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ABSTRACT: The Kaluza-Klein theory can be reckoned as a classical unified field
theory of two of the significant forces of nature gravitation and electromagnetism.
This formulation geometrically demonstrates the effects of a gravitational and an
electromagnetic field by investigating a five-dimensional space with a metric con-
structed via the spacetime metric and the four-potential of the electromagnetic
field. For the purpose of exploring the influences of dimensionality on the distinct
physical variables, inquiring into stationary Kaluza-Klein rotating fluids is of par-
ticular significance. In this research, an extensive investigation of the variational
symmetries for a specific vacuum solution of the (4+1)-dimensional Einstein field
equations with negative cosmological constant is presented. For this purpose, first
of all, the variational symmetries of our analyzed model are completely determined
and the construction of the Lie algebra of the resulted symmetries is accurately an-
alyzed. It is represented that the Lie algebra of local symmetries interrelated to the
system of geodesic equations is non-solvable and not semi-simple and the algebraic
organization of the derived quotient Lie algebra is accurately evaluated. Mainly,
the adjoint representation group is effectively utilized intended for establishing an
optimal system of group invariant solutions; which unequivocally yields a conjugate
relation in the set of all one-dimensional symmetry subalgebras. Accordingly, the
associated set of invariant solutions can be regarded as the slightest list from that
the alternative invariant solutions of one-dimensional subalgebras are thoroughly
determined unambiguously by virtue of transformations. Literally, all the corre-
sponding local conservation laws of the resulted variational symmetries are totally
calculated. Indeed, the symmetries of the metric of our analyzed space-time lead
to the constants of motion for the point particles.
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1. Introduction

The Origin of Kaluza-Klein theory dates back to shortly after the first publication of general relativity. Gener-
ically, the Kaluza-Klein theory refers to fundamental generalizations of pure or an improved interpretation of
four-dimensional general relativity to a (4 +D)-dimensional spacetime which is explicitly fulfilled via the hypothe-
sis that there exist D extra dimensions. Hence, the so-called spontaneous compactification is proposed, determined
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by ordinary gravity plus gauge theories in their impressive low energy sectors. Reckoning on the special significance
of quest of fundamentals interaction unification in physics, a great deal of research has been devoted to relativistic
Kaluza-Klein theory in five and more dimensional space-time in recent years [1, 10].
There is no doubt that the start of contemporary investigations of singularities in the context of general relativity
had its fundamental origination in Kurt Gödel’s original publication [4]. In this research, he has unambiguously
obtained an exact solution for Einstein’s field equations in which matter admits the configuration of a pressure free
fluid i.e., dust solution. This model is quite homogenous and non-isotropic and might be considered structurally as
a non-expanding and singularity free rotating cosmological solution and it displays a particular rotational symmetry
which leads to presence of close time-like curves. Significantly, Gödel’s exact rotating fluid filled cosmological model
can be undeniably contemplated as the exclusive universe which is inherently perfect fluid filled and is invariant
under a five-dimensional group of isometries multiply transitive on spacetime; it is also rotationally symmetric in
local coordinates.
Subsequent to Gödel’s relativistic model describing a rotating dust universe [4], the scrutiny of rotating fluids in the
framework of general relativity acquired remarkable attention (notice [10] and the related references). Various rel-
ativistic cylindrically symmetric, non-statics and inhomogeneous Kaluza-Klein fluid models have been proposed by
Patel and Dadhich which admit dimensional reduction. Their analyzed models have basically the five-dimensional
Kasnerian vacuum solution which scrutinizes one dimension reduction to the radiation Friedman-Robertson-Walker
flat model [10]. In 1996 a set of one-parameter solutions for a fluid conceding the equation of state p = (2/3)ρ,
rotating about a regular axis was proposed exhaustively by Davison [3]. The noteworthy issue is that stationary
Kaluza-Klein perfect fluid models in standard Einstein theory are not explicitly attainable in literature. Hence,
with the purpose of exploring the consequences of dimensionality on the distinct physical variables, acquiring and
scrutinizing this category of solutions is extensively substantial. In [11], R. Tikekar and L. K. Patel have explic-
itly developed the Kaluza-Klein field equations for cylindrically symmetric rotating distributions regarding perfect
fluid. They have outlined a series of physically feasible solutions that is definitely opined to be the first suchlike
Kaluza-Klein solutions and intrinsically it incorporates the Davidson’s solution’s Kaluza-Klein counterpart.
In this section, considering [11], a summary explanation regarding Kaluza-Klein field equations for stationary cylin-
drically symmetric fluid models in the context of standard Einstein theory is presented. Generically, a typical
stationary cylindrically symmetric five-dimensional spacetime is described by virtue of this metric:

ds2 = D2(dt+Hdϕ)2 −A2dr2 −B2dz2 − r2C2dϕ2 − E2dψ2, (1)

In above formula, r, z and ϕ represent cylindrical polar coordinates, t is the time coordinate, ψ pointedly denotes the
coordinate corresponding to the extra spatial dimension and A, B, C, D and H are functions depending exclusively
on radial coordinate r.
If the metric (1) is to designate the spacetime of a stationary perfect fluid rotating about the regular axis r = 0,
the metric coefficients will be absolutely connected to the dynamical parameters by virtue of the Einstein field
equations which are in the pentad notation utilizing the system of units providing c = G = 1, approved in the
following construction:

R(ab) = −8π

[
(ρ+ p)v(a)v(b) −

1

3
(ρ− p)g(ab)

]
,

In above formula, ρ, p reprent the matter density and the fluid pressure, respectively. Also, va explicitly indicated
components in the pentad frame of the unit time-like flow vector vi of the fluid, which satisfies vivi = 1. Davidson
[3], thoroughly presented a cosmological solution of the relativistic system of field equations for a perfect fluid in
rigid rotation about a regular axis. The mentioned model, indicates the possibility that the system of Kaluza-Klein
field equations can be solved unambiguously via presuming the succeeding expression for the metric coefficients A,
B, C, D, E and H,

A = (1 + k2r2)a, B = (1 + k2r2)b, C = (1 + k2r2)c,

D = (1 + k2r2)d, E = (1 + k2r2)e, H = αr2.

where a, b, c, d, e and k are constants and α is regarded as the constant of integration.
In [11] explicit particular cases for physical relevance that act in accordance with definite specific options of the
free parameters, are thoroughly studied. In this paper, we will inclusively investigate the problem of symmetries
and conservation laws for this specific solution which is reported in [11].
In the particular case, when a = −1/2, b = e = c = −d = 1/4, α2 = k2, the Kaluza-Klein equations are all fulfilled
and the spacetime of this type of solutions possess the subsequent metric structure:

ds2 = (1 + k2r2)−1/2(dt+ kr2dϕ)2 − (1 + k2r2)−1dr2 − (1 + k2r2)1/2
(
dz2 + r2dϕ2 + dψ2

)
. (2)
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which describes a five-dimensional spacetime of a stationary fluid which is structurally cylindrically symmetric
whose density and pressure are absolutely constant and are connected by virtue of the following equation of state:
ρ + p = 0. By inserting Λ = −(3/2)k2, the metric above represents a vacuum solution of the five-dimensional
Einstein field equations: Rij = Λgij , where Λ represents the cosmological constant.
For further complete details refer to [11].
As discussed above, exploring the influences of dimensionality on the distinctive physical parameters, preponderantly
reveals the significance of inquiring into stationary Kaluza-Klein rotating fluids. Consequently, in the current
research, we have extensively focused on detailed exploration of the issue of symmetries and conservation laws for
the privileged model (2) which explicitly describes the vacuum solution of the (4+1)-dimensional Einstein equations
with negative cosmological constant. The organization of the current research is as follows:
In section two, we will exhibit a thoroughgoing analysis of the Lie algebra of variational symmetries for our analyzed
cosmological solution (2). Firstly, by appraising the Lagrangian which is characterized straightforwardly through
the metric, we will calculate the associated geodesic equations as the Euler Lagrange equations. Subsequently,
we determine the point generators of the one-parameter Lie groups of transformations that leave invariant the
action integral associated to the Lagrangian (variational symmetries). Furthermore, we will briefly analyze the
structure of the Lie algebra of the resulted variational symmetries from the algebraic standpoint. For the motive of
thorough comprehending the invariant solutions, a mean of characterizing which subgroups yield distinct solutions
is indispensable. Hence, in section three, we create an optimal system of group invariant solutions by establishing
the adjoint representation group, which implies a conjugate relation in the set of all one-dimensional resulted
symmetry subalgebras. This procedure literally leads to a slightest listicle of invariant solutions from which the
further related invariant solutions of one dimensional subalgebras can be deduced by virtue of transformations.
Ultimately, in section three of the current paper, reckon with the fact that the symmetries of our five-dimensional
analyzed cosmological solution (2) yield the constants of motion for the point particles, all the associated local
conservation laws are accurately calculated. Finally, some significant consequences are presented.

2. Lie Algebra of variational symmetries

Generically, the Euler-Lagrange equations corresponding to the first order Lagrangians are second order differential
equations. For our principal objectives in this paper, the Lagrangian is determined straightforwardly through the
metric which unambiguously leads to the geodesic equations. We presume the following Lagrangian for minimizing
the arc length that is for convenience expressed by the square of the arc length and accordingly provides the geodesic
equations as the associated Euler Lagrange equations is concluded as follows:

L[xµ,
dxµ

ds
] = gµν(x

κ)
dxµ

ds

dxν

ds
.

Hence, a collection of second order ordinary differential equations:

d2xµ

ds2
= g
(
s, xµ,

dxµ

ds

)
.

In the following, the vector field X which is determined totally on a real parameter fiber bundle over a typical
manifold [2, 5]:

X = ξ(s, xµ)
∂

∂s
+ ην(s, xµ)

∂

∂xν
,

where µ, ν = 1, . . . , 5. Accordingly, the first order prolongation of this vector field is identically characterized on
the real parameter fiber bundle over the tangent bundle of the manifold and is explicitly demonstrated as follows:

X[1] = X+
(
ην,s + ην,µẋ

µ − ξ,sẋ
ν − ξ,µẋ

µẋν
) ∂

∂ẋν
.

Then X is denoted by a variational symmetry (or Noether point symmetry) of the analyzed Lagrangian whenever
there exists a gauge function, A = A(s, xµ), in such a manner that the following important identity holds:

X[1]L+ (Dsξ)L = DsA. (3)

where Ds =
∂
∂s + ẋ

µ ∂
∂xµ , which is analogously characterized on the real parameter fiber bundle over the correspond-

ing tangent bundle to the manifold. For extra details refer to [2, 5].
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In this section, firstly by concentrating on the Lagrangian which is derived straightforwardly through the met-
ric (2), we will calculate the geodesic equations as the corresponding Euler Lagrange equations. Subsequently, we
totally determine the point generators associated to the one parameter Lie groups of transformations which leave
invariant the action integral of our analyzed Lagrangian i.e., variational symmetries.
The Lagrangian for the metric (2) is

L=
ṫ2√

1 + k2r2
− ṙ2

1 + k2r2
−
√
1 + k2r2ż2+

( k2r4√
1 + k2r2

−r2
√

1 + k2r2
)
ϕ̇2+

2kr2√
1 + k2r2

ṫϕ̇−
√
1 + k2r2ψ̇2. (4)

The interrelated simplified Euler-Lagrange equations are the geodesic equations entirely determined as follows:

E :



E1 : ẗ+
k2r(4k2r2 + 7)

(k2r2 + 1)(4k2r2 + 1)
ṫṙ = 0,

E2 : r̈ − k2r

2
√
1 + k2r2

ṫ2 +
2kr(k2r2 + 2)√

1 + k2r2
ṫϕ̇− k2r

1 + k2r2
ṙ2 − 1

2

√
1 + k2r2 k2r ż2

− r(k2r2 + 2)

2
√
1 + k2r2

ϕ̇2 − 1

2

√
1 + k2r2 k2r ψ̇2 = 0,

E3 : z̈ +
k2r

1 + k2r2
ṙż = 0,

E4 : ϕ̈− 4k

r(1 + 4k2r2)
ṫṙ +

k2r2 + 2

r(1 + k2r2)
ṙϕ̇ = 0,

E5 : ψ̈ +
k2r

1 + k2r2
ṙψ̇ = 0.

(5)

By applying (4) in (3), the corresponding determining PDEs for seven unknown functions ξ, ηµ andA, are thoroughly
characterized. Moreover, each of these is a function of six parameters, i.e. s, t, r, z, ϕ and ψ. By solving the resulted
equations for the metric (2), it is inferred that:

Theorem 2.1. The Lie group of variational symmetries associated to solution (2) has a Lie algebra which is
precisely generated by the vector fields X = ξ ∂∂s + η1 ∂∂t + η2 ∂

∂r + η3 ∂
∂z + η4 ∂

∂ϕ + η5 ∂
∂ψ , where

ξ(s, t, r, z, ϕ, ψ) = c1, η1(s, t, r, z, ϕ, ψ) = c5z + c6ψ + c9, η2(s, t, r, z, ϕ, ψ) = 0,

η3(s, t, r, z, ϕ, ψ) = c5t+ c3ψ + c4, η4(s, t, r, z, ϕ, ψ) = c5kz + c6kψ + c8,

η5(s, t, r, z, ϕ, ψ) = −c3z + c6t+ c7, A(s, t, r, z, ϕ, ψ) = c2.

and ci, i = 1, . . . , 9 are optional constants.

Hence, we explicitly find out the eight dimensional Lie algebra of variational symmetries with this basis:

Corollary 2.2. Infinitesimal generators of every one parameter Lie group of variational symmetries corresponding
to (5) are unequivocally demonstrated by:

X1 =
∂

∂s
, X2 =

∂

∂t
, X3 =

∂

∂z
,

X4 =
∂

∂ϕ
, X5 =

∂

∂ψ
, X6 = −ψ ∂

∂z
+ z

∂

∂ψ
,

X7 = z
∂

∂t
+ t

∂

∂z
+ kz

∂

∂ϕ
, X8 = ψ

∂

∂t
+ kψ

∂

∂ϕ
+ t

∂

∂ψ
, A(s, t, r, z, ϕ, ψ) = c (constant).

The commutator table of variational symmetries of the system of geodesic equations (5) is presented in Table 1,

where the entry in the ith row and jth column is expressed by [Xi, Xj ] = XiXj −XjXi, i, j = 1, . . . , 8.
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Table 1: Commutation relations satisfied by infinitesimal generators of gIII

[ , ] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 X3 X5

X3 0 0 0 0 0 −X5 X2 + kX4 0

X4 0 0 0 0 0 0 0 0

X5 0 0 0 0 0 X3 0 X2 + kX4

X6 0 0 X5 0 −X3 0 X8 −X7

X7 0 −X3 −X2 − kX4 0 0 −X8 0 −X6

X8 0 −X5 0 0 −X2 − kX4 X7 X6 0

Let gIII represent the Lie algebra of local symmetries related to the system of geodesic equations (5). In the
following, a concise investigation concerning the algebraic structure of gIII is pointed out. The Lie algebra gIII is
non-solvable, because if gIII(1) =< Xi, [Xi, Xj ] >= [gIII, gIII], be the derived subalgebra of gIII, then we have:

gIII(1) = [gIII, gIII] =< X3, X2 + kX4, X5, X6, X7, X8 >,

gIII(2) = [gIII(1), gIII(1)] = gIII(1).

Hence, we have this chain of ideals gIII ⊃ gIII(1) = gIII(2) ̸= 0, which definitely confirms the non-solvability of gIII.
Besides, gIII is not semisimple, since its killing form

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 4


is degenerate. gIII has a Levi decomposition of the form gIII = r⋉h where r =< X1, X2, X3, X4, X5 > is the radical
namely the largest solvable ideal of gIII and h =< X6, X7, X8 > is a semisimple and non-solvable subalgebra of gIII.
Hereupon, according to [7] the quotient algebra created from g can be identified in a manner that

gIII1 = gIII/r =
{
X + r | X ∈ gIII

}
the members of gIII1 are denoted by Yi and the commutator table of the resulted quotient Lie algebra is represented

in Table 2, where the entry in the ith row and jth column is determined as [Zi,Zj ] = ZiZj −ZjZi, i, j = 1, 2, 3.

Table 2: Commutation table of gIII1

[ , ] Z1 Z2 Z3

Z1 0 Z3 −Z2

Z2 −Z3 0 −Z1

Z3 Z2 Z1 0

The quotient algebra gIII1 is not only semisimple but also a non-solvable Lie algebra. It is semsimple, since

its killing form

−2 0 0
0 2 0
0 0 2

 is non-degenerate. In addition, gIII1 is non-solvable, since whenever g1
III(1) =<

Zi, [Zi,Zj ] >= [gIII1 , gIII1 ] be the derived subalgebra of gIII1 , we have gIII1 = g1
III(1) = [gIII1 , gIII1 ] =< Z1,Z2,Z3 > so,

we have gIII1 = g1
III(1) ̸= 0, which precisely illustrates the non-solvability of gIII1 .
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3. Preliminary group classification of variational symmetries for the geodesic equations

It is worth mentioning that to every one parameter subgroups of the full symmetry group of an arbitrary system
of differential equations, a family of solutions distinguished by invariant solutions can be explicitly associated.
Moreover, any arbitrary linear combination of infinitesimal generators is as well an infinitesimal generator; so,
corresponding to a differential equation infinitely many symmetry subgroups might be designated. Accordingly,
for the purpose of entire recognition of the invariant solutions, a systematic mechanism of characterizing which
subgroups yield distinct types of solutions is undeniably crucial. In the specific case of one dimensional subalgebras
in fact the mentioned classification is elementally analogous to classifying the orbits of the adjoint representation.
Whenever only one representative is picked out from each family of equivalent subalgebras, an optimal set of subal-
gebras is unambiguously established. As a consequence, by utilizing these transformations, the slightest collection
of invariant solutions from which all the other invariant solutions associated to one dimensional subalgebras are
straightforwardly resulted, is exhaustively formulated [8, 9].
Each Xi, i = 1, . . . , 8, of the basis symmetries generates an adjoint representation or interior automorphism

Ad(exp(εXi)) expressed by means of the Lie series:

Ad(exp(ε.Xi).Xj) = Xj − ε.[Xi, Xj ] +
ε2

2
.[Xi, [Xi, Xj ]]− . . .

where [Xi, Xj ] is the commutator for the Lie algebra, ε is a variable, and i, j = 1, . . . , 8.
We can look forward to simplify an optional element,

X = a1X1 + a2X2 + · · ·+ a8X8 (6)

of the Lie algebra of variational symmetries associated to the geodesic Lagrangian (4) which was designated by gIII.
Take notice of the elements of gIII can be characterized by vectors a = (a1, . . . , a8) ∈ R8 since each of them can be
explained in the form (6) for arbitrary constants a1, . . . , a8. Consequently, the adjoint action is indeed regarded as
a group of linear transformations of the vectors (a1, . . . , a8).
Subsequently, we can express this impressive theorem:

Theorem 3.1. An optimal system of one-dimensional Lie subalgebras of variational symmetries corresponding to
the geodesic Lagrangian (4) is established by virtue of the following operators:

(1) : a1X1 + a2X2 +X3 + a4X4 + a8X8 = a1
∂

∂s
+
(
a2 + a8ψ

) ∂
∂t

+
∂

∂z

+
(
a4 + a8ψk

) ∂

∂φ
+ a8t

∂

∂ψ
, A = c

(2) : a1X1 + a2X2 + a4X4 +X5 + a7X7 = a1
∂

∂s
+
(
a2 + a7z

) ∂
∂t

+ a7t
∂

∂z

+
(
a4 + a7zk

) ∂

∂φ
+

∂

∂ψ
, A = c

(3) : a1X1 + a2X2 + a4X4 + a6X6 +X7 = a1
∂

∂s
+
(
a2 + z

) ∂
∂t

+
(
a6ψ + t

) ∂
∂z

+
(
a4 + zk

) ∂

∂φ
− a6z

∂

∂ψ
, A = c

(4) : a1X1 + a2X2 + a4X4 + a6X6 + a8X8 = a1
∂

∂s
+
(
a2 + a8ψ

) ∂
∂t

+ a6ψ
∂

∂z

+
(
a4 + a8ψk

) ∂

∂φ
+
(
− a6z + a8t

) ∂

∂ψ
, A = c

where ai are real arbitrary constants.

Proof. F εi : gIII → gIII characterized by X 7→ Ad(exp(εiXi).X) is a linear map, for i = 1, . . . , 8. The matrix Mε
i

of F εi , with respect to the basis
{
X1, . . . ,X8

}
is

Mε
1 = I8, Mε

2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 −ε 0 0 0 1 0
0 0 0 0 −ε 0 0 1


, Mε

3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 ε 1 0 0
0 −ε 0 −εk 0 0 1 0
0 0 0 0 0 0 0 1


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Mε
4 = I8, Mε

5 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −ε 0 0 1 0 0
0 0 0 0 0 0 1 0
0 −ε 0 −εk 0 0 0 1


, Mε

6 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 cos ε 0 − sin ε 0 0 0
0 0 0 1 0 0 0 0
0 0 sin ε 0 cos ε 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 cos ε − sin ε
0 0 0 0 0 0 sin ε cos ε



Mε
7 =



1 0 0 0 0 0 0 0

0 1
2

(
eε + e−ε

)
1
2

(
eε − e−ε

)
1
2k
(
eε + e−ε − 2

)
0 0 0 0

0 1
2

(
eε − e−ε

)
1
2

(
eε + e−ε

)
1
2k
(
eε − e−ε

)
0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1
2

(
eε + e−ε

)
0 1

2

(
eε − e−ε

)
0 0 0 0 0 0 1 0

0 0 0 0 0 1
2

(
eε − e−ε

)
0 1

2

(
eε + e−ε

)



Mε
8 =



1 0 0 0 0 0 0 0

0 1
2

(
eε + e−ε

)
0 1

2k
(
eε + e−ε − 2

)
1
2

(
eε − e−ε

)
0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 1
2

(
eε − e−ε

)
0 1

2k
(
eε − e−ε

)
1
2

(
eε + e−ε

)
0 0 0

0 0 0 0 0 1
2

(
eε + e−ε

)
1
2

(
e−ε − eε

)
0

0 0 0 0 0 1
2

(
e−ε − eε

)
1
2

(
eε + e−ε

)
0

0 0 0 0 0 0 0 1


For the purpose of classifying the one-dimensional Lie subalgebras of variational symmetries corresponding to

the geodesic Lagrangian (4), the following cases are outlined in a manner that in each case, by virtue of individually
performing a finite number of the adjoint representations Mε

i (i = 1, . . . , 8) on X, by appropriate choice of parame-
ters εi in any step, it is moderately attemped to make the coefficients of X vanish and to obtain the simplest form
of X.

Let X =
∑8
i=1 aiXi, then

F ε88 ◦ F ε77 ◦ · · · ◦ F ε11 : X 7−→ a1X1 +

[
a2

(
1
2e
ε7 + 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
)
+ a3

(
1
2e
ε7 − 1

2e
−ε7
)

+ a4

(
k
2

(
1
2e
ε7 + 1

2e
−ε7
)(
eε8 + e−ε8 − 2

)
+ k

2

(
eε7 + e−ε7 − 2

))
+ a5

(
1
2e
ε7 + 1

2e
−ε7
)(

1
2e
ε8 − 1

2e
−ε8
)]

X2

+

[
a2

(
cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
)
− sin(ε6)

(
1
2e
ε8 − 1

2e
−ε8
))

+ a3 cos(ε6)
(

1
2e
ε7 + 1

2e
−ε7
)

+ a4

(
k
2 cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(
eε8 + e−ε8 − 2

)
+ k

2 cos(ε6)
(
eε7 − e−ε7

)
− k

2 sin(ε6)
(
eε8 − e−ε8

))

+ a5

(
cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 − 1

2e
−ε8
)
− sin(ε6)

(
1
2e
ε8 + 1

2e
−ε8
))]

X3 + a4X4

+

[
a2

(
sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
)
+ cos(ε6)

(
1
2e
ε8 − 1

2e
−ε8
))

+ a3 sin(ε6)
(

1
2e
ε7 + 1

2e
−ε7
)

+ a4

(
k
2 sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(
eε8 + e−ε8 − 2

)
+ k

2 sin(ε6)
(
eε7 − e−ε7

)
+ k

2 cos(ε6)
(
eε8 − e−ε8

))

+ a5

(
sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 − 1

2e
−ε8
)
+ cos(ε6)

(
1
2e
ε8 + 1

2e
−ε8
))]

X5

+

[
a2

((
− ε5 cos(ε6) + ε3 sin(ε6)

)(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
)
+
(
ε5 sin(ε6) + ε3 cos(ε6)

)(
1
2e
ε8 − 1

2e
−ε8
))
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+ a3

(
− ε5 cos(ε6) + ε3 sin(ε6)

)(
1
2e
ε7 + 1

2e
−ε7
)
+ a4

(
k
2

(
− ε5 cos(ε6) + ε3 sin(ε6)

)(
1
2e
ε7 − 1

2e
−ε7
)

×
(
eε8 + e−ε8 − 2

)
+ k

2

(
− ε5 cos(ε6) + ε3 sin(ε6)

)(
eε7 − e−ε7

)
+ k

2

(
ε5 sin(ε6) + ε3 cos(ε6)

)(
eε8 − e−ε8

))

+ a5

((
− ε5 cos(ε6) + ε3 sin(ε6)

)(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 − 1

2e
−ε8
)
+
(
ε5 sin(ε6) + ε3 cos(ε6)

)(
1
2e
ε8 + 1

2e
−ε8
))

+ a6

(
1
2e
ε7 + 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
)
+ a7

(
1
2e
ε7 + 1

2e
−ε7
)(

1
2e

−ε8 − 1
2e
ε8
)
+ a8

(
1
2e
ε7 − 1

2e
−ε7
)]

X6

+

[
a1 cos(ε6) + a2

((
− ε3

(
1
2e
ε7 + 1

2e
−ε7
)
− ε2 cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
))(

1
2e
ε8 − 1

2e
−ε8
)

+ ε2 sin(ε6)
(

1
2e
ε8 − 1

2e
−ε8
))

+ a3

(
− ε3

(
1
2e
ε7 − 1

2e
−ε7
)
− ε2 cos(ε6)

(
1
2e
ε7 + 1

2e
−ε7
))

+ a4

(
k
2 ε2 sin(ε6)

(
eε8 − e−ε8

)
− ε3k − k

2 ε2 cos(ε6)
(
eε7 − e−ε7

)
− k

2 ε3 cos(ε6)
(
eε7 + e−ε7 − 2

)
+ k

2

(
eε8 + e−ε8 − 2

)(
− ε3

(
1
2e
ε7 + 1

2e
−ε7
)
− ε2 cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)))

+ a5

(
ε2 sin(ε6)

(
1
2e
ε8 + 1

2e
−ε8
)

+
(

1
2e
ε8 − 1

2e
−ε8
)(

− ε3

(
1
2e
ε7 + 1

2e
−ε7
)
− ε2 cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)))

+ a6

(
cos(ε6)

(
1
2e

−ε8 − 1
2e
ε8
)

− sin(ε6)
(

1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
))

+ a7

(
cos(ε6)

(
1
2e
ε8 + 1

2e
−ε8
)
− sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)

×
(

1
2e

−ε8 − 1
2e
ε8
))

− a8 sin(ε6)
(

1
2e
ε7 + 1

2e
−ε7
)]

X7

+

[
a1 sin(ε6)+a2

(
− ε2 cos(ε6)

(
1
2e
ε8− 1

2e
−ε8
)
−
(
ε5

(
1
2e
ε7+ 1

2e
−ε7
)
+ ε2 sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
))(

1
2e
ε8 + 1

2e
−ε8
))

+ a3

(
− ε5

(
1
2e
ε7 − 1

2e
−ε7
)
− ε2 sin(ε6)

(
1
2e
ε7 + 1

2e
−ε7
))

+ a4

(
− k

2 ε2 cos(ε6)
(
eε8 − e−ε8

)
− ε5k − k

2 ε2 sin(ε6)
(
eε7 − e−ε7

)
− k

2 ε5

(
eε7 + e−ε7 − 2

)
+ k

2

(
eε8 + e−ε8 − 2

)(
− ε5

(
1
2e
ε7 + 1

2e
−ε7
)
− ε2 sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)))

+ a5

(
− ε2 cos(ε6)

(
1
2e
ε8 + 1

2e
−ε8
)
+
(

1
2e
ε8 − 1

2e
−ε8
)(

− ε5

(
1
2e
ε7 + 1

2e
−ε7
)
− ε2 sin(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)))

+ a6

(
sin(ε6)

(
1
2e

−ε8 − 1
2e
ε8
)
+ cos(ε6)

(
1
2e
ε7 − 1

2e
−ε7
)(

1
2e
ε8 + 1

2e
−ε8
))

+ a7

(
sin(ε6)

(
1
2e
ε8 + 1

2e
−ε8
)

+ cos(ε6)
(

1
2e
ε7 − 1

2e
−ε7
)(

1
2e

−ε8 − 1
2e
ε8
))

+ a8 cos(ε6)
(

1
2e
ε7 + 1

2e
−ε7
)]

X8

At this stage, we can simplify X in the following manner:

If a3 ̸= 0 we can make the coefficients of X5, X6 and X7 vanish by F ε66 , F ε55 and F ε22 . By inserting ε6 =

− arctan
(a5
a3

)
, ε5 =

a6
a3

and ε2 =
a7
a3

, respectively. Scaling X if necessary, we can suppose that a3 = 1. So, X is

reduced to the case (1).
If a3 = 0 and a5 ̸= 0 we can make the coefficients of X8, and X6 vanish by F ε22 and F ε33 . By setting ε2 =

arctan
(a8
a5

)
and ε3 = −a6

a5
, respectively. Scaling X if necessary, we can presume that a5 = 1. So, X is simplified to

the case (2).

If a3 = 0, a5 = 0 and a7 ̸= 0 we can make the coefficient ofX8, vanish by F ε66 . By considering ε6 = − arctan
(a8
a7

)
.

Scaling X if necessary, we can assume that a7 = 1. So, X is simplified to the case (3).
If a3 = 0, a5 = 0 and a7 = 0 then X is simplified to the case (4). □
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4. Computation of the conservation laws

The foremost prominence of Noether symmetries is apparent from the reputable Noether’s theorem. This theorem
crucially depends on the accessibility of a Lagrangian and the associated variational symmetries which leave the
action integral invariant. In accordance with this theorem, there is a strategy which connects the constants of the
motion of a given Lagrangian system to its corresponding symmetry transformations [2, 6].
In this section, first of all, we will determine all the conserved flows corresponding to the variational symmetries
X1, . . . ,X8 obtained in corollary 2.2. Each of these conserved quantities provides a conservation law for the system
of geodesic equations (5).

For instance, for the variational symmetry X7 = z
∂

∂t
+ t

∂

∂z
+ kz

∂

∂ϕ
, we obtain this conserved vector:

T 7 = ξL+ (Ω1 − ṫξ)
∂L

∂ṫ
+ (Ω2 − ṙξ)

∂L

∂ṙ
+ (Ω3 − żξ)

∂L

∂ż
+ (Ω4 − φ̇ξ)

∂L

∂ϕ̇
+ (Ω5 − ψ̇ξ)

∂L

∂ψ̇
−A

= z

(
2ṫ√

1 + k2r2
+

2kr2ϕ̇√
1 + k2r2

)
− 2t

√
1 + k2r2 ż + kz

(
2
( k2r4√

1 + k2r2
− r2

√
1 + k2r2

)
ϕ̇+

2kr2 ṫ√
1 + k2r2

)
− c.

Analogously, we have calculated the conserved vectors of the other computed variational symmetries. The conclu-
sions are thoroughly demonstrated in Table 3.

Table 3: Conservation laws of (5) resulted from the Noether’s theorem

Noether Symmetry Conserved Vectors

1 X1 = ∂s

T 1 =− ṫ2√
1 + k2r2

+
ṙ2

1 + k2r2
+
√
1 + k2r2 ż2 − 2kr2√

1 + k2r2
ṫϕ̇

−
( k2r4√

1 + k2r2
− r2

√
1 + k2r2

)
ϕ̇2 +

√
1 + k2r2 ψ̇2 − c

2 X2 = ∂t T 2 =
2ṫ√

1 + k2r2
+

2kr2 ϕ̇√
1 + k2r2

− c

3 X3 = ∂z T 3 = −2
√

1 + k2r2 ż − c

4 X4 = ∂φ T 4 = 2

(
k2r4√
1 + k2r2

− r2
√

1 + k2r2
)
ϕ̇+

2kr2 ṫ√
1 + k2r2

− c

5 X5 = ∂ψ T 5 = −2
√

1 + k2r2 ψ̇ − c

6 X6 = ψ∂z − z∂ψ T 6 = −2ψ
√

1 + k2r2 ż + 2z
√
1 + k2r2 ψ̇ − c

7 X7 = z∂t+ t∂z + kz∂ϕ

T 7 =z

(
2ṫ√

1 + k2r2
+

2kr2ϕ̇√
1 + k2r2

)
− 2t

√
1 + k2r2 ż

+ kz

(
2
( k2r4√

1 + k2r2
− r2

√
1 + k2r2

)
ϕ̇+

2kr2 ṫ√
1 + k2r2

)
− c

8 X8 = ψ∂t+ kψ∂ϕ+ t∂ψ

T 8 =ψ

(
2ṫ√

1 + k2r2
+

2kr2ϕ̇√
1 + k2r2

)
− 2t

√
1 + k2r2 ψ̇

+ kψ

(
2
( k2r4√

1 + k2r2
− r2

√
1 + k2r2

)
ϕ̇+

2kr2 ṫ√
1 + k2r2

)
− c

Subsequently, the conserved flows of those infinitesimal generators resulting via establishing an optimal system of
one-dimensional subalgebras of the Lie algebra of variational symmetries as illustrated in theorem 3.1 are totally
computed.

(1) For the symmetry operator a1X1+a2X2+X3+a4X4+a8X8 = a1
∂

∂s
+(a2+a8ψ)

∂

∂t
+
∂

∂z
+(a4+a8ψk)

∂

∂φ
+

a8t
∂

∂ψ
, A = c by applying Noether’s theorem the following conservation law is resulting:
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Ds

(
a1√

k2r2 + 1
ṫ2 − a1

k2r2 + 1
ṙ2 − a1

√
k2r2 + 1 ż2 + a1

(
k2r4√
k2r2 + 1

− r2
√
k2r2 + 1

)
φ̇2 +

2a1r
2k√

k2r2 + 1
ṫ φ̇

− a1
√
k2r2 + 1 ψ̇2 + (−a1ṫ+ a8ψ + a2)

(
2√

k2r2 + 1
ṫ+

2r2k√
k2r2 + 1

φ̇

)
− 2(−a1z + 1)

√
k2r2 + 1 ż

+
2a1

k2r2 + 1
ṙ2 +

(
a8kψ − a1φ̇+ a4

)( 2r4k2√
k2r2 + 1

φ̇− 2r2
√
k2r2 + 1 φ̇+

2r2k√
k2r2 + 1

ṫ

)
− 2(−a1ψ̇ + a8t)

√
k2r2 + 1 ψ̇ − c

)
= 0.

(2) For the symmetry operator a1X1+a2X2+a4X4+X5+a7X7 = a1
∂

∂s
+(a2+a7z)

∂

∂t
+a7t

∂

∂z
+(a4+a7zk)

∂

∂φ
+

∂

∂ψ
, A = c by applying Noether’s theorem the following conservation law is resulting:

Ds

(
a1√

k2r2 + 1
ṫ2 − a1

k2r2 + 1
ṙ2 − a1

√
k2r2 + 1 ż2 + a1

(
k2r4√
k2r2 + 1

− r2
√
k2r2 + 1

)
φ̇2 +

2a1r
2k√

k2r2 + 1
ṫ φ̇

− a1
√
k2r2 + 1 ψ̇2 + (−a1ṫ+ a7z + a2)

(
2√

k2r2 + 1
ṫ+

2r2k√
k2r2 + 1

φ̇

)
− 2(−a1z + a7t)

√
k2r2 + 1 ż

+
2a1

k2r2 + 1
ṙ2 +

(
a7kz − a1φ̇+ a4

)( 2r4k2√
k2r2 + 1

φ̇− 2r2
√
k2r2 + 1 φ̇+

2r2k√
k2r2 + 1

ṫ

)
− 2(−a1ψ̇ + 1)

√
k2r2 + 1 ψ̇ − c

)
= 0.

(3) For the symmetry operator a1X1 + a2X2 + a4X4 + a6X6 +X7 = a1
∂

∂s
+ (a2 + z)

∂

∂t
+ (a6ψ + t)

∂

∂z
+ (a4 +

zk)
∂

∂φ
− a6z

∂

∂ψ
, A = c by applying Noether’s theorem the following conservation law is resulting:

Ds

(
a1√

k2r2 + 1
ṫ2 − a1

k2r2 + 1
ṙ2 − a1

√
k2r2 + 1 ż2 + a1

(
k2r4√
k2r2 + 1

− r2
√
k2r2 + 1

)
φ̇2 +

2a1r
2k√

k2r2 + 1
ṫ φ̇

− a1
√
k2r2 + 1 ψ̇2 + (−a1ṫ+ a2 + z)

(
2√

k2r2 + 1
ṫ+

2r2k√
k2r2 + 1

φ̇

)
− 2(−a1ż + a6ψ + t)

√
k2r2 + 1 ż

+
2a1

k2r2 + 1
ṙ2 + (−a1φ̇+ kz + a4)

(
2r4k2√
k2r2 + 1

φ̇− 2r2
√
k2r2 + 1 φ̇+

2r2k√
k2r2 + 1

ṫ

)
+ 2
(
a1ψ̇ + a6z

)√
k2r2 + 1 ψ̇ − c

)
= 0.

(4) For the symmetry operator a1X1 + a2X2 + a4X4 + a6X6 + a8X8 = a1
∂

∂s
+
(
a2 + a8ψ

) ∂
∂t

+ a6ψ
∂

∂z
+
(
a4 +

a8ψk
) ∂

∂φ
+
(
−a6z+a8t

) ∂

∂ψ
, A = c by applying Noether’s theorem the following conservation law is resulting:

Ds

(
a1√

k2r2 + 1
ṫ2 − a1

k2r2 + 1
ṙ2 − a1

√
k2r2 + 1 ż2 + a1

(
k2r4√
k2r2 + 1

− r2
√
k2r2 + 1

)
φ̇2 +

2a1r
2k√

k2r2 + 1
ṫ φ̇

− a1
√
k2r2 + 1 ψ̇2 +

(
− a1ṫ+ a2 + a8ψ

)( 2√
k2r2 + 1

ṫ+
2r2k√
k2r2 + 1

φ̇

)
− 2
(
− a1z + a6ψ

)√
k2r2 + 1 ż

+
2a1

k2r2 + 1
ṙ2 +

(
a8kψ − a1φ̇+ a4

)( 2r4k2√
k2r2 + 1

φ̇− 2r2
√
k2r2 + 1 φ̇+

2r2k√
k2r2 + 1

ṫ

)
− 2
(
− a1ψ̇ − a6z + a8t

)√
k2r2 + 1 ψ̇ − c

)
= 0.
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Ds

(
a1√

k2r2 + 1
ṫ2 − a1

k2r2 + 1
ṙ2 − a1

√
k2r2 + 1 ż2 + a1

(
k2r4√
k2r2 + 1

− r2
√
k2r2 + 1

)
φ̇2 +

2a1r
2k√

k2r2 + 1
ṫ φ̇

− a1
√
k2r2 + 1 ψ̇2 +

(
− a1ṫ+ a2 + a8ψ

)( 2√
k2r2 + 1

ṫ+
2r2k√
k2r2 + 1

φ̇

)
− 2
(
− a1z + a6ψ

)√
k2r2 + 1 ż

+
2a1

k2r2 + 1
ṙ2 +

(
a8kψ − a1φ̇+ a4

)( 2r4k2√
k2r2 + 1

φ̇− 2r2
√
k2r2 + 1 φ̇+

2r2k√
k2r2 + 1

ṫ

)
− 2
(
− a1ψ̇ − a6z + a8t

)√
k2r2 + 1 ψ̇ − c

)
= 0.

Conclusion

The Kaluza-Klein theory can be fundamentally considered as a precursor to string theory and is undoubtedly
the first example of a unification theory by adding an extra dimension. Literally, Kaluza-Klein theories describe a
physically viable plan for the unification of gravity with other interactions which is originally based on the hypothesis
that the gauge symmetries are intrinsically geometrical. Predominantly, after Gödel’s relativistic model proposal for
rotating dust universe, inquiring into rotating fluids in the framework of general relativity has acquired remarkable
contemplation. In this research, a thoroughgoing investigation of variational symmetries and conservation laws for
a specific vacuum solution of the (4+1)-dimensional Einstein field equations with negative cosmological constant is
presented. For this purpose, firstly by exploring the Lagrangian which is straightforwardly characterized from the
metric, the corresponding geodesic equations as the Euler Lagrange equations are totally computed. Subsequently,
we have obtained the point generators of the one parameter Lie groups of transformations which leave the action
integral of the Lagrangian invariant, viz., variational symmetries. It is demonstrated that the Lie algebra of local
symmetries of the system of geodesic equations is non-solvable and not semi-simple and a brief discussion regarding
the algebraic structure of the derived quotient Lie algebra is proposed. Principally, a thorough classification of
symmetry subalgebras for our analyzed system of geodesic equations is constructed via the adjoint representation
group. As a main consequence, the optimal system of group invariant solutions, can be predominantly reckoned
as the minimal list from which all the other invariant solutions of one-dimensional subalgebras are characterized
simply by virtue of transformations. Eventually, considering the point that the symmetries of the metric of our
analyzed five-dimensional space-time lead to the constants of motion for the point particles, all the corresponding
local conservation laws of the computed variational symmetries are totally calculated.
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