes. A 
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two-dimensional shape function with the kernel function   

is given by 

( ) ( ) ( )C w  I Ix x x x
 (2) 

where C(x) is the correction function and is used to satisfy 

the reproducing condition 

1

( )  for 0,1, 2.
NP

m n m n

I

x y x y p q


   I I Ix

 

(3) 

The correction function C(x) is described as a linear 

combination of the complete second-order monomial 

functions  

( ) ( ) ( )TC  P bIx x x x
 

(4) 

b(x)=[b0(x,y),b1(x,y),b2(x,y),b3(x,y),b4(x,y),b5(x,y

)]
T
  

(5) 

P
T
(x-xI)=[1, x-xI, y-yI, (x-xI)(y-yI), (x-xI)

2
, (y-yI)

2
]        (6) 

P is a vector with a quadratic basis and   is an 

unknown vector that to be determined. Therefore, the 

shape function can be obtained by the following form 

( ) ( ) ( ) ( )T w   b PI I Ix x x x x x
 (7) 

The above equation can be written as 

( ) ( ) ( )T  b BI I Ix x x x
 

(8) 

where  

( ) ( ) ( )w   B PI I I Ix x x x x x
 

(9) 

by substituting  (8) into  (3), the coefficients b(x) can be 

expressed by a moment matrix A and a constant vector 

P(0) as 

1( ) ( ) (0)b A Px x
 (10) 

in the above equation, A and P(0) are given by 

1

( ) ( ) ( ) ( )
NP

T w


   A P PI I I

I

x x x x x x x

 

(11) 

 (0) 1,0,0,0,0,0
T

P
 

(12) 

The tensor product weight function is expressed as 

( ) ( ) ( )w w x w y Ix x
 (13) 

where 

( )
x x

w x w
a

 
  

 

I

 

(14) 

In this study the cubic spline function is chosen as the 

weight function and is given by 

2 3

2 3

2 1
4 4             for  0

3 2

4 4 1
( ) 4 4 for 1

3 3 2

0 otherwise

z z z

w z z z z z

 
    

 
 

      
 
 
 
 

I I I

I I I I I

 

(15) 

 x x
z

d




I

I

I  

(16) 

where d
I

 is the size of the support and can be obtained by 

the following form 

d cI I  (17) 

where  a scaling is factor and define the basic support 

for node I. The shape function can therefore be written as    

1( ) (0) ( ) ( ) ( )T w   P A PI I Ix x x x x x
 

(18) 

In this paper, the transformation method is utilized to 

impose the essential boundary conditions.   

B. Mathematical Model Using Classical 

Laminated Plate Theory (Clpt) 

In CLPT theory, the displacement field is presented by 

the following form: 

   

0

01

0
2 0

3 0

[ ]

0

w
z

xuu
w

u u v z H u
y

u w

 
 

    
     

        
     

     
 
   

(19) 

and 

  0 0
0 0 0, , , ,

T

w w
u u v w

x y

  
  

    

(20) 

1 0 0 0

[ ] 0 1 0 0

0 0 1 0 0

z

H z

 
 

 
 
    

(21) 

where  u  is the midplane displacement. 
0 0 0, ,u v w are 

displacements in the ,x y and z  directions, and 0w

x




 , 

0w

y




are rotations of the yz and xz planes due to bending. 

The strains according to the displacement fled in  (19) are 

given by 

http://eej.aut.ac.ir/
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2

00
2

1 2

0 0
2 2

3 2
0 0 02

wu

xx

v w
z

y y

u v w

y x x y







   
  
    

      
      

      
       

   
         

(22) 

The Equations of equilibrium and electrostatics are 

given as follows: 

,ij j bi if u  
 

(23) 

, 0i iD 
 

(24) 

In Quasi-static and plane stress formulations analysis, 

the constitutive relationship for the FGM lamina in the 

principal material coordinates of the lamina, is given as 

follows: 

ij ijkl kl ijk kc e E  
 

(25) 

k ijk ij kl lD e k E 
 

(26) 

where 
,i iE    and   is the electric potential, 

ij  

denotes stress, 
ij , 

iE  and 
iD  are the strain, electric field 

and the electric displacements respectively. 
ijklc  is the 

elastic coefficients, 
ijke and 

klk  are accordingly, the 

piezoelectric stress constants and the dielectric 

permittivity coefficients for a constant elastic strain. The 

symbol   is the density of the plate which varies 

according to the following form, 

   2
( )

2T A A

z h
z

h



   
  

   
   

(27) 

The relationship between piezoelectric stress constants 

and the piezoelectric strain can be obtained by the 

following form 

31 31 11 32 12e d c d c 
 (28) 

32 31 12 32 22e d c d c 
 (29) 

In the present paper, the effective mechanical 

properties definitions of the plate are assumed to vary 

through the thickness of the uniform plate and can be 

written as 

   2
( )

2
T A A

ij ij ij ij

z h
c z c c c

h


  

   
   

(30) 

here, simple power law distribution method is used, where 
T

ijc  and A

ijc  are the corresponding elastic properties of the 

Ti-6A1-4V and aluminum oxide,   and h are the power 

law index and thickness of the plate, respectively. 

According to the Hamilton’s principle and using above 

equations, the variational form of the equations of motion 

for the FGM plate can be written as 

 
1

0

1 1

0 0

t

i i ij ij i i
t v

t t

bi i ci i
t v t

u u D E dvdt

f u dvdt f u dvdt

    

 

  

 

 

  
 

 
1

0

0
t

si i
t s

f u q dvdt    
 

(31) 

Here q is the surface charge, 
0t  and 

1t  are arbitrary 

time interval, the symbol v  and s  represent the volume 

and surface of the solid respectively. 
bif  , 

cif  and 
sif  

denote the body force, concentrated load and specified 

traction respectively. 

C. . Discrete Governing Equation 

 In this section a mesh-free model of FGM plate as a 

plant is introduced. The displacements and electric 

potential at the element level can be defined in terms of 

nodal variables as follows 

  [ ][ ]{ }e

uu H N u
 

(32) 

  [ ]{ }eN 
 

(33) 

where [ ]uN  and [ ]N  are the shape functions, which are 

combined of linear interpolation functions and non-

conforming Hermite cubic interpolation functions that can 

be found in literature [4, 6] are the EFG shape function 

matrices. { }eu  is the generalized nodal displacements and 

{ }e  is the nodal electric potentials. 

The infinitesimal engineering strains that are 

associated with the displacements are given by 

  [ ]{ }e

uB u 
 

(34) 

where the strain matrix  [ ] [ ] [ ]ui ui uiB A z C  and 

 1 2 3 4[ ] [ ][ ][ ][ ] [ ] [ ]u u u u u u uB B B B B A z C  
 for 1,2,3i   and 4.  

[ ]uiA  and [ ]uiC  are deravative matrixes of linear and 

non-conforming Hermite cubic interpolation functions, 

respectively [19]. 

The electric field vector { }E  can be expressed in 

terms of nodal variables as 

{ } [ ]{ }eE B    
 

(35) 
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where [ ] [ ]B N   . Substituting  (25), (26), (32), (34) 

and (35) into (31), and assembling the element equations 

yields 

[ ]{ } [ ]{ } [ ]{ } { }uu uu u mM u K u K F   
 

(36) 

[ ]{ } [ ]{ } { }u qK u K F   
 

(37) 

Substituting  (37) into (36), one can obtain 

 1

1

[ ]{ } [ ] [ ][ ] [ ] { }

{ } [ ][ ] { }

uu uu u u

m u q

M u K K K K u

F K K F

  

 





  


 

(38) 

where {Fq} for the sensor and actuator layer can be 

written as 

{ } [ ] 0 { }
{ }

0 [ ]{ } { }

[ ] 0 { }

0 [ ] { }

q s u s s

q

u aq a a

s s

a a

F K u
F

KF u

K

K













      
     
     

   
   

    

(39) 

here, the subscript’s denotes the sensors and subscript ’a 

represent the actuator. 

For the sensor layer, the applied charge { }qF  is zero 

and the converse piezoelectric effect is assumed 

negligible. Using (37), the sensor output is   

1{ } [ ] [ ] { }s s u s sK K u  
 

(40) 

and the sensor charge due to deformation from (37) is     

{ } [ ] { }q s u s sF K u
 

(41) 

For the actuator layer, from (37), { }q aF  can be written 

by the following form 

{ } [ ] { } [ ] { }q a u a a a aF K u K   
 

(42) 

As mentioned above and substituting (41) and (42) 

into (39), one can obtain 

{ } [ ]{ } [ ] { }q u a aF K u K   
 

(43) 

substituting (43) into (38) and some mathematics 

operations one can obtain 

[ ]{ } [ ]{ } [ ]{ }

{ } [ ] { }

uu s uu

m u a a

M u C u K u

F K  

  


 

(44) 

where [ ] [ ] [ ]s uu uuC a M b K   is the damping matrix, a  

and b  are Rayleigh’s coefficients. 

3. CONTROL SYSTEM 

A. . Sliding Mode Control System  

In this section, the main problem is suppressing the 

vibrations and steering all states (mode shape) to 

equilibrium point. Therefore, a traditional sliding mode 

(TSM) control system is designed and fabricated to 

suppress the vibrations of a FGM plate. To achieve the 

control objective, the sliding surface can be expressed as: 

   
2

0
( ) ( )

s

t
dS t d

dt
     

 
(45) 

where   is a positive constant. Note that, since the 

function   0S t   when 0t   , there is no reaching phase 

as in the traditional sliding-mode control [20, 21]. 

Differentiating ( )S t  with respect to time and using (40), 

one can obtain: 

     2( ) 2 ( ) ( )
ss s

S t t t     
 

(46) 

     
1 22u ss s s

S K K u     


        
 

(47) 

here,  u  can be expressed as: 

          

  

1

)

(uu m u saa

uu

u M F K C u

K u

 


    


 (48) 

substituting (47) in (46) one can obtain: 

 

          
   

1 1

22

u uus s

m u s uuaa

ss

K K M

F K C

S

u K u

 

 

   

 
 

     



   





 

(49) 

In this step, a control law  
a

  is designed so that the 

state to be remained on the surface ( )   0S t   for all times. 

Therefore, an equivalent control law  
aeq

 , which will 

determine the dynamic of the system on the sliding 

surface can be designed by recognizing: 

   | 0
a aeq

S
 


 

(50) 

Substituting (50) into (49) and rearranging, the TSM 

control law is presented as: 

    
         

   

1
1 1

1 1

2

( ( )

2 )

u uu uaeq s s a

u uu m s uus s

Sss

K K M K

K K M F C K u

U

u

  

 



   


 

 

      

    

    

 

 

  


 

(51) 
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where ( )SU sign S   is the robust term and   is a 

positive constant. Thus, given ( ) 0S t  , the dynamics of 

the system on the sliding surface for 0t   is given by: 

     2( ) 2 ( ) ( ) 0
ss s

t t t      
 

(52) 

The parameters of the dynamic system might be 

perturbed or unknown and the equivalent control law is 

sensitive to the unmolded dynamic and the external 

disturbances. Therefore, the stability of the controlled 

system may be destroyed.: 

B. Particle Swarm Optimization Sliding Mode 

Control System (Psosm) 

In PSO, each potential solution in an optimization 

problem can be visualized as a point in a D-dimensional 

search space and defined as a ‘‘particle’’ of the PSO. 

Every particle has a fitness value determined by an 

objective function and knows its own current best position 

(recorded as pbest) and current position. 

In addition, every particle also knows the global best 

position, best, of the whole group. Every particle uses the 

following information to change its current location: 

current location, current speed, distance between the 

current location and its own best location and distance 

between the current and global best locations. The PSO 

search is achieved by the iteration of particle swarm, 

which is formed by a group of random initialized 

particles. The population is called the swarm and its 

individuals are called the particles. The swarm is defined 

as a set: 

1 2{ , ,..., }NSW x x x
 (53) 

of N particles, defined as 

1 2( , ,..., ) , 1,2,..., .T

i i i inx x x x i N 
 

(54) 

In the proposed control system, each population is 

considered as a control gain. Therefore, by rewriting 

equations (53) and (54) one can obtain 

 1 2, ,..., NSW   
 

(55) 

 1 2, ,..., ,

1,2,..., .

T

i i i in

i N

   





 

(56) 

The objective function,  ( )f S t , is assumed to be 

available for all points and is expressed as: 

  2 2( ) exp ( )f S t S S       
(57) 

here   is a small positive constant parameter ( 1)   

and S  is the sliding surface defined in (45). The block 

diagram of the proposed PSOSM control system is 

depicted in Fig.1. This is possible by adjusting their 

position using a proper position shift, called velocity, and 

denoted as: 

1 2( , ,..., ) , 1,2,..., .T

i i i inv v v v i N 
 

(58) 

Velocity is updated based on information obtained in 

previous steps of the algorithm. This is implemented in 

terms of a memory, where each particle can store the best 

position it has ever visited during its search. For this 

purpose, besides the swarm, SW, which contains the 

current positions of the particles, PSO maintains also a 

memory set: 

1 2{ , ,..., }Np p pP
 

(59) 

which contains the best positions? 

1 2( , ,..., ) , 1,2,..., .T

i i i inp p p p i N 
 

(60) 

( ) arg min (.)i i
t

p t f
 

(61) 

where t stands for the iteration counter and (.)f  is the 

objective function. The algorithm approximates the global 

minimizer with the best position ever visited by all 

particles. Therefore, it is a reasonable choice to share this 

crucial information. Let g be the index of the best position 

with the lowest function value in P at a given iteration t, 

the speed and position of the particle are updated based on 

the following formulations: 

1

1 1

2 2

( ( )

( ))

t
t t t

ijij ij ij

t
t

ijgj

v v k R p

k R p

     

 
 

(62) 

1
1

t t
t

ij ij ijv


   
 

(63) 

where 

2

1 2

2
,

2 4

, 4.

  

   

 
  

  
 

(64) 

1k  and 
2k  are learning factors and are all positive 

constant numbers and the values of 1R  and 2R  are 

randomly distributed in [0, 1]. Now, the proposed control 

law is presented by the following form: 

  ( )Sa Lf S  
 

(65) 
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where ( )SLf S  is a soft limit function to find the smooth 

control action and reduce chattering phenomena. ( )SLf S  

can be obtained as 

 
2

2

( )
( ) tanh ( )

1 ( )
SL

S t
f S S t

S t



 

(66) 

The chattering phenomenon is a particular problem in 

the control algorithms.  The chattering problem can result 

in degenerate control accuracy and destroy the stability of 

system. 

4. SIMULATION RESULTS  

The present work is tried to show the performance of 

the proposed control system which is designed and 

fabricated to FGM plate to suppuration vibrations and 

reduction external disturbances. 

G-1195N piezoelectric films bond both the top and 

bottom surfaces of the FGM plate as shown in Fig.1. The 

plate is square with both length and width set at 0.4 m. It 

is of thickness 5 mm, and each G-1195N piezoelectric 

layer is of thickness 0.1 mm. The material properties of 

piezoelectric and FGM materials are listed in table (1). 

The cantilevered (CFFF) plate is considered as the 

boundary condition. In this paper, a regular   nodal 

distribution is chosen for the convergence studies. To 

simplify the vibration analysis, modal superposition 

algorithm is used, considering the first six modes in modal 

space. An initial modal damping for each of the modes is 

assumed to be 0.8%. 

A unit of force P is imposed at point A of the FGM 

plate (Fig.1) in the vertical direction and is subsequently 

removed to generate motion from the initial displacement. 

The power law exponent for FGM plate is selected as . 

In the design of proposed control systems, the effect of 

external disturbance are modeled as 

 

[ ]

sin ( ) cos ( ) sin ( ) cos ( ) sin ( ) cos ( )

  uu

T

d d d d d d

Dis Am K

     
 

(67) 

where 510Am    is the amplitude of disturbance, [ ]uuK  

is the normalized matrix of [ ]uuK  , and 200d   is the 

frequency of disturbance, Therefore (44) in the 

disturbance condition can be rewritten as 

[ ]{ } [ ]{ } [ ]{ }

{ } [ ] { }

uu s uu

m u a a

M u C u K u

F K Dis 

  

  
 (68) 

here [ ]uuM , [ ]sC  and 
[ ]u aK   are the normalized matrices 

of [ ]uuM , [ ]sC  and 
[ ]u aK  . 

The simulation results are demonstrated in Figs. 2- 7.  

The effectiveness of the TSM and the PSOSM control 

system are depicted in Fig.2-3. The control parameter   

is selected 53 and 2 for the process control with TSM and 

PSOSM control system, respectively. Figs.2-3 

demonstrate that the settling times for the sensor output 

{ }s   are nearly 0.18 and 0.10 second due to the TSM and 

the PSOSM control system, respectively. Also, in the 

control process, the actuator input { }a  which is produced 

by the PSOSM control system is less than the TSM 

control law. 

The simulation results in disturbance conditions are 

depicted in Fig.4-5. The harmonic response of the sensor 

output { }s  due to the TSM control system is bounded as 

[ 0.02, 0.02] . Fig.5 shows that, the variety of the sensor 

output { }s , due to the PSOSM control system is in 

interval [ 0.005, 0.005] . Also, due to the proposed 

control law, a smooth control effort is produced to reduce 

the effect of disturbance conditions in the plant.  

The ability of suppressing vibration in the FGM plate 

due to the TSM and the PSOSM control system under the 

random noise are depicted in Figs.6-7.  

The Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) are two popular methods for their 

advantages such as gradient-free and ability to find global 

optima. Genetic algorithm (GA) is a kind of method to 

simulate the natural evolvement process to search the 

optimal solution, and the algorithm can be evolved by four 

operations including coding, selecting, crossing and 

variation. The particle swarm optimization (PSO) is a kind 

of optimization tool based on iteration, and the particle has 

not only global searching ability, but also memory ability, 

and it can be convergent directionally. Fig.8 shows the 

response of the GASM control system. The simulation 

results show a small chattering at the beginning of the 

vibration in Fig.8.  Therefore, the PSOSM control system 

which is depicted in Fig.3 is performance than the GASM 

control system. The response of the PSO algorithm as a 

fast converging optimization algorithm is much better than 

the GASM control system which is based on the 

traditional genetic algorithm optimization . The results 

show that PSO has advantages over GA on those aspects  
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Fig. 2. Simulation result of piezoelectric sensor and actuatore due to TSM control system. 

 

 

Fig. 3. Simulation result of piezoelectric sensor and actuatore due to PSOSM control system. 
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Fig. 4. Simulation result of piezoelectric sensor and actuatore due to TSM control system in disturbance conditions. 

 

 

Fig. 5. Simulation result of piezoelectric sensor and actuatore due to PSOSM control system in disturbance conditions. 
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Fig. 6.  Simulation result of piezoelectric sensor and actuatore due to TSM control system under the random noise 

 

Fig. 7. Simulation result of piezoelectric sensor and actuatore due to PSOSM control system under the random noise. 
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Fig. 8.  Simulation result of piezoelectric sensor and actuatore due to GASM control system. 

TABLE 1. PROPERTIES OF THE FGM COMPONENTS 

Material Properties Aluminum oxide Ti-6Al-4V G-1195N 

Elastic modulus E (Pa) 113.2024 10  
111.0570 10  

963 10  

Poisson’s ratio   0.2600  0.2981 0.3  

Density  3

kg
m

  
3750  4429  7600  

 31 md
V

 
    12254 10  

 32 md
V

 
    12254 10  

 33
Fk

m
 

    915 10  

 

and is preferred over GA when time is a limiting factor. 

Moreover, the fast converging and the smooth control 

action show that the PSOSM control system is much 

superior in the suppressing vibration of the FGM plate. 

5.  CONCLUSIONS 

A general controllable mesh-free model of the FGM 

plate has been introduced in this paper. 

A traditional sliding mode control system has been 

designed and fabricated to suppress the vibrations for a 

FGM plate in the normal, disturbed and noisy conditions. 

The PSOSM control system as the intelligent control 

approached has been successfully designed and effectively 

used to reject the random noise, reduce the disturbance 

and finally, eliminate vibrations of the FGM plate. No 

constrained condition of the controlled plant is used in the 

design process for the proposed controller. The proposed 

controller can be applied in another engineering 

applications. 
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