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ABSTRACT: This paper proposes a novel relaxation technique based on the frac-
tional representation of bilinear terms. This technique is embedded into an iterative
two-step MILP-NLP algorithm based on piecewise relaxation and domain reduc-
tion strategies. To evaluate the performance of the algorithm, it is compared to the
recently addressed iterative MILP-NLP algorithm based on piecewise McCormick
relaxation techniques over a variety of instances. Our method is also applied to the
crude oil scheduling problem as an application. The results confirm the efficiency
of the proposed algorithm from both solution quality and running time.
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1. Introduction

Non-convex mixed integer nonlinear programming (MINLP) models are frequently employed in engineering problems
such as energy storage [10], ethanol supply chains [9], water networks [22], gas networks [28], and pricing [15].

A special case of non-convex MINLPs is the category of bilinear mixed integer programming (BLMIP) problems
in which nonlinear terms appear as the product of two variables. BLMIPs become intractable by increasing the
problem size, and hence, their direct resolution by available solvers would be very time-consuming. Therefore,
different techniques have been proposed in the literature to tackle these problems. McCormick [27] proposed a
relaxation technique to find lower bounds on the optimal objective value of BLMIPs. Foulds et al. [18] presented
an approach based on convex relaxation within a spatial branch-and-bound framework. Bergamini et al. [1]
addressed a logic-based outer approximation method based on piecewise under-estimators and upper-estimators
of bilinear terms. Liberti et al. [26] and D’Ambrosio et al. [13] addressed mechanisms to approximate BLMIPs
by mixed integer linear programming (MILP) models. Hasan and Karimi [20] concentrated on piecewise linear
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approximation via partitioning of variables and considered various questions such as how many and which variables
should be partitioned, which partitioning strategy is more effective, where the grid points have to be placed, etc.
Faria and Bagajewicz [16] developed an algorithm based on variable partitioning, bound tightening, and branch
and bound. Gupte et al. [19] addressed a reformulation technique for BLMIPs in which bilinear terms represent the
product of integer variables. Teles et al. [32, 33], Castro [4] approximated the BLMIP model by an MILP so that
the domain of variables in each bilinear term is discretized according to base-2 or base-10 numeric representation
system. Dey et al. [12] proposed a new second-order cone representation (SOCP) relaxation and branching rule for
bipartite bilinear programming. Fischetti et al. [17] provided a branch-and-cut algorithm based on a new family
of intersection cuts to find an optimal solution. Kleinert et al. [24] proposed outer approximation based on a
cutting-plane algorithm to bilevel optimization problems including BLMIP.

Two-step MILP-NLP methods are amongst the well-known methods addressed in the literature to solve BLMIPs
where MILP and nonlinear programming (NLP) models are solved iteratively. In these methods, the BLMIP
model is approximated by an MILP via some techniques including piecewise linear approximation [21], piecewise
McCormick relaxation [3], and multi-parametric disaggregation [6]. Then, the discrete variables of the original
BLMIP are fixed at the solution obtained by MILPs to get an NLP model. By iteratively solving MILP and NLP
models, the domain of variables is condensed, and finally, the optimal (or near-optimal) solution is returned by the
algorithm. In this regard, recently, Nagarajan et al. [30] presented a two-step method in which the optimal solution
of the problem is found by iteratively solving an MILP and an NLP model where the MILP model is constructed
based on the piecewise McCormick relaxation technique.

In this paper, we present a novel relaxation technique that is based on the fractional representation of bilinear
terms. Then, we embed it into a two-step MILP-NLP based heuristic algorithm to efficiently solve general BLMIPs.
Afterward, the crude oil scheduling problem (COSP) addressed by De Assis et al. [11] is considered an application
to evaluate the performance of our algorithm. COSP deals with a crude oil terminal in which different types of
crude oil (in terms of quality) are delivered from vessels to be stored in tanks and then transferred to the refinery via
a pipeline connecting the terminal to the refinery. The scheduling decisions in the terminal should be made so that
operational restrictions are observed and the total cost is minimized. De Assis et al. [11] formulated this problem
as a BLMIP model and solved it by a two-step MILP-NLP algorithm based on piecewise McCormick envelopes.
In this paper, we attempt to improve the method of De Assis et al. [11] by utilizing our novel fractional-based
relaxation technique.

The main contributions of this paper are as follows. First, a new relaxation technique that is based on the
fractional representation of bilinear terms is introduced. Then, it is embedded into a two-step MILP-NLP based
heuristic algorithm to solve a general bilinear program. We show that the algorithm can provide an approximated
model with fewer added binary variables compared to other approaches such as piecewise McCormick relaxation
[3]. Also, it can be very useful in some real-world problems with a certain structure of non-linear constraints in the
form of fractional equality like COSP. The results confirm the superiority of the new method over the one proposed
by De Assis et al. [11] to solve COSP from both solution quality and running time.

The rest of this paper is organized as follows: Section 2 introduces our novel relaxation technique and reviews
piecewise McCormick relaxation to provide two-step MILP-NLP based heuristic algorithms. Section 3 describes
COSP in more detail, reviews its relevant literature, and formulates it as a BLMIP; further, we provide a short
overview of the approximate algorithm proposed by De Assis et al. [11] to solve COSP. Moreover, we describe how
our method can be adopted for COSP. Computational results are provided in Section 4 to evaluate the performance
of the proposed approach. Section 5 concludes the paper and offers directions for future research.

2. Main idea

In this section, first, our novel relaxation technique which is based on the fractional representation of the bilinear
term is introduced and then, it is utilized in a two-step MILP-NLP based heuristic algorithm.

Consider a non-convex BLMIP where each bilinear term is a product of two nonnegative continuous variables
in the form of xixj . Suppose the domain of variable xi is given as [Li, Ui]. Without loss of generality, suppose that
Li ≥ 1; if this is not the case, one can use the substitution x′

i = (xi − Li) + 1 to satisfy this condition. Now, define
the set B as follows:

B = {(i, j) : i < j and the model BLMIP contains the bilinear term xixj}

The main idea behind our relaxation technique is to replace the bilinear term xixj (for every (i, j) ∈ B) with a
new nonnegative continuous variable wi,j , rewrite the constraint wi,j = xixj as 1

xi
=

xj

wi,j
, and then approximate

each nonlinear fraction linearly. To put it in more detail, note that the fractions on both sides of the equation
1
xi

=
xj

wi,j
take their values in the interval

[
1
Ui
, 1
Li

]
. Therefore, we denote the interval associated with 1

xi
by [L′

i, U
′
i ],
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and initialize it as L′
i :=

1
Ui
, and U ′

i := 1
Li
. We partition [L′

i, U
′
i ] into some sub-intervals with equal lengths, and

denote the set of sub-intervals by P = {1, . . . , P} (indexed by p), where the pth sub-interval associated with 1
xi

is
as follows: [

L′
i,p, U

′
i,p

]
=

[
L′
i + (p− 1)× (U ′

i − L′
i)

P
,L′

i + p× (U ′
i − L′

i)

P

]
, p ∈ P (1)

Therefore: ∨
p∈P

[(
L′
i,p ≤ 1

xi
≤ U ′

i,p

)
∧
(
L′
i,p ≤ xj

wi,j
≤ U ′

i,p

)]
Thus, we provide relaxation of the original model by substituting the non-linear constraint 1

xi
=

xj

wi,j
by the following

linear constraints:

−M1 (1− γi,p) + L′
i,pxi ≤ 1 ∀p ∈ P (2)

U ′
i,pxi +M2 (1− γi,p) ≥ 1 ∀p ∈ P (3)

−M3 (1− γi,p) + L′
i,pwi,j ≤ xj ∀p ∈ P (4)

U ′
i,pwi,j +M4 (1− γi,p) ≥ xj ∀p ∈ P (5)∑

p∈P
γi,p = 1 (6)

γi,p ∈ {0, 1} ∀p ∈ P (7)

Where γi,p is a binary variable that is 1 if the pth sub-interval associated with 1
xi

is selected; 0 otherwise. Addi-
tionally, M1,M2,M3 and M4 are sufficiently large positive numbers that can be set as follows:

M1 = max
{
1, L′

i,PUi − 1
}
, M2 = max

{
1, 1− U ′

i,1Li

}
M3 = max

{
1, L′

i,PUiUj − Lj

}
, M4 = max

{
1, Uj − U ′

i,1LiLj

}
In the rest of the paper, to use our relaxation technique, we set M = max {M1,M2,M3,M4}. We also refer to

the model obtained by replacing the nonlinear constraint 1
xi

=
xj

wi,j
with linear constraints (2)-(7) as a piecewise

partitioning model based on fractional relaxation (FRPPM for short). As the value of P (the number of sub-
intervals) increases, the optimal solution obtained by FRPPM becomes closer to the optimal solution of original
BLMIP, However, it is important to note that the solution time also increases due to the presence of a larger number
of binary variables and the utilization of additional constraints.

Now, we utilize FRPPM in a two-step MILP-NLP algorithm in which the BLMIP model is approximated by
the MILP model FRPPM. Then, the solution of FRPPM is used to fix the discrete variables of the original BLMIP
to get an NLP model. By iteratively solving MILP and NLP models, the domain of variables is condensed, and
finally, the optimal (or nearoptimal) solution is returned. We refer to this algorithm as a piecewise partitioning
algorithm based on fractional relaxation (FRPPA for short). The general framework of FRPPA is as follows:

FRPPA

Step 0: Let k be a counter, ε > 0 be a given accuracy, and Ctrl be a binary parameter that is 1 if the
stopping criterion is observed, 0 otherwise. Let [L′

i, U
′
i ] be the interval related to the fraction 1

xi
and initialize

it as
[

1
Ui
, 1
Li

]
. Determine the value of P as the number of sub-intervals associated with fractions, and initialize

the sub-intervals based on (1). Assume that z
(k)
UB denotes the objective value of the best feasible solution to

BLMIP found until iteration k, and consider z
(k)
LB as the objective function value of FRPPM solved in iteration

k. Initialize k := 1, Ctrl := 0.

Step 1: While Ctrl = 0 do

Step 1-1: Solve the model FRPPM, and denote its optimal objective function value by z
(k)
LB .

Step 1-2: Fix the vector of binary variables of the model BLMIP to the optimal solution of FRPPM
to get an NLP model. Denote the optimal objective function value of the NLP model by z∗NLP , and set

z
(k)
UB = min

{
z∗NLP , z

(k−1)
UB

}
.

Step 1-3: For i = 1, . . . , n1 do:
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Step 1-3-1: Let p0 be the index of the sub-interval containing the value of 1
xi

in the optimal solution

to FRPPM. Additionally, let p1 be the index of the sub-interval containing the value of 1
xi

in the
optimal solution to the NLP model introduced in Step 1-2. Reduce the interval length associated
with the fraction 1

xi
as follows:

L′
i = min

{
L′
i,p0

, L′
i,p1

}
, U ′

i = max
{
U ′
i,p0

, U ′
i,p1

}
Step 1-4: If z

(k)
UB − z

(k)
LB < ε, set Ctrl := 1; else set k := k + 1, and update the sub-intervals based on

(1) and reduced bound.

Step 2: Return the solution associated with z
(k)
UB as the best feasible solution found by the algorithm.

One of the well-known techniques to obtain an approximated model of MINLP is tightening piecewise McCormick
relaxation [3] which was used by De Assis et al. [11]. He provides a two-step MILP-NLP algorithm (for short
MRPPA) to solve COSP as a non-convex MINLP.

To explain MRPPA, consider BLMIP with bilinear terms in the form of xixj such that (xi, xj) ∈ [Li, Ui]×[Lj , Uj ].
Firstly, [Li, Ui] and [Lj , Uj ] are partitioned into some sub-intervals with equal lengths which are denoted by O =
{1, . . . , O} (indexed by o) and S = {1, . . . , S} (indexed by s) respectively as follows:

[
SIxi,o, SIxi,o

]
=

[
Li + (o− 1)× (Ui − Li)

O
,Li + o× (Ui − Li)

O

]
o ∈ O (8)

[
SIxj,s, SIxj,s

]
=

[
Lj + (s− 1)× (Uj − Lj)

S
,Lj + s× (Uj − Lj)

S

]
s ∈ S (9)

Therefore: ∨
o,s∈O×S

[(
SIxi,o ≤ xi ≤ SIxi,o

)
∧
(
SIxj,s ≤ xj ≤ SIxj,s

)]
,

Therefore, piecewise McCormick relaxation of the original model by substituting the nonlinear constraint wij = xixj

by the following linear constraints:

wij ≥ SIxi,oxj + SIxj,sxi − SIxi,oSIxj,s −M ′ (1− αi,j,o,s) ∀o ∈ O, s ∈ S (10)

wij ≥ SIxi,oxj + SIxj,sxi − SIxi,oSIxj,s −M ′ (1− αi,j,o,s) ∀o ∈ O, s ∈ S (11)

wij ≤ SIxi,oxj + SIxj,sxi − SIxi,oSIxj,s +M ′ (1− αi,j,o,s) ∀o ∈ O, s ∈ S (12)

wij ≤ SIxi,oxj + SIxj,sxi − SIxi,oSIxj,s +M ′ (1− αi,j,o,s) ∀o ∈ O, s ∈ S (13)∑
o∈O

∑
s∈S

αi,j,o,s = 1 (14)

αi,j,o,s ∈ {0, 1}, ∀o ∈ O, s ∈ S (15)

Where αi,j,o,s is a binary variable that is 1 if the oth sub-interval associated with xi and sth subinterval associated
with xj are selected; 0 otherwise. Also, M ′ are sufficiently large positive numbers that can be set UiUj −LiLj . (In
the rest of the paper, M ′ is adjusted similarly) The MILP model obtained by using constraints (2)-(7) is referred
to as a piecewise partitioning model based on McCormick relaxation (for short MRPPM). The general framework
of MRPPA is as follows:

MRPPA

Step 0: Let k be a counter, ε > 0 be a given accuracy, and Ctrl be a binary parameter that is 1 if the

stopping criterion is observed; 0 otherwise. Let
[
L̃i, Ũi

]
and

[
L̃j , Ũj

]
be the intervals related to xi and xj ,

respectively. Initialize it as
[
L̃i, Ũi

]
= [Li, Ui] and

[
L̃j , Ũj

]
= [Lj , Uj ]. Determine the values of O and S as

the number of sub-intervals associated with xi and xj , respectively. Then initialize the sub-intervals based

on (8) and (9). Assume that z
(k)
UB denotes the objective value of the best feasible solution to BLMIP found

until iteration k, and consider z
(k)
LB as the objective function value of MRPPM solved in iteration k. Initialize

k := 1, Ctrl := 0.

Step 1: While Ctrl = 0 do
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Step 1-1: Solve the model MRPPM, and represent its optimal objective function value by z
(k)
LB .

Step 1-2: Fix the vector of binary variables of the model BLMIP to the optimal solution of MRPPM
to get an NLP model. Denote the optimal objective function value of the NLP model by z∗NLP , and set

z
(k)
UB = min

{
z∗NLP , z

(k−1)
UB

}
.

Step 1-3: For i = 1, . . . , n1 do:

Step 1-3-1: Let o0 and s0 be the indices of the sub-intervals containing the value of xi and xj in
the optimal solution to MRPPM solved in Step 1-1, respectively. Moreover, let o1 and s1 be the
indices of the sub-intervals containing the value of xi and xj in the optimal solution to the NLP
solved in Step 1-2, respectively. Reduce the length of the interval associated with variables xi and
xj as follows:

L̃i = min {SIxi,o0 , SIxi,o1} , Ũi = max
{
SIxi,o0 , SIxi,o1

}
L̃j = min {SIxj,s0 , SIxj,s1} , Ũj = max

{
SIxj,s0 , SIxj,s1

}
Step 1-4: If z

(k)
UB − z

(k)
LB < ε, set Ctrl := 1; else set k := k + 1, and update the sub-intervals based on

(8) and (9).

Step 2: Return the solution associated with z
(k)
UB as the best feasible solution found by the algorithm.

The following example illustrates FRPPA and MRPPA in a simple instance.

3. Illustrative example

Consider the following BLMIP:

(M1) : min z = 2δ1 + 3δ2 + 4x1 + 3x2

s.t. 3δ1 + 4δ2 + 2x1x2 + 2x1 + 3x2 ≥ 14

δ1 + δ2 + x1x2 ≥ 1

1 ≤ xi ≤ 2 ∀i = 1, 2 (16)

δi ∈ {0, 1}, xi ≥ 0 ∀i = 1, 2 (17)

The optimal solution to M1 is as follows:

(δ∗1 , δ
∗
2) = (1, 0), (x∗

1, x
∗
2) = (1.225, 1.633), z∗ = 11.798.

We substitute the bilinear term x1x2 by the nonnegative continuous variable w1,2 and add the new constraint
w1,2 = x1x2 to get the following equivalent model:

(M2) : min z = 2δ1 + 3δ2 + 4x1 + 3x2

s.t. (16)− (17)

3δ1 + 4δ2 + 2w1,2 + 2x1 + 3x2 ≥ 14 (18)

δ1 + δ2 + w1,2 ≥ 3 (19)

w1,2 = x1x2 (20)

w1,2 ≥ 0 (21)

In what follows, we describe how FRPPA is implemented on M2.
First, M2 is rewritten as the following equivalent model:

(M3) : min z = 2δ1 + 3δ2 + 4x1 + 3x2 (22)

s.t. (16)− (19), (21) (23)

1

x1
=

x2

w1,2
(24)

The fraction 1
x1

takes its value in the interval [0.5, 1], i.e. L′
1 = 0.5, U ′

1 = 1. We set P = 10, and partition

[L′
1, U

′
1]
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into the following sub-intervals:

[L′
1, U

′
1] =

10⋃
p=1

[
L′
1,p, U

′
1,p

]
= [0.5, 0.55] ∪ [0.55, 0.6] ∪ . . . ∪ [0.95, 1]

Therefore, the following MILP model is constructed:

(M4) : min z = 2δ1 + 3δ2 + 4x1 + 3x2 (25)

s.t. (16)− (19), (21) (26)

−M (1− γ1,p) + L′
1,px1 ≤ 1 ≤ U ′

1,px1 +M (1− γ1,p) ∀p ∈ P (27)

−M (1− γ1,p) + L′
1,pw1,2 ≤ x2 ≤ U ′

1,pw1,2 +M (1− γ1,p) ∀p ∈ P (28)

10∑
p=1

γ1,p = 1 (29)

γ1,p ∈ {0, 1} ∀p ∈ P (30)

The optimal solution to M4 is
(
δ̂1, δ̂2

)
= (1, 0), x̂1 = 1.25, x̂2 = 1.5, ẑ = 11.5 and hence, z

(1)
LB = 11.5. We have

1
x̂1

= 1; thus, 1
x̂1

belongs to the seventh sub-interval, and we have p0 = 7. If we solve the NLP model obtained

by fixing (δ1, δ2) at (1, 0), we get x̂1 = 1.225, x̂2 = 1.633, ẑ = 11.798, and hence, z
(1)
UB = 11.798. We have

1
x̂1

= 0.816; hence, 1
x̂1

belongs to the seventh sub-interval, and we have p1 = 7. Since the difference between z
(1)
LB

and z
(1)
UB is not sufficiently small, the new interval associated with 1

x1
is determined as L′

1 = min{0.8, 0.8} = 0.8
and U ′

1 = max{0.85, 0.85} = 0.85. So, the interval [0.8, 0.85] is divided into ten subintervals with equal lengths as
follows:

[L′
1, U

′
1] = ∪10

p=1

[
L′
1,p, U

′
1,p

]
= [0.805, 0.81] ∪ [0.81, 0.815] ∪ . . . ∪ [0.845, 0.85]

The same process is repeated, and finally, the algorithm terminates after four iterations. Table 1 summarizes
the results of each iteration.

Table 1: The results of implementing FRPPA on example M2

k [L′
1, U

′
1]

MILP (M4) NLP

x̂1 x̂2 ŵ1,2

[
L′
1,p0

, U ′
1,p0

]
z
(k)
LB x̂1 x̂2

[
L′
1,p1

, U ′
1,p1

]
z
(k)
UB

1 [0.5, 1] 1.250 1.500 2.0 [0.80, 0.85] 11.500 1.225 1.633 [0.80, 0.85] 11.798

2 [0.80, 0.85] 1.227 1.620 2.0 [0.810, 0.815] 11.768 1.225 1.633 [0.815, 0.820] 11.798

3 [0.810, 0.820] 1.225 1.630 2.0 [0.816, 0.8165] 11.792 1.225 1.633 [0.8165, 0.8170] 11.798

4 [0.816, 0.817] 1.225 1.633 2.0 [0.8163, 0.8164] 11.798 1.225 1.633 [0.8163, 0.8164] 11.798

Now, we describe how MRPPA is implemented on M2.
Both the variables x1 and x2 take their values in the interval [1,2], i.e. L̃1 = L̃2 = 1 and Ũ1 = Ũ1 = 2. We set

O = S = 5, and partition
[
L̃1, Ũ1

]
and

[
L̃2, Ũ2

]
into the following sub-intervals:

[
L̃1, Ũ1

]
=

5⋃
o=1

[
SIx1,o, SIx1,o

]
= [1, 1.2] ∪ [1.2, 1.4] ∪ . . . ∪ [1.8, 1]

[
L̃2, Ũ2

]
=

5⋃
s=1

[
SIx2,s, SIx2,s

]
= [1, 1.2] ∪ [1.2, 1.4] ∪ . . . ∪ [1.8, 1]
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Therefore, the following MILP model is constructed:

(M5) : min z = 2δ1 + 3δ2 + 4x1 + 3x2 (31)

s.t. (16)− (19), (21) (32)

w1,2 ≥ SIx1,0x2 + SIx2,sx1 − SIx1,oSIx2,s −M ′ (1− α1,2,o,s) ∀o ∈ O, s ∈ S (33)

w1,2 ≥ SIx1,ox2 + SIx2,sx1 − SIx1,oSIx2,s −M ′ (1− α1,2,o,s) ∀o ∈ O, s ∈ S (34)

w12 ≤ SIx1,ox2 + SIx2,sx1 − SIx1,oSIx2,s +M ′ (1− α1,2,o,s) ∀o ∈ O, s ∈ S (35)

w12 ≤ SIx1,ox2 + SIx2,sx1 − SIx1,oSIx2,s +M ′ (1− α1,2,o,s) ∀o ∈ O, s ∈ S (36)∑
o∈O

∑
s∈S

α1,2,o,s = 1 (37)

α1,2,o,s ∈ {0, 1} ∀o ∈ O, s ∈ S (38)

The optimal solution to M5 is
(
δ̂1, δ̂2

)
= (1, 0), x̂1 = 1.227, x̂2 = 1.627, ẑ = 11.787 and hence, z

(1)
LB = 11.787.

So, x̂1 and x̂2 belong to the second and fourth sub-interval, respectively. Therefore, we have o0 = 2 and s0 = 4. If
we solve the NLP model obtained by fixing (δ1, δ2) at (1, 0), we get x̂1 = 1.225, x̂2 = 1.633, ẑ = 11.798, and hence,

z
(1)
UB = 11.798. So, x̂1 and x̂2 belong to the second and fourth sub-interval, respectively. Therefore, we have o1 = 2

and s1 = 4. Since the difference between z
(1)
LB and z

(1)
UB is not sufficiently small, the new intervals associated with

x1 and x2 are determined as follows:

L̃1 = min{1.2, 1.2} = 1.2, Ũ1 = max{1.4, 1.4} = 1.4

L̃2 = min{1.6, 1.6} = 1.6, Ũ2 = max{1.8, 1.8} = 1.8

So, each interval is divided into five sub-intervals with equal lengths as follows:[
L̃1, Ũ1

]
= ∪5

o=1

[
SIx1,o, SIx1,o

]
= [1.2, 1.24] ∪ [1.24, 1.28] ∪ . . . ∪ [1.36, 1.4][

L̃2, Ũ2

]
= ∪5

s=1

[
SIx2,s, SIx2,s

]
= [1.6, 1.64] ∪ [1.64, 1.68] ∪ . . . ∪ [1.76, 1.8]

The same process is repeated, and finally, the algorithm terminates after three iterations. Table 2 summarizes
the results of each iteration.

Table 2: The results of implementing MRPPA on example M2

k


[
L̃1, Ũ1

]
[
L̃2, Ũ2

]
 MILP (M5) NLP(

x̂1

x̂2

)
ŵ1,2

([
SIx1,o0 , SIx1,o0

][
SIx2,s0 , SIx2,s0

]) z
(k)
LB

(
x̂1

x̂2

) ([
SIx1,o1 , SIx1,o1

][
SIx2,s1 , SIx2,s1

]) z
(k)
UB

1

(
[1, 2]

[1, 2]

) (
1.227

1.627

)
2.0

(
[1.2, 1.4]

[1.6, 1.8]

)
11.500

(
1.225

1.633

) (
[1.2, 1.4]

[1.6, 1.8]

)
11.798

2

(
[1.2, 1.4]

[1.6, 1.8]

) (
1.228

1.628

)
2.0

(
[1.2, 1.24]

[1.6, 1.64]

)
11.768

(
1.225

1.633

) (
[1.2, 1.24]

[1.6, 1.64]

)
11.798

3

(
[1.2, 1.4]

[1.6, 1.64]

) (
1.225

1.633

)
2.0

(
[1.224, 1.232]

[1.632, 1.640]

)
11.792

(
1.225

1.633

) (
[1.224, 1.232]

[1.632, 1.640]

)
11.798

As can be seen, both FRPPA and MRPPA could find the optimal solution of M2, but in general, it is not a
guarantee to find the optimal solution. Another notable point is the number of added binary variables that FRPPA
and MRPPA used which are 10 and 25 respectively. To increase the solution quality of the approximated model,
the number of binary variables in MRPPA (be influenced by αi,j,o,s) is higher than FRPPA (be influenced by γi,p).

Another type of constraint in problems that can better show the efficiency of FRPPA compared to MRPPA is
as follows:

xi
n1∑
i=1

xi

=
yi

n1∑
i=1

yi

, ∀i = 1, . . . , n1 (39)
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Where xi and yi (for each i) are nonnegative variables. We substitute
∑n1

i=1 xi and
∑n1

i=1 yi by nonnegative variables
xTo and yTo, respectively and rewrite constraints (39) as follows:

xi

xTo
=

yi
yTo

∀i, xTo =

n1∑
i=1

xi, yTo =

n1∑
i=1

yi, xTo, yTo ≥ 0 (40)

It is clear that both fractions xi

xTo and yi

yTo belong to [L′
i, U

′
i ] = [0, 1]. Therefore, to use MRPPA, we first provide

the following partitioning:

[
L′
i,p, U

′
i,p

]
=

[
L′
i + (p− 1)× (U ′

i − L′
i)

P
,L′

i + p× (U ′
i − L′

i)

P

]
, ∀i, p ∈ P

Then the non-linear constraint xi

xTo = yi

yTo is substituted by the following constraints:

−M (1− γi,p) + L′
i,px

total ≤ xi ≤ U ′
i,px

total +M (1− γi,p)∀i, p ∈ P (41)

−M (1− γi,p) + L′
i,py

total ≤ yi ≤ U ′
i,py

total +M (1− γi,p)∀i, p ∈ P (42)

Now, to use MRPPA, we first replace the non-linear constraint xi

xTo = yi

yTo with xiy
To = yix

To that both bilinear

terms are substituted by the linear constraints similar to (2)-(7). As a result, by considering p partitions for domain
of xi, yi, x

To and yTo, we need to 2n1p
2 additional binary variables in MRPPA, while this number is n1p in FRPPA.

Therefore, the growth rate of the number of added binary variables in MRPPA is more than FRPPA and can have
a significant impact on running time and solution quality.

One of the real-world problems that contain the structure of constraints (39) is COSP. So, we adopt FRPPA to
this problem and compare its effect with MRPPA.

Adopting FRPPA to solve COSP

The crude oil scheduling problem (COSP) is a well-known optimization problem that is usually formulated as a
BLMIP model and has received great attention from researchers. For example, Lee et al. [25] presented a BLMIP
model for refinery short-term scheduling of crude oil unloading and approximated it as an MILP. Karuppiah et
al. [23] presented a BLMIP model to schedule crude oil movement at the front end of a petroleum refinery and
solved it via an outer approximation algorithm. Mouret et al. [29] integrated refinery planning and crude oil
operations scheduling problems as a BLMIP model and developed a Lagrangian decomposition algorithm to solve
them. Chen et al. [8] addressed the COSP for a refinery that imports various types of crude oil from two terminals
via bidirectional pipelines and presented a hierarchical decomposition method to solve the problem. Evazabadian
et al. [14] developed a fuzzy stochastic model for the short-term COSP under preventive maintenance for charging
tanks. Stanzani et al. [31] addressed the delivery of different types of crude oil from various offshore platforms to
coastal terminals. Castro and Grossmann [5], Cerda et al. [7], and De Assis et al. [11] formulated the COSP as a
BLMIP model and presented a two-step MILPNLP method to solve it.

In this section, after providing a detailed description and assumptions of COSP, the BLMIP model proposed by
De Assis et al. [11] is repeated. Then, the iterative two-step MILP-NLP heuristic algorithm based on the piecewise
McCormick relaxation technique which is presented by De Assis et al. [11] is considered as a base to be compared
by our algorithm. Finally, our FRPPA, addressed in Section 2, is adopted to solve COSP.

3.1. COSP description

Consider a crude oil terminal in which different types of crude oil are delivered from vessels to be stored in tanks
and then transferred to the refinery via a pipeline connecting the terminal to the refinery. The scheduling decisions
in the terminal should be made so that operational restrictions are observed and the total cost is minimized. The
following assumptions are made:

A1. The initial status of the crude oil in the pipeline and tanks is given.

A2. The planning horizon is divided into discrete periods. We refer to the period before the planning horizon as
period 0.

A3. For each period, the volume of different types of crude oil delivered from vessels to the terminal and the
refinery’s demand for each crude oil is known in advance.

A4. The total capacity of each tank is given.

A5. A penalty is imposed on any difference between the crude oils injected into the pipeline and the refinery’s
demand.
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A6. For each period, the maximum number of crude oil types that can be stored in a tank, the lower bound on the
volume delivered from a vessel to a tank, and the upper bound on the total volume injected from tanks to the
pipeline are known in advance.

A7. For maintenance requirements, each tank may be set to be out of service, full, or empty in certain periods.

A8. The number of tanks that can simultaneously feed the pipeline is limited.

A9. Some pairs of crude oils can cause a mixture and are not allowed to be in touch. Thus, they should not be
stored in the same tank at the same time.

A10. In transferring crude oils from tanks to the refinery, the oil quality should be kept. In other words, in each
period the concentration of the crude oil in the tank and the concentration of the one injected into the pipeline
should be the same.

A11. In each period at most one of the inlet and outlet operations can be implemented on a given tank.

A12. When a tank receives crude oil from a vessel, outlet operations must wait at least one period for brine separation.

The main decisions include the determination of the amount of crude oil loaded into the tanks from the vessels
during each period and the determination of the volume of oils injected from tanks to the pipeline to meet the
refinery’s demand. The objective is to minimize the total cost associated with the violation of the refinery’s demand,
the mixture of oils in the tanks, not satisfying the maintenance schedules, and not filling a tank after a vessel-tank
uploading operation.

3.2. COSP formulation

The following notations are used:

Sets, indices, parameters and decisions variables

I = {1, . . . , n} : Set of tanks, indexed by i
J = {1, . . . , J} : Set of crude oil types, indexed by j, j′

T = {1, . . . , T} : Set of periods, indexed by t
dj,t : The volume of crude oil j demanded by the pipeline in period t
d′j,t : The percentage of crude oil j demanded by the pipeline in period t

d′′t : The total volume of crude oil demanded by the pipeline in period t, note that dj,t =
d′
j,t

100 × d′′t
aj,t : The volume of crude oil j arrived at the terminal by vessels in period t
a′t : The total volume of crude oil arrived at the terminal by vessels in period t

(note that a′t =
∑

j∈D aj,t)

CAPi : The total capacity of tank i
ŵi,j,0 : : The initial volume of crude oil j in the tank, i at the beginning of period 0
η̂i,0 : The binary parameter is 1 if crude oil has been discharged from a vessel to tank i in period 0;

0 otherwise
x̂i,j,0 : The volume of crude oil j discharged from a vessel to tank i in period 0
ŷi,j,0 : The volume of crude oil j injected from tank i into the pipeline in period 0
n1 : Maximum number of tanks that can deliver crude oil to the pipeline simultaneously
n2 : Maximum number of crude oil types that can be stored in a tank in each period
V OL : Upper bound on the total volume injected from tanks to the pipeline in each period
V OL : Lower bound on the volume delivered from vessels to a tank in each period
FAIL i,t : The binary parameter is 1 if tank i is unable to deliver crude oil to the pipeline in period t

(for example, due to fixing requirements);0 otherwise
FULLi,t : The binary parameter is 1 if tank i must be at full capacity in period t

(for example, due to fixing requirements); 0 otherwise
EMPTY i,t : The binary parameter is 1 if tank i must be empty in period t

(for example, due to fixing requirements); 0 otherwise
MIXj,j′ : The binary parameter is 1 if crude oils j and j′ are prohibited to be stored in a tank at the

same period; 0 otherwise
c1,j : The cost of the difference between the volume of crude oil j demanded by the refinery and

the one injected into the pipeline
c2 : The cost of the difference between the total volume of crude oil demanded by the refinery

and the volume injected into the pipeline
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c3 : The cost of not satisfying the maintenance requirements for a tank
c4 : The cost of mixing different qualities in a tank
c5 : The cost of not filling a tank after a vessel-tank uploading operation

Decisions variables

xi,j,t : Nonnegative continuous variable indicating the volume of crude oil j delivered
from vessels to tank i in period t

x′
i,t : Nonnegative continuous variable indicating the total volume of crude oil delivered

from vessels to tank i in period t
yi,j,t : Nonnegative continuous variable indicating the volume of crude oil j injected from

tank i into the pipeline in period t
y′i,t : Nonnegative continuous variable indicating the total volume of crude oil injected

from tank i into the pipeline in period t
y′′j,t : Nonnegative continuous variable indicating the total volume of crude oil j injected

from all tanks into the pipeline in period t
y′′′t : Nonnegative continuous variable indicating the total volume of crude oil injected

from all tanks into the pipeline in period t
wi,j,t : Nonnegative continuous variable indicating the volume of crude oil j in the tank, i

at the beginning of period t
w′

i,t : Nonnegative continuous variable indicating the total volume of crude oil in the
tank i at the beginning of period t

∆j,t : Nonnegative continuous variable indicating the difference between the volume of
crude oil j demanded by the refinery and the one injected into the pipeline

∆′
t : Nonnegative continuous variable indicating the difference between the total

volume of crude oil demanded by the refinery and the one injected into the pipeline
δi,t : The binary variable is 1 if tank i is full in period t; 0 otherwise
δ′i,t : The binary variable is 1 if tank i becomes full after a vessel delivers crude oil to

tank i in period t; 0 otherwise
ηi,t : The binary variable is 1 if a vessel delivers crude oil to tank i in period t; 0

otherwise.
βi,t : The binary variable is 1 if crude oil is injected from tank i to the pipeline in period

t; 0 otherwise.
γi,j,t : The binary variable is 1 if tank i contains crude oil j in period t; 0 otherwise.

Figure 1: Illustration of COSP

Based on the above notations, COSP is formulated as the following BLMIP model which is adopted from De
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Assis et al. [11].

(COSP)

min z =
∑
t∈T

∑
j∈I

c1,j∆j,t + c2
∑
t∈T

∆′
t + c3

∑
t∈T

∑
i∈I

EMPTYi,t

∑
j∈J

γi,j,t +
∑
t∈T

∑
i∈I

FULLi,t (1− δi,t)


+ c4

∑
t∈T

∑
i∈I

∑
j∈J

γi,j,t + c5

 ∑
t∈T:t≥2

∑
i∈I

(
ηi,t−1 − δ′i,t

)
+
∑
i∈I

(η̂i,0 − ηi,1)


(43)

s.t. wi,j,1 = ŵi,j,0 + x̂i,j,0 − ŷi,j,0 ∀i ∈ I, j ∈ J (44)

wi,j,t = wi,j,t−1 + xi,j,t−1 − yi,j,t−1 ∀i ∈ I, j ∈ J, t ∈ T : t ≥ 2 (45)

w′
i,t =

∑
j∈J

wi,j,t ∀i ∈ I, t ∈ T (46)

w′
i,t ≤ CAPi ∀i ∈ I, t ∈ T (47)

w′
i,t ≥ CAPiδi,t ∀i ∈ I, t ∈ T (48)∑

j∈J
γi,j,t ≤ n2 ∀i ∈ I, t ∈ T (49)

γi,j,t + γi,j′,t ≤ 1 ∀j, j′ ∈ J : MIXj,j′ = 1,∀i ∈ I, t ∈ T (50)

wi,j,t ≤ CAPi γi,j,t ∀i ∈ I, j ∈ J, t ∈ T (51)

δi,t + ηi,t−1 ≤ 1 + δ′i,t ∀i ∈ I, t ∈ T : t ≥ 2 (52)

δ′i,t ≤ δi,t ∀i ∈ I, t ∈ T : t ≥ 2 (53)

δ′i,t ≤ ηi,t−1 ∀i ∈ I, t ∈ T : t ≥ 2 (54)

δ′i,1 = δi,1η̂i,0 ∀i ∈ I (55)

aj,t =
∑
i∈I

xi,j,t ∀j ∈ J, t ∈ T (56)

x′
i,t =

i∈I∑
j∈J

xi,j,t ∀i ∈ I, t ∈ T (57)

V OLηi,t ≤ x′
i,t ≤ a′tηi,t ∀i ∈ I, t ∈ T (58)

y′i,t =
∑
j∈J

yi,j,t ∀i ∈ I, t ∈ T (59)

y′′j,t =

j∈J∑
i∈I

yi,j,t ∀j ∈ J, t ∈ T (60)

y′′′t =
∑
i∈I

y′i,t ∀t ∈ T (61)∑
i∈I

βi,t ≤ n1 ∀t ∈ T (62)

y′i,t ≤ CAPiβi,t ∀i ∈ I, t ∈ T (63)

y′′′t ≤ V OL ∀t ∈ T (64)

βi,t = 0 ∀i ∈ I, t ∈ T : Faili,t = 1 (65)

ηi,t + βi,t ≤ 1 ∀i ∈ I, t ∈ T (66)

ηi,t + βi,t+1 ≤ 1 ∀i ∈ I, t ∈ T : t ≤ T − 1 (67)

∆j,t ≥ y′′j,t − dj,t ∀j ∈ J, t ∈ T (68)

∆j,t ≥ dj,t − y′′j,t ∀j ∈ J, t ∈ T (69)

∆′
t ≥ y′′′t − d′′t ∀t ∈ T (70)

(71)
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∆′
t ≥ d′′t − y′′′t ∀t ∈ T (72)

yi,j,t × w′
i,t = y′i,t × wi,j,t ∀i ∈ I, j ∈ J, t ∈ T (73)

xi,j,t, yi,j,t, wi,j,t ≥ 0, γi,j,t ∈ {0, 1} ∀i ∈ I, j ∈ J, t ∈ T (74)

x′
i,t, y

′
i,t, w

′
i,t ≥ 0, δi,t, δ

′
i,t, ηi,t, βi,t ∈ {0, 1} ∀i ∈ I, t ∈ T (75)

y′′j,t,∆j,t ≥ 0 ∀j ∈ J, t ∈ T (76)

y′′′t ,∆′
t ≥ 0 ∀t ∈ T (77)

The objective function (43) minimizes the total cost. Constraint sets (44) and (45) determine the volume of
crude oil j in tank i at each period. Constraint set (46) specifies the relation between variables wi,j,t and w′

i,t.
Constraint set (47) indicates the upper bound on the storage capacity. Constraint set (48) together with (47)
implies that if δi,t = 1 then w′

i,t = CAPi. Constraint set (49) restricts the number of different types of crude oil
in tank i in each period. Constraint set (50) prohibits tank i to contain both crude oils j, j′ with MIXj,j′ = 1 at
the same time. Constraint set (51) indicates that if γi,j,t = 0, then wi,j,t = 0. Constraint sets (52)-(54) are linear
representations of the following constraint ensuring that if tank i receives crude oil from vessels in period t− 1 and
it is in full status in time period t, then δ′i,t takes 1.

δ′i,t = δi,tηi,t−1 ∀i ∈ I, t ∈ T : t ≥ 2

Constraint set (55) ensures the same restriction for t = 1. Constraint set (56) guarantees that the total volume
of crude oil j is delivered from the vessels to tanks in period t. Constraint set (57) calculates the total volume of
crude oil delivered to tank i in period t. Constraint set (58) implies lower and upper bound on the total volume of
crude oils delivered to tank i. Constraint set (59) calculates the total volume of crude oil injected from tank i into
the pipeline in time period t. Constraint set (60) calculates the volume of crude oil j injected from all tanks into
the pipeline in period t. Constraint set (61) determines the total volume of crude oils injected into the pipeline in
period t. Constraint set (62) restricts the number of tanks that can deliver crude oil to the pipeline at any period.
Constraint set (63) ensures that if βi,t = 0, then y′i,t = 0. Constraint set (64) limits the total volume of crude oil
injected into the pipeline in period t. Constraint set (65) guarantees that if tank i is out of service, it cannot feed
the pipeline.

Constraint set (66) indicates that inlet and outlet operations in tank i cannot be implemented at the same period.
Constraint set (67) implies that when a tank gets crude oil from vessels, outlet operations must be postponed for
at least one period. Constraint sets (68) and (69) together with minimizing ∆j,t in the objective function ensure
that ∆j,t takes

∣∣y′′j,t − dj,t
∣∣. Constraint sets (70) and (72) together with minimizing ∆′

t in the objective function
ensure that ∆′

t takes |y′′′t − d′′t |. Constraint set (73) is a bilinear restatement of the following constraint indicating
that the concentration of crude oil j in a batch injected from tank i into the pipeline is equal to the concentration
of crude oil j inside the tank.

wi,j,t

w′
i,t

=
yi,j,t
y′i,t

∀i ∈ I, j ∈ J, t ∈ T

Constraint sets (74)-(77) define the type of variables.
The challenging parts of the model COSP are bilinear terms that appear in the constraint set (73) and cause

the problem to be non-convex and difficult to solve. Thus, MINLP solvers would be inefficient to solve moderate
and large-sized instances of this problem in a reasonable amount of time. Therefore, as a solution method, De
Assis et al. [11] utilized the piecewise McCormick relaxation technique, addressed by Castro [3], and the domain
reduction strategy to develop an iterative two-step MILP-NLP heuristic algorithm to solve COSP. We refer to their
algorithm as a piecewise portioning algorithm based on the McCormick relaxation technique (for short MRPPA′

which is MRPPA investigated in Section 2 to solve COSP). In the rest of this section, after a short review on the
MRPPA′, we explain how our new algorithm FRPPA is adopted to solve COSP as an improvement of MRPPA′.

3.3. McCormick relaxation-based method

MRPPA′, proposed by De Assis et al. [11], is a two-step MILP-NLP algorithm based on piecewise McCormick
envelopes. In this algorithm, first, the bilinear terms are relaxed by applying piecewise McCormick envelopes to
get an MILP relaxation model considering the current iteration bound reduction operations. Then, the binary
variables of COSP are fixed at the optimal solution obtained by the MILP to get an NLP model. Based on the
optimal solutions to MILP and NLP models, the domain of variables contained in the bilinear terms is updated and
reduced for the next iteration. This process is repeated and the algorithm terminates when the difference between
the objective function value of the recent MILP and the best upper bound found so far for the original problem
falls into a given tolerance.
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Let y
i,j,t

, y′
i,t
, wi,j,t, and w′

i,t be lower bounds of variables yi,j,t, y
′
i,t, wi,j,t, and w′

i,t, respectively. Additionally,

consider ȳi,j,t, ȳ
′
i,t, w̄i,j,t, and w̄′

i,t as upper bounds of these variables, correspondingly. The bounds are initialized
as follows:[

y
i,j,t

, ȳi,j,t

]
= [0, V OL],

[
y′
i,t
, ȳ′i,t

]
= [0, V OL],

[
wi,j,t, w̄i,j,t

]
= [0, CAPi] ,

[
w′

i,t, w̄
′
i,t

]
= [0, CAPi] (78)

The above intervals are partitioned into some sub-intervals with equal lengths and the set of sub-intervals
associated with yi,j,t, y

′
i,t, wi,j,t, and w′

i,t are denoted by L = {1, . . . , L} (indexed by ℓ), O = {1, . . . , O} (indexed by

o), R = {1, . . . , R} (indexed by r) and S = {1, . . . , S} (indexed by s), respectively, where the ℓth, oth, rth, and sth

sub-intervals associated with variables yi,j,t,
[
SIw′

i,t,s, SIw
′
i,t,s

]
, correspondingly, and we have:

[
SIy

i,j,t,ℓ
,SIyi,j,t,ℓ

]
=

[
y
i,j,t

+ (ℓ− 1)×
ȳi,j,t − y

i,j,t

L
, y

i,j,t
+ ℓ×

ȳi,j,t − y
i,j,t

L

]
ℓ ∈ L (79)

[
SIy′

i,t,o
, SIy

′
i,t,o

]
=

[
y′
i,t

+ (o− 1)×
ȳ′i,t − y′

i,t

o
, y′

i,t
+ o×

ȳ′i,t − y′
i,t

o

]
o ∈ O (80)

[
SIwi,j,t,r,SIwi,j,t,r

]
=

[
wi,j,t + (r − 1)×

w̄i,j,t − wi,j,t

R
,wi,j,t + r ×

w̄i,j,t − wi,j,t

R

]
r ∈ R (81)[

SIw′
i,t,s, SIw

′
i,t,s

]
=

[
w′

i,t + (s− 1)×
w̄′

i,t − w′
i,t

s
, w′

i,t + s×
w̄′

i,t − w′
i,t

s

]
s ∈ S (82)

Then, the bilinear terms in the constraint set (73) (i.e., yi,j,t×w′
i,t and y′i,t×wi,j,t) are replaced by new nonnegative

continuous variables vLHS
i,j,t and vRHS

i,j,t , respectively, and the following MILP is constructed by using the piecewise
McCormick envelopes. We refer to this model as a piecewise partitioning model based on McCormick relaxation
(MRPPM′ for short), in which αi,j,t,ℓ,s is a binary variable that is 1 if the McCormick envelope is associated with
the ℓth sub-interval of yi,j,t and the sth sub-interval of w′

i,t is selected. Similarly, θi,j,t,o,r is a binary variable that is 1

if the McCormick envelope is associated with the oth sub-interval of y′i,t and the rth sub-interval of wi,j,t is selected.
Additionally, yi,j,t,ℓ,s is a nonnegative continuous variable that is equal to yi,j,t if αi,j,t,ℓ,s = 1; 0 otherwise. Similarly,
w′

i,j,t,ℓ,s is a nonnegative continuous variable that is equal to w′
i,t if αi,j,t,ℓ,s = 1; 0 otherwise. Furthermore, y′i,j,t,o,r

is a nonnegative continuous variable that is equal to y′i,t if θi,j,t,o,r = 1; 0 otherwise. In the same way, wi,j,t,o,r, is a
nonnegative continuous variable that is equal to wi,j,t if θi,j,t,o,r = 1; 0 otherwise.

MRPPM′.

min z =
∑
t∈T

∑
j∈J

c1,j∆j,t + c2
∑
t∈T

∆′
t

+ c3

∑
t∈T

∑
i∈I

EMPTYi,t

∑
j∈J

γi,j,t +
∑
t∈T

∑
i∈I

FULLi,t (1− δi,t)


+ c4

∑
t∈T

∑
i∈I

∑
j∈I

γi,j,t + c5

 ∑
t∈T:t≥2

∑
i∈I

(
ηi,t−1 − δ′i,t

)
+
∑
i∈I

(η̂i,0 − ηi,1)


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vLHS
i,j,t = vRHS

i,j,t ∀i ∈ I, j ∈ J, t ∈ T (83)

vLHS
i,j,t ≥

∑
ℓ∈L

∑
s∈S

(
SIw′

i,t,syi,j,t,ℓ,s + SIy
i,j,t,ℓ

w′
i,j,t,ℓ,s − SIw′

i,t,sSIyi,j,t,ℓαi,j,t,ℓ,s

)
∀i ∈ I, j ∈ J, t ∈ T

(84)

vLHS
i,j,t ≥

∑
ℓ∈L

∑
s∈S

(
SIw′

i,t,syi,j,t,ℓ,s + SIyi,j,t,ℓw
′
i,j,t,ℓ,s − SIw′

i,t,sSIyi,j,t,ℓαi,j,t,ℓ,s

)
∀i ∈ I, j ∈ J, t ∈ T

(85)

vLHS
i,j,t ≤

∑
ℓ∈L

∑
s∈S

(
SIw′

i,t,si,j,t,ℓ,s
+ SIyi,j,t,ℓw

′
i,j,t,ℓ,s − SIw′

i,t,sSIyi,j,t,ℓαi,j,t,ℓ,s

)
∀i ∈ I, j ∈ J, t ∈ T

(86)

vLHS
i,j,t ≤

∑
ℓ∈L

∑
s∈S

(
SIw′

i,t,syi,j,t,ℓ,s + SIy
i,j,t,ℓ

w′
i,j,t,ℓ,s − SIw′

i,t,sSIyi,j,t,ℓαi,j,t,ℓ,s

)
∀i ∈ I, j ∈ J, t ∈ T

(87)

vRHS
i,j,t ≥

∑
o∈O

∑
r∈R

(
SIwi,j,t,ry

′
i,j,t,o,r + SIy′

i,t,o
wi,j,t,o,r − SIwi,j,t,rSIy

′
i,t,o

θi,j,t,o,r

)
∀i ∈ I, j ∈ J, t ∈ T

(88)

vRHS
i,j,t ≥

∑
o∈O

∑
r∈R

(
SIwi,j,t,ry

′
i,j,t,o,r + SIy′i,t,owi,j,t,o,r − SIwi,j,t,rSIy′i,t,oθi,j,t,o,r

)
∀i ∈ I, j ∈ J, t ∈ T

(89)

vRHS
i,j,t ≤

∑
o∈C

∑
r∈R

(
SIwi,j,t,r

′
i,j,t,o,r

+ SIy′i,t,owi,j,t,o,r − SIwi,j,t,rSIy
′
i,t,oθi,j,t,o,r

)
∀i ∈ I, j ∈ J, t ∈ T

(90)

vRHS
i,j,t ≤

∑
o∈C

∑
r∈R

(
SIwi,j,t,r

′
i,j,t,o,r + SIy′

i,t,o
wi,j,t,o,r − SIwi,j,t,rSIy

′
i,t,o

θi,j,t,o,r

)
∀i ∈ I, j ∈ J, t ∈ T

(91)

yi,j,t =
∑
ℓ∈L

∑
s∈S

yi,j,t,ℓ,s ∀i ∈ I, j ∈ J, t ∈ T (92)

y′i,t =
∑
o∈C

∑
r∈R

y′i,j,t,o,r ∀i ∈ I, j ∈ I, t ∈ T (93)

wi,j,t =
∑
o∈O

∑
r∈R

wi,j,t,o,r ∀i ∈ I, j ∈ J, t ∈ T (94)

w′
i,t =

o∈Q∑
ℓ∈L

R∈R∑
s∈S

w′
i,j,t,ℓ,s ∀i ∈ I, j ∈ J, t ∈ T (95)

SIy
i,j,t,ℓi,j,t,ℓ,s

≤ yi,j,t,ℓ,s ≤ SIyi,j,t,ℓαi,j,t,ℓ,s ∀i ∈ I, j ∈ J, t ∈ T, ℓ ∈ L, s ∈ S (96)

SIy′
i,t,o

θi,j,t,o,r ≤ y′i,j,t,o,r ≤ SIy′i,t,oθi,j,t,o,r∀i ∈ I, j ∈ J, t ∈ T, o ∈ O, r ∈ R (97)

SIwi,j,t,ri,j,t,o,r
≤ wi,j,t,o,r ≤ SIwi,j,t,rθi,j,t,o,r∀i ∈ I, j ∈ J, t ∈ T, o ∈ O, r ∈ R (98)

SIw′
i,j,t,ri,j,t,o,r

≤ wi,j,t,o,r ≤ SIw′
i,j,t,rθi,j,t,o,r∀i ∈ I, j ∈ J, t ∈ T, o ∈ O, r ∈ R (99)∑

ℓ∈L

∑
s∈S

αi,j,t,ℓ,s = 1 ∀i ∈ I, j ∈ J, t ∈ T (100)∑
o∈C

∑
r∈R

θi,j,t,o,r = 1 ∀i ∈ I, j ∈ J, t ∈ T (101)

αi,j,t,ℓ,s ∈ {0, 1}, yi,j,t,ℓ,s ≥ 0, w′
i,j,t,ℓ,s ≥ 0∀i ∈ I, j ∈ J, t ∈ T, ℓ ∈ L, s ∈ S (102)

θi,j,t,o,r ∈ {0, 1}, wi,j,t,o,r ≥ 0, yi,j,t,o,r ≥ 0∀i ∈ I, j ∈ J, t ∈ T, o ∈ O, r ∈ R (103)

vLHS
i,j,t , vRHS

i,j,t ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T (104)

The general framework of MRPPA′ is as follows:
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MRPPA′

Step 0: Let k be a counter, ε > 0 be a given accuracy, and Ctrl be a binary parameter that is 1 if
the stopping criterion is observed, 0 otherwise. Suppose that y

i,j,t
, y′

i,t
, wi,j,t, and w′

i,t are lower bounds of

variables yi,j,t, y
′
i,t, wi,j,t, and w′

i,t, respectively. Additionally, consider ȳi,j,t, ȳ′i,t, w̄i,j,t, and w̄′
i,t as upper

bounds of these variables, correspondingly. Initialize the bound based on (78). Furthermore, determine the
value of p arameters L,O,R, and S as the number of sub-intervals associated with variables yi,j,t, y

′
i,t, wi,j,t,

and w′
i,t, correspondingly, and construct the sub-intervals based on (79)-(82). Assume that z

(k)
UB denotes the

objective value of the best solution found until iteration k, and consider z
(k)
LB as the objective function value

of MRPPM′ solved in iteration k. Initialize k := 1, and Ctrl := 0.

Step 1: While Ctrl = 0 do

Step 1-1: Solve the model MRPPM’, and denote its optimal objective function value by z
(k)
LB .

Step 1-2: Fix the binary variables γi,j,t, δi,t, δ
′
i,t, ηi,t, and βi,t of the model COSP to the optimal solution

of MRPPM′ obtained in Step 1-1 to get an NLP model. Denote the optimal objective function value of

the NLP model by z∗NLP , and set z
(k)
UB = min

{
z∗NLP , z

(k−1)
UB

}
.

Step 1-3: For i ∈ I, j ∈ J, and t ∈ T do

Step 1-3-1: Let ℓ0 and r0 be the indices of the sub-intervals containing the value of yi,j,t and wi,j,t

in the optimal solution to MRPPM′ solved in Step 1-1. Additionally, let ℓ1 and r1 be the indices of
the sub-intervals containing the value of yi,j,t and wi,j,t in the optimal solution to the NLP model
introduced in Step 1-2. Reduce the length of the interval associated with variables yi,j,t and wi,j,t

as follows:

y
i,j,t

= min
{
SIy

i,j,t,ℓ0
, SIy

i,j,t,ℓ1

}
, ȳi,j,t = max

{
SIyi,j,t,ℓ0 , SIyi,j,t,ℓ1

}
wi,j,t = min

{
SIwi,j,t,r0 , SIwi,j,t,r1

}
, w̄i,j,t = max

{
SIwi,j,t,r0 , SIwi,j,t,r1

}
Step 1-4: For i ∈ I, and t ∈ T do

Step 1-4-1: Let o0 and s0 be the indices of the sub-intervals containing the value of y′i,t and w′
i,t

in the optimal solution to MRPPM′ solved in Step 1-1. Additionally, let o1 and s1 be the indices
of the sub-intervals containing the value of y′i,t and w′

i,t in the optimal solution to the NLP model
introduced in Step 1-2. Reduce the length of the interval associated with variables y′i,t and w′

i,t as
follows: [

y′
i,t
, ȳ′i,t

]
=
[
min

{
SIy′

i,t,o0
, SIy′

i,t,o1

}
,max

{
SIyi,t,o′0 , SIy

′
i,t,o1

}]
[
w′

i,t, w̄
′
i,t

]
=
[
min

{
SIwi,t,s′0

, SIwi,t,s′1

}
,max

{
SIwi,t,s′0

, SIw
′
i,t,s1

}]
Step 1-5: If z

(k)
UB − z

(k)
LB < ε, set Ctrl := 1, else, set k := k + 1, and update the subintervals based on

(79)-(82) and reduced bounds.

Step 2: Return the solution associated with z
(k)
UB as the best solution found by the algorithm.

3.4. Adopting FRPPA for COSP

To adopt FRPPA for COSP, instead of working with constraint (73), we use its fractional representation as follows,
and approximate each nonlinear fraction linearly.

wi,j,t

w′
i,t

=
yi,j,t
y′i,t

∀i ∈ I, j ∈ J, t ∈ T (105)

The above constraint is stated for every triple (i, j, t), and both sides take value in the same interval which is
denoted by

[
L′
i,j,t, U

′
i,j,t

]
. This interval is initialized at [0, 1], and refined gradually.

For every triple (i, j, t), we partition
[
L′
i,j,t, U

′
i,j,t

]
into some sub-intervals with equal lengths, and denote the set

of sub-intervals by P = {1, . . . , P} (indexed by p), where the pth sub-interval is associated with triple (i, j, t) is as
follows:

[
L′
i,j,t,p, U

′
i,j,t,p

]
=

[
L′
i,j,t + (p− 1)×

(
U ′
i,j,t − L′

i,j,t

)
P

,L′
i,j,t + p×

(
U ′
i,j,t − L′

i,j,t

)
P

]
, p ∈ P (106)
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Therefore, we have: ∨
p∈P

[(
L′
i,j,t,p ≤ wi,j,t

w′
i,t

≤ U ′
i,j,t,p

)
∧

(
L′
i,j,t,p ≤ yi,j,t

y′i,t
≤ U ′

i,j,t,p

)]
Thus, we provide relaxation of the original model by substituting the non-linear constraint (73) by the following
linear constraints:

−M (1− γi,j,t,p) + L′
i,j,t,pw

′
i,t ≤ wi,j,t ≤ U ′

i,j,t,pw
′
i,t +M (1− γi,j,t,p) ∀i ∈ I, j ∈ J, t ∈ T, p ∈ P (107)

−M (1− γi,j,t,p) + L′
i,j,t,py

′
i,t ≤ yi,j,t ≤ U ′

i,j,t,py
′
i,t +M (1− γi,j,t,p) ∀i ∈ I, j ∈ J, t ∈ T, p ∈ P (108)∑

p∈P
γi,j,t,p = 1 ∀i ∈ I, j ∈ J, t ∈ T (109)

γi,j,t,p ∈ {0, 1} ∀i ∈ I, j ∈ J, t ∈ T, p ∈ P (110)

Where γi,j,t,p is a binary variable that is 1 if the pth sub-interval is associated with triple (i, j, t) is selected; 0
otherwise. Additionally, M is a sufficiently large positive number. We refer to the model obtained by replacing
nonlinear constraints (105) with linear constraints (107)-(110) as FRPPM′.

Based on the above description, the general framework of the FRPPA adopted for COSP (which we refer to as
FRPPA′) is as follows:

FRPPA

Step 0: Let k be a counter, ε > 0 be a given accuracy, and Ctrl be a binary parameter that is 1 if the
stopping criterion is observed, 0 otherwise. For every triple (i, j, t), let

[
L′
i,j,t, U

′
i,j,t

]
be the interval associated

with the fractions in (105), and initialize it at [0, 1]. Determine the value of parameter P as the number

of sub-intervals associated with fractions, and construct the subintervals based on (106). Assume that z
(k)
UB

denotes the objective value of the best feasible solution to COSP found until iteration k, and consider z
(k)
LB as

the objective function value of FRPPM ′ solved in iteration k. Initialize k := 1, and Ctrl := 0.

Step 1: While Ctrl = 0 do

Step 1-1: Solve the model FRPPM′, and denote its optimal objective function value by z
(k)
LB .

Step 1-2: Fix the vector of binary variables of the model COSP to the optimal solution of FRPPM′ to
get an NLP model. Denote the optimal objective function value of the NLP model by z∗NLP , and set

z
(k)
UB = min

{
z∗NLP , z

(k−1)
UB

}
.

Step 1-3: For i ∈ I, j ∈ J, t ∈ T do

Step 1-3-1: Let p0 be the index of the sub-interval containing the value of fractions
wi,j,t

w′
i,t

and
yi,j,t

y′
i,t

based on the optimal solution to FRPPM’. Additionally, let p1 be the index of the sub-interval

containing the value of fractions
wi,j,t

w′
i,t

and
yi,j,t

y′
i,t

in the optimal solution to the NLP model introduced

in Step 1-2. Reduce the interval length associated with the triple (i, j, t) as follows:

L′
i,j,t = min

{
L′
i,j,t,p0

, L′
i,j,t,p1

}
, U ′

i,j,t = max
{
U ′
i,j,t,p0

, U ′
i,j,t,p1

}
Step 1-4: If z

(k)
UB − z

(k)
LB < ε, set Ctrl := 1; else, set k := k + 1, and update the subintervals based on

(2) and reduced bound.

Step 2: Return the solution associated with z
(k)
UB as the best feasible solution found by the algorithm.

Remark 3.1. Consider Step 1-3-1 of the FRPPA′, and let (i0, j0, t0) be a given triple. If in the optimal so-
lution to FRPPM′ or in the optimal solution to the NLP model solved in Step 1-3-1, we have w′

i0,t0
= 0 or

y′i0,t0 = 0, then it is better to update
[
L′
i0,j0,t0

, U ′
i0,j0,t0

]
to [0, 1]. To justify the reason, assume that in the optimal

solution to FRPPM ′ or in the optimal solution to the NLP model solved in Step 1-3-1, we have w′
i0,t0

= 0;
then based on the constraint (46), we have wi0,j0,t0 = 0. Thus, for these values, constraint (73) is satisfied
no matter the value of the variables y′i0,t0 and yi0,j0,t0 is. In this situation, updating

[
L′
i0,j0,t0

, U ′
i0,j0,t0

]
to[

min
{
L′
i0,j0,t0,p0

, L′
i0,j0,t0,p1

}
,max

{
U ′
i0,j0,t0,p0

, U ′
i0,j0,t0,p1

}]
may cause unnecessary restriction on the value of vari-

ables y′i0,t0 and yi0,j0,t0 , and losing some good solutions. Therefore, in this case, it is better to update
[
L′
i0,j0,t0

, U ′
i0,j0,t0

]
to [0, 1]. Our preliminary experiments indicate that this issue may improve the quality of the solutions obtained by
the FRPPA′.
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4. Computational results

In this section, we investigate the efficiency of the proposed FRPPA′ in solving COSP and comparing the results
with MRPPA′ and the direct resolution (by BARON solver) in terms of solution quality and time. Experiments
are carried out on a PC running Windows 7 operating system with a CoreTM i3, 2.1 GHz processor, and 4.0 GB
RAM. Algorithms are coded in the AIMMS mathematical modeling language [2], and all MINLP, MILP, and NLP
models are solved using BARON, CPLEX, and CONOPT solvers, included in the AIMMS software, respectively.
All solvers are used in their default settings with the exception that constraints (100), (101), and (109) are treated
as a special ordered set of type 1 (SOS1).

Test instances are generated based on De Assis et al. [11], and categorized based on the cost level (i.e., low
and high) and the number of periods in the planning horizon (T = 18, 22, 26, 30). Therefore, eight instances are
generated and the name associated with each instance gives brief information about its characteristics. Indeed, the
letter ‘ T ’ and its accompanying number indicate the number of periods in the planning horizon, and the last letter
which is either ‘ H ’ or ‘ L ’, indicates the cost level (i.e., high or low). For example, the name ‘T18H’ implies an
instance with 18 periods and a high-cost level. We define the following notations which are used to describe the
columns of tables:

zBARON : Objective function value of the best solution obtained by direct resolution of
COSP by BARON in a given time limit

zMRPPA′ : Objective function value of the best solution obtained by MRPPA′

ZFRPPA′ : Objective function value of the best solution obtained by FRPPA′

RTBARON : Running time of direct resolution of COSP by BARON (in second)
RTMRPPA′ : Running time of MRPPA′ (in second)
RTFRPPA′ : Running time of FRPPA′ (in second)
Iter : Iteration counter for MRPPA′ and FRPPA′

GMRPPA′ : Relative gain of MRPPA′ over BARON, calculated as zBARON−zMRPPA′
zMRPPA′

× 100

GFRPPA′ : Relative gain of FRPPA′ over BARON, calculated as zBARON−zFRPPA′
zFRPPA′

× 100

For instance, T18L, T18H, T22L, T22H, T26L, and T26H, we set the BARON to solve COSP within a time limit
of 3600 seconds; however, for instances T30L, and T30H, this time limit was set at 14000 seconds. Additionally,
for instances T18L, T18H, T22L, T22H, T26L, and T26H, we set MRPPA′ and FRPPA′ to run within a time limit
of 3600 seconds; however, for instance, T30L, and T30H, a time limit of 2000 seconds is set on each iteration of
MRPPA′ and FRPPA′.

Table 3 summarizes the results of the direct resolution of COSP by BARON in a time limit of 3600 seconds
for instances T18L, T18H, T22L, T22H, T26L, and T26H. The columns labeled by “Total Var” and “Total Const”
represent the total number of variables and constraints in COSP, respectively, and the columns labeled by “BVar”
and “NLConst” refer to the number of binary variables and constraints of COSP, correspondingly. Additionally,
in this table, the column “GAP” indicates the relative difference, between the objective function value of the best
solution found within the given time limit and the lower bound provided by BARON.

Table 3: The BARON’s solution for instances T18, T22, and T26 in a time limit of 3600s

Size of COSP Cost level = Low Cost level = High

T

Total

Var

Total

Const
BVar NLConst zBARON GAP RTBARON zBARON GAP RTBARON

18 3618 7374 1134 630 40.057 0% 42 70.066 0% 333

22 4422 9014 1386 770 47.711 19% > 3600 85.314 22% > 3600

26 5226 10654 1638 910 55.831 35% > 3600 158.171 126% > 3600

The results of algorithms MRPPA′ and FRPPA′ for instance T18L, T18H, T22L, T22H, T26L, and T26H are
provided in Table 4 and Table 5, respectively. Each row of these tables refers to a specific setting for the number
of sub-intervals, and the term “NG” inserted in some rows of columns GMRPPA′ or GFRPPA′ indicates that the
objective function value of the solution obtained by the corresponding algorithm is worse than the best solution
found by BARON, and hence, no gain is achieved. The average of gains is calculated for successful instances in the
last row of tables and “NG” is not considered. Also, the term “NA” inserted in some rows of columns ZMRPPA′

indicates that MRPPA′ could not find a feasible solution.
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Table 4: The MRPPA′ solutions for instances T18, T22, and T26

T No. sub-intervals Cost level = Low Cost level = High

L-O-R-S zMRPPA′ RTMRPPA′ Iter GMRPPA′ zMRPPA′ RTMRPPA′ Iter GMRPPA′

18

2− 1− 2− 1 40.059 40 4 NG 160.068 81 23 NG

1− 2− 1− 2 48.945 199 24 NG 158.954 108 9 NG

2− 2− 2− 2 40.059 145 2 NG 158.954 226 21 NG

3− 2− 3− 2 40.057 1960 1 Optimal 70.066 602 2 Optimal

2− 3− 2− 3 40.057 955 1 Optimal 70.066 988 1 Optimal

3-3-3-3 40.057 2354 1 Optimal 70.066 1636 2 Optimal

Ave. 41.539 942 5.5 0 114.696 607 9.7 0

22

2− 1− 2− 1 45.712 102 6 4% 83.310 155 4 2%

1− 2− 1− 2 45.712 353 14 4% 78.302 277 8 9%

2− 2− 2− 2 45.712 1241 3 4% 132.700 683 5 NG

3− 2− 3− 2 46.172 > 3600 1 3% 481.371 > 3600 2 NG

2− 3− 2− 3 46.172 1956 3 3% 249.572 2358 5 NG

3-3-3-3 65.132 > 3600 1 NG 960.086 > 3600 1 NG

Ave. 49.102 > 1809 4.7 3.6% 330.890 > 1779 4.2 5.5%

26

2− 1− 2− 1 NA 663 1 NG 162.150 296 8 NG

1− 2− 1− 2 NA 759 1 NG 83.328 2192 10 90%

2− 2− 2− 2 81.960 2865 21 NG 85.383 3257 3 85%

3− 2− 3− 2 78.168 > 3600 1 NG 108.935 > 3600 1 45%

2− 3− 2− 3 85.601 > 3600 1 NG 223.515 > 3600 1 NG

3-3-3-3 96.110 > 3600 1 NG NA > 3600 1 NG

Ave. 85.460 > 3416 4.3 - 132.662 > 2758 4 73.3%

Table 5: The FRPPA′ solutions for instances T18, T22, and T26

T No. sub-intervals Cost level = Low Cost level = High

P zFRPPA
′ RTFRPPA′ Iter GFRPPA′ zFRPPA RTFRPPA′ Iter GFRPPA′

18

2 40.057 47 5 Optimal 70.066 42 5 Optimal

3 40.057 43 3 Optimal 70.066 65 3 Optimal

4 40.057 179 3 Optimal 70.066 56 3 Optimal

5 40.057 81 2 Optimal 70.066 64 2 Optimal

6 40.057 57 1 Optimal 70.066 97 1 Optimal

Ave. 40.057 81 2.8 0 70.066 65 2.8 0

22

2 45.712 173 8 4% 83.312 403 9 2%

3 46.172 299 4 4% 75.087 345 2 14%

4 45.712 319 4 4% 131.332 1338 4 NG

5 45.712 685 2 4% 130.395 813 4 NG

6 45.712 2162 3 4% 72.586 2442 2 18%

Ave. 45.804 728 4.2 4% 98.542 1068 4.2 11.3%

26

2 61.143 732 12 NG 137.388 1097 5 15%

3 48.226 2227 4 16% 80.935 > 3600 2 95%

4 48.226 1565 4 16% 80.935 > 3600 2 95%

5 48.226 2195 3 16% 75.104 3383 3 111%

6 48.226 2439 3 16% 75.104 > 3600 2 111%

Ave. 50.809 1832 5.2 16% 89.893 > 3056 2.8 85.4%
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By comparing the column GMRPPA′ of Table 4 and the column GFRPPA′ of Table 5, it is observed that MRPPA′

has a gain over BARON in 28% of instances whereas FRPPA′ has a gain over BARON in 47% of instances.
Moreover, the average gains obtained by MRPPA′ and FRPPA ′ are 15.6% and 20.2%, respectively. These results
confirm the superiority of the FRPPA ′ over MRPPA′ in terms of solution quality. Additionally, by comparing the
column RTMRPPA′ of Table 4 and the column R TFRPPA′ of Table, it can be concluded that the running time of
FRPPA′ is less than that of MRPPA′.

As can be observed in Tables 4 and 5, the execution time of the algorithm significantly increases with an
increasing number of sub-intervals. Due to the imposed time limit of 3600 seconds for execution time of each
algorithm, the number of iterations is reduced, resulting in a failure to obtain a high-quality feasible solution. If
this execution time is not restricted, it is expected to obtain a better-quality solution.

Table 6 summarizes the results of the direct resolution of COSP by BARON in a time limit of 14000 seconds for
instances T30L and T30H. The columns of this table have the same definition as in Table 3. The results of algorithms
MRPPA′ and FRPPA′ for instances T30L and T30H are provided in Table 7 and Table 8, respectively. As can
be seen in these tables, MRPPA′ and FRPPA′ have a gain over BARON in 50% and 100% of implementations.
Additionally, the average gains achieved by MRPPA′ and FRPPA′ are 14.5% and 47.7% on T30L, and 6% and 41%
on T30H, respectively. Thus, by comparing the columns GMRPPA′ and GFRPPA′ as well as the columns RTMRPPA′

and RTFRPPA′ , it can be concluded that FRPPA′ outperforms MRPPA′ in terms of solution quality and time.

Table 6: The BARON’s solutions in a time limit of 14000s

Size of COSP Cost level = Low Cost level = High

T
Total

Var

Total

Const
BVar NLConst zBARON GAP RTBARON zBARON GAP RTBARON

30 6030 12294 1890 1050 113.461 71% 14000 425.895 415% 14000

Table 7: The MRPPA′ for instance T30

No. sub-intervals Cost level = Low Cost level = High

L-O-R-S zMRPPA RTMRPPA Iter GMRPPA′ zMRPPA′ RTMRPPA It′ GMRPPA′

2− 1− 2− 1 NA 4000 2 NG 573.615 14000 7 NG

1− 2− 1− 2 108.615 12000 6 4% 401.513 14000 7 6%

2− 2− 2− 2 90.908 14000 7 25% 487.616 14000 7 NG

Ave. - 10000 5 14.5% - 14000 7 6%

Table 8: The FRPPA′ solution for instances T30

No. sub-intervals Cost level = Low Cost level = High

P zFRPPA′ RTFRPPA′ Iter GFRPPA′ zFRPPA′ RTFRPPA It′ GFRPPA′

2 66.625 10000 5 70% 324.839 10000 5 31%

3 67.713 8000 4 68% 274.645 12000 6 55%

4 108.034 4000 2 5% 310.113 14000 7 37%

Ave. - 7333 4 47.7% - 12000 6 41%

Fig. 2 and Fig. 3 indicate how the best objective function value is improved during the iterations of algorithms
MRPPA′ and FRPPA′, respectively for instance T30L. Fig. 4 and Fig. 5 represent the same concept for instance
T30H. As can be seen in Fig. 2, MRPPA′ achieves a gain over BARON for two settings of partitions in the first
6000 seconds of the running time; however, as can be seen in Fig. 3, FRPPA′ achieves a gain over BARON for
three settings of partitions in the first 4000 seconds of the running time. Moreover, the best solution of FRPPA′

over different settings is found in at most 10000 seconds and then, no further improvement is observed. The same
results can be inferred from Fig. 4 and Fig. 5.
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Figure 2: Improvement of the objective value of MRPPA′ for T30L

Figure 3: Improvement of the objective value of FRPPA′ for T30L

Figure 4: Improvement of the objective value of MRPPMRPP .

Figure 5: Improvement of the objective function value of FRPPA′ for T30H

5. Conclusion

In this paper, FRPPA′, as a novel two-step MILP-NLP algorithm based on piecewise partitioning and fractional
relaxation technique was presented. The proposed algorithm was tested on different instances of COSP taken from
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the literature. The results confirmed the efficiency of the FRPPA′ over MRPPA′ and direct resolution (by BARON
in a given time limit) from both solution quality and running time. In the investigated case study, MRPPA′ had
an improvement over BARON in 31% of instances and the average gain was about 15%, whereas FRPPA′ had an
improvement over BARON in 64% of instances and the average gain was about 25%. Additionally, the running
time of the proposed algorithm is not sensitive to the problem size and shows a linear behavior.

Utilizing FRPPA′ to solve other nonlinear optimization problems, especially those containing fractional terms
is suggested as future work. Furthermore, the extension of the COSP to deal with uncertainty in refinery demand
or maintenance requirements may lead to a realistic but more complex model, and solving it by an efficient method
would be a valuable research direction.
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