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ABSTRACT: Let R be a commutative ring and M be an R-module. The es-
sential graph of M , denoted by EG(M) is a simple graph with vertex set Z(M) \
Ann(M) and two distinct vertices x, y ∈ Z(M) \ Ann(M) are adjacent if and only
if AnnM (xy) is an essential submodule of M . In this paper, we investigate the
dominating set, the clique and the chromatic number and the metric dimension
of the essential graph for Noetherian modules. Let M be a Noetherian R-module
such that |MinAssR(M)| = n ≥ 2 and let EG(M) be a connected graph. We
prove that EG(M) is a weakly prefect, that is, ω(EG(M)) = χ(EG(M)). Fur-
thermore, it is shown that dim(EG(M)) = |Z(M)| − (|Ann(M)| + 2n), whenever
r(Ann(M)) ̸= Ann(M) and dim(EG(M)) = |Z(M)| − (|Ann(M)|+2n − 2), when-
ever r(Ann(M)) = Ann(M).
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1. Introduction

The study of algebraic structures by using the properties of a simple graph is a topic which becomes more attention
in last decades and leads many authors to study and explore its properties. In fact, research on this subject aims is
exposing the relationship between rings and modules theory with graphs theory, see for examples [1, 2]. Recently,
the essential graph of a commutative ring was introduced and studied in [7]. Also, the concept of the essential
graph for modules has been defined and studied in [10].

Let G be a graph with the vertex set V (G) and the edge set E(G). For every connected vertices u, v ∈ V (G), the
distance between u and v is defined as the length of a shortest path from u to v and is denoted by d(u, v). We write
u ∼ v if d(u, v) = 1 and u ̸∼ v otherwise. The degree of a vertex u, denoted by deg(u), is the number of edges incident
to u. Assume that u is a vertex of G. The open neighborhood of u is defined as N(u) = {v ∈ V (G) : d(u, v) = 1}
and the closed neighborhood of u is N [u] = N(u) ∪ {u}. For distinct vertices u, v ∈ V (G), if N(u) = N(v),
then u and v are non-adjacent twins. A clique of G is a complete subgraph of G and the number of vertices in a
largest clique of G, denoted by ω(G), is called the clique number of G. A dominating set of G is a subset D of
V (G) such that every vertex in V (G) \ D is adjacent to some vertex in D. The domination number γ(G) of G
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is the minimum cardinality of a dominating set. The chromatic number of G, denoted by χ(G), is the minimal
number of colors, which can assigned to the vertices of G in such a way that two adjacent vertices have different
colors. The graph G is called weakly perfect whenever χ(G) = ω(G). Let G be a connected graph. Assume that
W = {w1, w2, . . . , wk} is an ordered subset of V (G). The metric representation of a vertex u ∈ V (G) with respect
to W is the vector r(u|W ) = (d(u,w1),d(u,w2), . . . ,d(u,wk)). The set W called a resolving set for G if different
vertices of G have different representation with respect to W . The minimum cardinality of any resolving set of G
is the metric dimension of G and is denoted by dim(G), see [4].

Theorem 1.1 ([5, Corollary 2.4]). Suppose that u, v are twins in a connected graph G and S resolves G. Then
either u or v is in S. Moreover, if u ∈ S and v ̸∈ S, then (S \ {u}) ∪ {v} also resolves G.

Let R be a commutative ring and let M be an R-module. The essential graph of M , denoted by EG(M) is
a simple graph with vertex set Z(M) \ Ann(M) and two distinct vertices x, y ∈ Z(M) \ Ann(M) are adjacent if
and only if AnnM (xy) is an essential submodule of M . The main goal of this paper is computing the domination,
the clique and the chromatic number and the metric dimension of EG(M). In section 3, we prove that if M is a
Noetherian R-module such that |MinAssR(M)| = n and EG(M) is a connected graph, then the following statements
are true:

(i) If r(Ann(M)) ̸= Ann(M), then dim(EG(M)) = |Z(M)| − (|Ann(M)|+ 2n).

(ii) If r(Ann(M)) = Ann(M), then dim(EG(M)) = |Z(M)| − (|Ann(M)|+ 2n − 2).

Throughout this paper, R is a commutative ring with non-zero identity and M is a unitary R-module. The set of
zero-divisors of M , denoted by Z(M) is defined to be the set {r ∈ R : rm = 0 for some 0 ̸= m ∈ M

}
. For a ∈ R,

AnnM (a) = {m ∈ M : am = 0}. A proper submodule P of M is said to be prime whenever for r ∈ R and m ∈ M ,
rm ∈ P implies that m ∈ P or r ∈ AnnR(M/P ). Let SpecR(M) denote the set of prime submodules of M and
m− AssR(M) = {P ∈ SpecR(M) : P = AnnM (a) for some 0 ̸= a ∈ R}. For notations and terminologies not given
in this article, the reader is referred to [9].

2. The Domination, Clique and Chromatic number of the Essential Graph

In this section we investigate the domination, clique and chromatic number of the essential graph. We at first,
calculate the domination number for a Noetherian R-module M . The following theorem plays an important role in
this paper, so for the convenience of the reader we write it here.

Theorem 2.1 ([10, Theorem 2.5]). Let M be a Noetherian R-module with Ann(M) ̸= r(Ann(M)). Then x, y ∈
Z(M) \Ann(M) are adjacent in EG(M) if and only if xy ∈ p, for all p ∈ MinAssR(M).

It is easy to see that the above theorem is true when r(Ann(M)) = Ann(M).

Lemma 2.2. Let M be a Noetherian R-module such that |MinAssR(M)| = 1. Then the following conditions are
equivalent:

(i) r(Ann(M)) ̸= Ann(M);

(ii) EG(M) is a connected graph and γ(EG(M)) = 1.

Proof. (i)⇒(ii) Suppose that r(Ann(M)) ̸= Ann(M). Then by [10, Lemma 2.2] each element of r(Ann(M)) \
Ann(M) is a universal vertex of EG(M). Hence, EG(M) is a connected graph and for any x ∈ r(Ann(M))\Ann(M),
D = {x} is a dominating set for EG(M).

(ii)⇒(i) Suppose that MinAssR(M) = {p} and D = {x} is a dominating set for EG(M). If x ∈ r(Ann(M)),
then there is nothing to prove. Otherwise, by the assumption there is y ∈ Z(M) \ Ann(M) such that x ∼ y is an
edge of EG(M). Now, xy ∈ p = r(Ann(M)) which implies that y ∈ r(Ann(M)). Hence, r(Ann(M)) ̸= Ann(M).
Let Z(M) = Ann(M) ∪ {x}. Considering x ̸= x2 or x = x2, we have x2 ∈ Ann(M) or 1− x ∈ Ann(M), which are
contradictions. □

Definition 2.3 ([8, Definition 2.1]). Let M be an R-module. The zero-divisor graph of M , denoted by Γ(M) is
a simple undirected graph whose vertex set is Z(M) \Ann(M) and two distinct vertices x and y are adjacent if and
only if xyM = 0.

If M is a Noetherian R-module with |MinAssR(M)| = 1 and r(Ann(M)) = Ann(M), then in view of [8,
Lemma 2.1] and [10, Theorem 4.6], EG(M) is an empty graph or it has only one vertex.

Let M be a Noetherian R-module and let |MinAssR(M)| = n ≥ 2. If r(Ann(M)) ̸= Ann(M), then in view of
Lemma 2.2, γ(EG(M)) = 1. In the following we consider the case |MinAssR(M)| = n ≥ 2 with r(Ann(M)) =
Ann(M).
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Theorem 2.4. Let M be a Noetherian R-module such that |MinAssR(M)| = n ≥ 2 and let EG(M) be a connected
graph. Then r(Ann(M)) = Ann(M) if and only if γ(EG(M)) = |MinAssR(M)|.

Proof. Suppose that

r(Ann(M)) = Ann(M), MinAssR(M) = {p1, . . . , pn}, m−Ass(M) = {P1 = AnnM (x1), . . . , Pn = AnnM (xn)},

where pi = Ann(M/Pi) and xi ∈ Z(M) \ Ann(M), for all 1 ≤ i ≤ n. Set D = {x1, . . . , xn}. We show that D is a
dominating set for EG(M). Assume that y ∈ Z(M)\Ann(M). Since EG(M) is a connected graph by [10, Theorem
3.3], it follows that AnnM (y) ̸⊆ ∩n

i=1Pi . Hence, there is i with 1 ≤ i ≤ n such that AnnM (y) ̸⊆ Pi. Therefore,
yxiM = 0 so y and xi are adjacent, it follows from [8, Lemma 3.1(ii)]. Now, assume that D′ = {x′

1, . . . , x
′
n−1} ⊆

Z(M) \ Ann(M). To prove the assertion, it is enough to show that D′ is not a dominating set for EG(M).
Assume in contrary that D′ is a dominating set for EG(M) and we achieve a contradiction. By the hypothesis
Ann(M) = r(Ann(M)) = ∩n

i=1pi so for all 1 ≤ j ≤ n − 1 there exists 1 ≤ i ≤ n such that x′
j /∈ pi. Without loss

of generality, we may assume that x′
j /∈ pj , for every 1 ≤ j ≤ n − 1. Suppose that x ∈ ∩n−1

i=1 pi \ pn so x ̸= x′
j , for

all 1 ≤ j ≤ n − 1 and x is adjacent to x′
k for some 1 ≤ k ≤ n − 1. Then xx′

kM = 0 since by [10, Theorem 4.6]
we have EG(M) = Γ(M). So xx′

k ∈ ∩n−1
i=1 pi and hence xx′

k ∈ pk, which is a contradiction. Therefore, D′ is not a
dominating set for EG(M) and the proof is completed.
The converse is obvious by Lemma 2.2. □

Theorem 2.5. Let M be a Noetherian R-module such that |MinAssR(M)| = n ≥ 2 and let EG(M) be a connected
graph. Then

ω(EG(M)) =


n, if r(Ann(M)) = Ann(M)

|r(Ann(M)) \Ann(M)|, if Z(M) = r(Ann(M)) ̸= Ann(M)

|r(Ann(M)) \Ann(M)|+ n, if Z(M) ̸= r(Ann(M)) ̸= Ann(M).

Proof. Suppose that m − Ass(M) = {P1 = AnnM (x1), . . . , Pn = AnnM (xn)}, where xi ∈ Z(M) \ Ann(M), for
all 1 ≤ i ≤ n and r(Ann(M)) = Ann(M). Then by [10, Theorem 4.6] it follows that Γ(M) = EG(M) and
X = {x1, . . . , xn} is a clique for EG(M) by [8, Lemma 3.1(i)]. Let Θ = {AnnM (x) : x ∈ Z(M) \ Ann(M)}.
By hypotheses Θ has some maximal elements and by [6, Proposition 3.2] the maximal elements of Θ are prime
submodules of M . Thus the set of maximal elements of Θ is a subset of m − Ass(M) so every element of Θ is a
subset of at least one element of m−Ass(M). Assume X ′ = {x′

1, . . . , x
′
k} (k > n) is a maximal clique. Thus there

are 1 ≤ i ̸= j ≤ k such that AnnM (x′
i),AnnM (x′

j) ⊆ AnnM (xt), for some 1 ≤ t ≤ n. Since x′
i and x′

j are adjacent so

x′
ix

′
jM = 0. Hence, x′

iM ⊆ AnnM (x′
j) ⊆ AnnM (xt). Therefore, xtx

′
iM = 0 so xtM ⊆ AnnM (x′

i). Thus x2
tM = 0

which is a contradiction. Therefore, ω(EG(M)) = |MinAssR(M)|.
Let r(Ann(M)) ̸= Ann(M) and Z(M) = r(Ann(M)). Then by [10, Theorem 2.5], EG(M) is a complete graph.

Hence, r(Ann(M)) \Ann(M) is a clique and the result follows.
Now, assume that Z(M) ̸= r(Ann(M)) ̸= Ann(M) and MinAssR(M) = {p1, . . . , pn}. It is easy to see that

(r(Ann(M)) \ Ann(M)) ∪ {x1, . . . , xn} is a clique for EG(M), where xj ∈ ∩n
i=1,i̸=jpi \ pj , for all j = 1, . . . , n.

Moreover, if y ∈ Z(M) \ r(Ann(M)), then the set r(Ann(M) \ Ann(M)) ∪ {x1, . . . , xn, y} is not a clique since
for y ∈ ∩t

i=1pi \ ∪n
i=t+1pi with 1 ≤ t < n it is clear that yxt+1 /∈ r(Ann(M)) so y and xt+1 are not adjacent.

Suppose that X is a clique for EG(M). Thus in view of [10, Theorem 2.5], (r(Ann(M)) \ Ann(M)) ⊆ X. Let
X = (r(Ann(M)) \ Ann(M)) ∪ {y1, . . . , yn+1}. Then there are 1 ≤ i ̸= j ≤ k such that yi, yj ̸∈ pt, for some
1 ≤ t ≤ n, but yiyj ∈ r(Ann(M)) ⊆ pt which is a contradiction. Therefore, X is not a clique. □

Theorem 2.6. Let M be a Noetherian R-module such that |MinAssR(M)| = n ≥ 2 and let EG(M) be a connected
graph. Then

χ(EG(M)) =


|r(Ann(M)) \Ann(M)|, if Z(M) = r(Ann(M)) ̸= Ann(M)

|r(Ann(M)) \Ann(M)|+ n, if Z(M) ̸= r(Ann(M)) ̸= Ann(M)

n, if r(Ann(M)) = Ann(M).

Proof. (i) In the case of Z(M) = r(Ann(M)) ̸= Ann(M), EG(M) is a complete graph thus

χ(EG(M)) = ω(EG(M) = |r(Ann(M)) \Ann(M)|

(ii) Assume that Z(M) ̸= r(Ann(M)) ̸= Ann(M), m−Ass(M) = {P1 = AnnM (x1), . . . , Pn = AnnM (xn)}, where
xi ∈ Z(M) \ Ann(M), for all 1 ≤ i ≤ n and MinAssR(M) = {p1, . . . , pn}, where pi = Ann(M/AnnM (xi)) =
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Ann(xiM), for all 1 ≤ i ≤ n. By the proof of Theorem 2.5, X = (r(Ann(M)) \ Ann(M)) ∪ {x1, . . . , xn} is a
maximal clique for EG(M) also xi ∈ ∩n

j=1,j ̸=ipj \ pi, for all i = 1, . . . , n. So

|r(Ann(M)) \Ann(M)|+ n ≤ χ(EG(M)).

For each y ∈ V (EG(M)) with y /∈ (r(Ann(M)) \Ann(M)) ∪ {x1, . . . , xn}, let π(y) denote the set {i : 1 ≤ i ≤
n, yxi /∈ ∩n

j=1pj} thus it consist of indices i ∈ {1, . . . , n} such that two vertices y and xi are not adjacent. Since
the clique is maximal there exists at least one vertex xi ∈ {x1, . . . , xn} such that y and xi are not adjacent so
i ∈ π(y). Now we provide a proper vertex coloring for the graph EG(M) with |r(Ann(M))\Ann(M)|+n colors.
For this purpose, color the vertices of this clique with |r(Ann(M)) \Ann(M)|+n different colors such that the
color of vertices x1, . . . , xn be 1, . . . , n respectively. Let y ∈ V (EG(M))\(r(Ann(M))\Ann(M))∪{x1, . . . , xn}
and let the color of y be min{j : j ∈ π(y)}. For each j ∈ π(y) two vertices y and xj are not adjacent, the
color of y is different from the colors of vertices in the clique which are adjacent to y. Suppose that y′ ∈
V (EG(M))\ (r(Ann(M))\Ann(M))∪{x1, . . . , xn} is a vertex adjacent to y. We show that the colors of y and
y′ are different. Since y and y′ are adjacent, we have yy′ ∈ ∩n

j=1pj . Assume that i = min{j : j ∈ π(y)} so the
color of y is i. By xi ∈ ∩n

j=1,j ̸=ipj and yxi /∈ ∩n
j=1pj , we get that y /∈ pi. Also, yy′ ∈ ∩n

j=1pj implies that yy′ ∈ pi.
Thus y′xi ∈ ∩n

j=1pj and hence i /∈ π(y′). This implies that the color of y′ is not i. This is a proper coloring
and hence χ(EG(M)) ≤ |r(Ann(M)) \Ann(M)|+ n. Therefore, χ(EG(M)) = |r(Ann(M)) \Ann(M)|+ n.

(iii) The proof is similar to that of (ii). □

Recall that a graph G is said to be weakly perfect whenever ω(G) = χ(G).

Corollary 2.7. Let M be a Noetherian R-module and let EG(M) be a connected graph. Then EG(M) is a weakly
perfect graph.

A perfect graph G is a graph in which the chromatic number of every induced subgraph equals to the size of a
largest clique of that subgraph. In 2006, M. Chudnovsky et al. settled a long standing conjecture regarding perfect
graphs and provided a characterization of perfect graphs.

Theorem 2.8. [3, The Strong Perfect Graph Theorem] A graph G is perfect if and only if neither G nor G contains
an induced odd cycle of length at least 5.

In the following we investigate the perfectness of EG(M).

Theorem 2.9. Let M be a Noetherian R-module such that |MinAssR(M)| = 1. Then EG(M) is perfect.

Proof. If r(Ann(M)) = Ann(M), then in view of [8, Lemma 2.1] and [10, Theorem 4.6 ] it follows that EG(M) is
an empty graph or it has only one vertex. So neither EG(M) nor EG(M) contains an induced odd cycle of length
at least 5. Hence, Theorem 2.8 shows that EG(M) is perfect. Now, let r(Ann(M)) ̸= Ann(M) and

x1 ∼ x2 ∼ . . . ∼ xk ∼ x1

be an induced odd cycle of length k ≥ 5 in EG(M). Then x1x2 ∈ r(Ann(M)) which implies that either x1 ∈
r(Ann(M)) or x2 ∈ r(Ann(M)). Hence, by [10, Lemma 2.2] either x1 ∼ x2 ∼ x3 ∼ x1 or x2 ∼ x3 ∼ x4 ∼ x2 is a
cycle which is a contradiction. Suppose that

y1 ∼ y2 ∼ . . . ∼ yk ∼ y1

is an induced odd cycle of length k ≥ 5 in EG(M). Since y2 and y3 are adjacent vertices in EG(M) so y2y3 ̸∈
r(Ann(M)) on the other hand since y1 and y3 are adjacent vertices in EG(M) thus y1y3 ∈ r(Ann(M)), so y1 ∈
r(Ann(M)). Thus by [10, Lemma 2.2], y1 is a universal vertex of EG(M) and so is a single vertex in EG(M),
that is a contradiction. Hence, neither EG(M) nor EG(M) contains an induced odd cycle of length at least 5.
Therefore, EG(M) is a perfect graph by Theorem 2.8. □

Theorem 2.10. Let M be a Noetherian R-module such that |MinAssR(M)| = 2. Then EG(M) is perfect.

Proof. Note that if x ∈ r(Ann(M)) \ Ann(M), then, by [10, Lemma 2.2], x is a universal vertex of EG(M) and
so is a single vertex in EG(M). Thus x can not be a vertex in an induced cycle of length at least 5 in EG(M) and
EG(M). Assume that MinAssR(M) = {p1, p2} and

x1 ∼ x2 ∼ . . . ∼ xk ∼ x1
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is an induced odd cycle of length k ≥ 5 in EG(M). Thus x1x2 ∈ r(Ann(M)) = p1 ∩ p2. Without loss of generality
we may assume that x1 ∈ p1 \ p2. Thus x2 ∈ p2 \ p1. Hence, from x2x3 ∈ p1 ∩ p2 it follows that x3 ∈ p1 \ p2 and
from x3x4 ∈ p1 ∩ p2 it follows that x4 ∈ p2 \ p1. These facts show that x1 ∼ x4 is an edge of EG(M) which is a
contradiction. Suppose that

y1 ∼ y2 ∼ . . . ∼ yk ∼ y1

is an induced odd cycle of length k ≥ 5 in EG(M). Since y1 ∼ y3 is an edge in EG(M) so

y1y3 ∈ r(Ann(M)) = p1 ∩ p2.

Without loss of generality we may assume that y1 ∈ p1 \ p2. Thus y3 ∈ p2 \ p1. Also, from y1y4 ∈ p1 ∩ p2 it follows
that either y4 ∈ p1 \ p2 or y4 ∈ p2 \ p1. If y4 ∈ p1 \ p2, then y3 ∼ y4 is an edge in EG(M) which is a contradiction.
So y4 ∈ p2 \ p1. Hence, from y2y4 ∈ p1 ∩ p2 it follows that y2 ∈ p1 \ p2 and from y2y5 ∈ p1 ∩ p2 it follows that
y5 ∈ p2 \ p1. Now, y1 ∼ y5 is an edge of EG(M) that is a contradiction. So neither EG(M) nor EG(M) contains
an induced odd cycle of length at least 5. Therefore, EG(M) is a perfect graph by Theorem 2.8. □

Theorem 2.11. Let M be a Noetherian R-module such that |MinAssR(M)| = 3. Then EG(M) is perfect.

Proof. Assume that MinAssR(M) = {p1, p2, p3} we show that EG(M) not contains an induced odd cycle of length
at least 5. Suppose that

x1 ∼ x2 ∼ . . . ∼ xk ∼ x1

is an induced odd cycle of length k ≥ 5 in EG(M). As in the proof of Theorem 2.10, xi ̸∈ r(Ann(M)), for all
1 ≤ i ≤ k. From x1x2 ∈ r(Ann(M)) = p1 ∩ p2 ∩ p3 and x1xk ∈ r(Ann(M)) = p1 ∩ p2 ∩ p3 it follows that:
Case 1. x1 ∈ p1 \ p2 ∪ p3. So x2, xk ∈ p2 ∩ p3 \ p1. Hence, xk−1 ∈ p1 since xk−1xk ∈ p1 ∩ p2 ∩ p3. Now, x2 ∼ xk−1

is an edge of EG(M) which is a contradiction.
Case 2. x1 ∈ p1 ∩ p2 \ p3. So x2 ∈ p3 or x2 ∈ p1 ∩ p3 or x2 ∈ p2 ∩ p3 and xk ∈ p3 or xk ∈ p1 ∩ p3 or xk ∈ p2 ∩ p3. If
x2 ∈ p3 and xk ∈ p3, then xk−1 ∈ p1 ∩ p2. Hence, x2 ∼ xk−1 which is a contradiction. If x2 ∈ p3 and xk ∈ p1 ∩ p3,
then x3 ∈ p1 ∩ p2 and xk−1 ∈ p1 ∩ p2 or xk−1 ∈ p2 ∩ p3 or xk−1 ∈ p2. In the first case for xk−1, x2 ∼ xk−1 is an
edge of EG(M) and in second case x1 ∼ xk−1 is an edge of EG(M) that are contradiction. In the third case for
xk−1 we have xk−2 ∈ p1 ∩ p3 which shows that x1 ∼ xk−2 is an edge is a contradiction. In other cases, by similar
arguments we achieve to contradiction. Therefore, EG(M) not contains an induced odd cycle of length at least 5.
Suppose that

y1 ∼ y2 ∼ . . . ∼ yk ∼ y1

is an induced odd cycle of length k ≥ 5 in EG(M). Since y1 ∼ y3 is an edge of EG(M) so y1y3 ∈ r(Ann(M)) =
p1 ∩ p2 ∩ p3 now it follows that:
Case 1. y1 ∈ p1 \ p2 ∪ p3. Thus y3 ∈ p2 ∩ p3 \ p1. Since y1 ∼ y4 and y2 ∼ y4 are two edges in EG(M) it follows
that y4 ∈ p2 ∩ p3 and y2 ∈ p1. Now, y2 ∼ y3 is an edge of EG(M) which is a contradiction.
Case 2. y1 ∈ p1 ∩ p2 \ p3. So y3 ∈ p3 or y3 ∈ p1 ∩ p3 or y3 ∈ p2 ∩ p3 and y4 ∈ p3 or y4 ∈ p1 ∩ p3 or y4 ∈ p2 ∩ p3. If
y3 ∈ p3 and y4 ∈ p3, then y2 ∈ p1 ∩ p2. Hence, y2 ∼ y3 is an edge of EG(M) which is a contradiction. If y3 ∈ p3
and y4 ∈ p1 ∩ p3, then y2 ∈ p1 ∩ p2 or y2 ∈ p2 ∩ p3 or y2 ∈ p2. In the first case for y2, y2 ∼ y3 is an edge of
EG(M) and in second case y1 ∼ y2 is an edge of EG(M) that are contradiction. Now, assume that y2 ∈ p2, so from
y3y5 ∈ r(Ann(M)) we have y5 ∈ p1 ∩ p2 thus y4 ∼ y5 is an edge of EG(M) that is a contradiction. In other cases,
by similar arguments we achieve to contradiction. Hence, EG(M) not contains an induced odd cycle of length at
least 5. Therefore, EG(M) is a perfect graph by Theorem 2.8. □

Remark 2.12. Although the graph EG(M) is perfect for |MinAssR(M)| ≤ 3 but for an R-module M with

MinAssR(M) = {p1, . . . , pn}, (n ≥ 4)

it is not perfect. Since x1 ∼ x2 ∼ x3 ∼ x4 ∼ x5 ∼ x1 is a cycle of length 5 in EG(M), where x1 ∈ p1 ∩ p2,
x2 ∈ p1 ∩ p3 ∩ p4 \ p2, x3 ∈ p2 ∩ p3 \ p1 ∩ p4, x4 ∈ p1 ∩ p4 \ p2 ∩ p3 and x5 ∈ p2 ∩ p3 ∩ p4 \ p1.

3. Metric Dimension of the Essential Graph

In this section we calculate the metric dimension of the essential graph for modules over commutative ring R.

Notation 3.1. For k ∈ N with 1 ≤ k ≤ n, we shall write

I(k, n) := {(i(1), . . . , i(k)) ∈ Nk : 1 ≤ i(1) < i(2) < . . . < i(k) ≤ n},
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the set of all strictly increasing sequences of length k of positive integers taken from the set {1, . . . , n}. For
i ∈ I(k, n), we shall, for 1 ≤ j ≤ k, denote the j-th component of i by i(j), so that i = (i(1), . . . , i(k)). Suppose
that k < n and i ∈ I(k, n). By the n-complement of i we mean the sequence ī ∈ I(n− k, n) such that {1, . . . , n} =
{i(1), . . . , i(k), ī(1), . . . , ī(n− k)}.

Theorem 3.2. Let M be a Noetherian R-module such that |MinAssR(M)| = n. Then the following statements are
true:

(i) If r(Ann(M)) ̸= Ann(M), then dim(EG(M)) = |Z(M)| − (|Ann(M)|+ 2n).

(ii) If r(Ann(M)) = Ann(M) and EG(M) is a connected graph, then

dim(EG(M)) = |Z(M)| − (|Ann(M)|+ 2n − 2).

Proof. (i) Suppose that MinAssR(M) = {p1, . . . , pn} and r(Ann(M)) ̸= Ann(M). Then EG(M) is a connected
graph since each vertex of r(Ann(M)) \ Ann(M) is universal. It is straightforward to see that Z(M) \ Ann(M)
separates into 2n disjoint subsets such as A1 = Z(M) \ ∪n

i=1pi and Ai = pi(1) ∩ . . . ∩ pi(k) \ pī(1) ∪ . . . ∪ pī(n−k),
where i ∈ I(k, n) and 1 ≤ k ≤ n. It is easy to see that for i ∈ I(k, n), 1 ≤ k ≤ n and xi, x

′
i ∈ Ai, N(xi) =

N(x′
i) = pī(1) ∩ . . . ∩ pī(n−k), see Theorem 2.1. Assume that W is a resolving set for EG(M) so by Theorem 1.1,

Ai \{xi} ⊆ W . Hence, Z(M)\ (Ann(M)∪{x1, . . . , x2n}) ⊆ W . We know that xi and xj have different neighbours,
for all 1 ≤ i ̸= j ≤ 2n, so one can easily show x1, . . . , x2n have different coordinates with respect to W . Therefore,
W = Z(M) \ (Ann(M) ∪ {x1, . . . , x2n}) is a resolving set for EG(M). If ∅ = A1 = Z(M) \ ∪n

i=1pi, then W =
Z(M) \ (Ann(M) ∪ {x2, . . . , x2n}).
(ii) Suppose that MinAssR(M) = {p1, . . . , pn}. Since EG(M) is a connected graph, A1 = Z(M) \ ∪n

i=1pi is an
empty set, by Theorem 2.1. On the hand, r(Ann(M)) = Ann(M) so Z(M) \Ann(M) separates into 2n − 2 disjoint
subsets. Now, by a similar argument to that of (i) one can show that W = Z(M) \ (Ann(M) ∪ {x2, . . . , x2n−1}) is
a resolving set for EG(M). □

We end this section with the following examples that related to previous results.

Example 3.1. It is easy to see that any element of a finite ring is a unit or a zero divisor. So for a positive integer
n we have |Z(Zn)| = n− ϕ(n) and |Z(Zn)

∗| = n− 1− ϕ(n), where ϕ is the Euler phi function.

(i) If p is a prime number, then EG(Zp) = Γ(Zp) is an empty graph.

(ii) If n = pα for some prime number p and an integer α ≥ 2, then Z(EG(Zn))
∗ = Nil(Zn)

∗ so by [10, Theorem
2.10], EG(Zn) is a complete graph. Thus Z(EG(Zn))

∗ = (pZn)
∗ is a maximal clique so ω(EG(Zn)) =

χ(EG(Zn)) = n − 1 − ϕ(n) = pα − 1 − pα + pα−1 = pα−1 − 1. Moreover, D = {p} is a dominating set for
EG(Zn) so γ(EG(Zn)) = 1. Also, dim(EG(Zn)) = pα−1 − 2.
Consider the ring Z16. It is clear that Ass(Z16) = {2Z16} and Z(Z16) = Nil(Z16) = 2Z16. Thus EG(Z16) is a
complete graph with 7 vertices and D = {2} is a dominating set for it and dim(EG(Z16)) = 23 − 2 = 6.

2

4 6

8 10

12 14

Figure 1: A complete graph with 7 vertices.

(iii) If n = p1 . . . pk (k ≥ 2) for some distinct prime number pi, then Z(EG(Zn)) = p1Zn ∪ . . . ∪ pkZn and

Nil(Zn) = {0}. X = {
∏k

i=1,i̸=j pi : j = 1, . . . , k} is a maximal clique hence ω(EG(Zn)) = χ(EG(Zn)) = k.

D = {
∏k

i=1,i̸=j pi : j = 1, . . . , k} is a dominating set for EG(Zn) so γ(EG(Zn)) = k. Moreover,

dim(EG(Zn)) = |Z(Zn)| − (|Ann(Zn)|+ 2k − 2) = n− ϕ(n)− 2k + 1.

Consider the ring Z15. It is clear that Ass(Z15) = {3Z15, 5Z15} and Nil(Z15) = 3Z15 ∩ 5Z15 = 0. By [10,
Theorem 3.7], EG(Z15) = K2,4 the complete bipartite graph with 8 vertices and D = {3, 5} is a dominating set
for EG(Z15).
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5 10

3 6 9 12

Figure 2: A complete bipartite graph with 6 vertices.

(iv) If n = pα1
1 . . . pαk

k (k ≥ 2), where pi is a prime number and αi is a positive integer for all 1 ≤ i ≤ k,

X = (p1 . . . pkZn)
∗∪{p1, p2, . . . , pk} is a maximal clique hence ω(EG(Zn)) = χ(EG(Zn)) = pα1−1

1 . . . pαk−1
k +k.

D = {pi} is a dominating set for EG(Zn) so γ(EG(Zn)) = 1. Moreover,

dim(EG(Zn)) = |Z(Zn)| − (|Ann(Zn)|+ 2k − 1) = n− ϕ(n)− 2k.

Consider the ring Z12. It is clear that Ass(Z12) = {2Z12, 3Z12}, Nil(Z12) = 2Z12 ∩ 3Z12 = 6Z12 and D = {6}
is a dominating set for EG(Z12).

3 9

6

2 4 8 10

Figure 3: A graph with 7 vertices.
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