

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 6(3) (2025) 279-287 https://doi.org/10.22060/AJMC.2024.22985.1211

Original Article

Left ϕ -biflatness and ϕ -biprojectivity of certain Banach algebras with applications

Solaleh Salimi^a, Amin Mahmoodi^a, Mehdi Rostami^b, Amir Sahami^{*c}

^aDepartment of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

^bDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran ^cDepartment of Mathematics, Faculty of Basic Sciences, P.O. Box 69315-516, Ilam University, Ilam, Iran

ABSTRACT: This paper continues the investigation initially begun in [24]. We show that left ϕ -biflatness and left ϕ -biprojectivity are closely related to the notions of left ϕ -amenability and ϕ -inner amenability. We characterize left ϕ -biprojectivity and left ϕ -biflatness of certain semigroup algebras and some algebras related to a locally compact group. We discuss non left ϕ -biflatness of some specified triangular Banach algebras.

Review History:

Received:08 February 2024 Revised:14 April 2024 Accepted:14 April 2024 Available Online:01 July 2025

Keywords:

 ϕ -biflatness ϕ -biprojectivity ϕ -inner amenability

MSC (2020):

43A07; 46M10; 43A20

1. Introduction and Preliminaries

Biprojectivity and biflatness are two important homological notions that arise naturally in Helemskii's works in the 1980s, interested readers are referred to his comprehensive book [7]. We begin with recalling their definitions. Given a Banach algebra \mathcal{A} , we let $\pi_{\mathcal{A}} : \mathcal{A} \widehat{\otimes} \mathcal{A} \to \mathcal{A}$ denote the *multiplication operator*, i.e., $\pi_{\mathcal{A}}(a \otimes b) = ab$ for $a, b \in \mathcal{A}$. It is known that the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ becomes a Banach \mathcal{A} -bimodule in a canonical way, turning $\pi_{\mathcal{A}}$ into a \mathcal{A} -bimodule morphism. A Banach algebra \mathcal{A} is *biprojective* if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \to \mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho(a) = a$. Further, \mathcal{A} is *biflat* if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \to (\mathcal{A} \widehat{\otimes} \mathcal{A})^{**}$ such that $\pi_{\mathcal{A}}^* \circ \rho(a) = a$ for $a \in \mathcal{A}$. These concepts are closely related to the notion of amenability introduced by Johnson [11, 12].

The notion of ϕ -amenability was introduced in [13] and independently in [16]. Let \mathcal{A} be a Banach algebra. We write $\Delta(\mathcal{A})$ for the set of all nonzero multiplicative linear functionals on \mathcal{A} . We call \mathcal{A} left ϕ -amenable if \mathcal{A} possess a ϕ -mean, i.e., a bounded linear functional m on \mathcal{A}^* satisfying $m(\phi) = 1$ and $m(f \cdot a) = \phi(a)m(f)$ for all $a \in \mathcal{A}$

 $2783-2287/\textcircled{C} \ 2025 \ The \ Author(s). \ Published \ by \ Amirkabir \ University \ of \ Technology \ Press. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)$

^{*}Corresponding author.

 $[\]label{eq:entropy} \textit{E-mail addresses: s.salimi28@yahoo.com, a_mahmoodi@iauctb.ac.ir, mross@aut.ac.ir, a.sahami@ilam.ac.ir} is a salami@ilam.ac.ir addresses: s.salimi28@yahoo.com, a_mahmoodi@iauctb.ac.ir, addresses: s.salimi28@yahoo.com, a_mahmoodi@iauctb.ac.ir, addresses: s.salimi28@yahoo.com, addre$

and $f \in \mathcal{A}^*$. Here, we remind that \mathcal{A} is ϕ -inner amenable if and only if there exists a bounded net (a_α) in \mathcal{A} such that $aa_\alpha - a_\alpha a \to 0$ and $\phi(a_\alpha) = 1$ for all α and $a \in \mathcal{A}$ [10, Theorem 2.1].

The notions of left (right) ϕ -biprojectivity and left (right) ϕ -biflatness, motivated by above considerations, were introduced in [24].

Definition 1.1 ([24]). Let \mathcal{A} be a Banach algebra, and let $\phi \in \Delta(\mathcal{A})$. Then

- (i) \mathcal{A} is left ϕ -biprojective if there exists a bounded linear map $\rho: \mathcal{A} \to \mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b)$, and $\phi \circ \pi_{\mathcal{A}} \circ \rho(a) = \phi(a)$ for all $a, b \in \mathcal{A}$;
- (ii) \mathcal{A} is left ϕ -biflat if there exists a bounded linear map $\rho: \mathcal{A} \to (\mathcal{A}\widehat{\otimes}\mathcal{A})^{**}$ such that $\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b)$, and $\widetilde{\phi} \circ \pi_{\mathcal{A}}^{**} \circ \rho(a) = \phi(a)$ for all $a, b \in \mathcal{A}$, where $\widetilde{\phi}$ is the unique extension of ϕ on \mathcal{A}^{**} .

The reader may also see [22] for definition of φ -biprojective/biflat Banach algebras.

In this paper, we continue the previous studies started in [21, 23, 24]. Firstly in Section 2, among other things, we shall find some relations between left ϕ -biprojectivity and left ϕ - biflatness of Banach algebras and their ϕ -amenability and ϕ -inner amenability.

In Section 3, we study left ϕ -biprojectivity and left ϕ -biflatness of measure algebras and Clifford semigroup algebras. We prove that $\ell^1(\mathbb{N}_{\min})$ is left ϕ -biprojective, however $\ell^1(\mathbb{N}_{\max})$ fails to be left ϕ -biprojective, where ϕ is the augmentation character.

Finally in Section 4, we will show that a triangular Banach algebra \mathcal{T} is not left ϕ -biflat for some certain $\phi \in \Delta(\mathcal{T})$.

2. Some Properties and relations

The following first result shows that left ϕ -biflatness together with ϕ -inner amenability forces a Banach algebra to be left ϕ -amenable.

Proposition 2.1. Let \mathcal{A} be a left ϕ -biflat Banach algebra, and let $\phi \in \Delta(\mathcal{A})$. If \mathcal{A} is ϕ -inner amenable, then \mathcal{A} is left ϕ -amenable.

Proof. Since \mathcal{A} is left ϕ -biflat, there exists a bounded linear map $\rho: \mathcal{A} \to (\mathcal{A} \widehat{\otimes} \mathcal{A})^{**}$ such that

$$\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a), \quad \phi \circ \pi_{\mathcal{A}}^{**} \circ \rho(a) = \phi(a), \quad (a \in \mathcal{A}).$$

On the other hand, ϕ -inner amenability of \mathcal{A} implies the existence of a bounded net $(a_{\alpha})_{\alpha \in I}$ in \mathcal{A} such that $aa_{\alpha} - a_{\alpha}a \to 0$ and $\phi(a_{\alpha}) = 1$, for all $a \in \mathcal{A}$. If we set $m_{\alpha} = \rho(a_{\alpha}) \in (\widehat{\mathcal{A}} \otimes \mathcal{A})^{**}$, then for each $a \in \mathcal{A}$ we have

$$a \cdot m_{\alpha} - \phi(a)m_{\alpha} = a \cdot \rho(a_{\alpha}) - \phi(a)\rho(a_{\alpha}) = \rho(aa_{\alpha} - a_{\alpha}a) \to 0$$

and

$$\widetilde{\phi} \circ \pi_{\mathcal{A}}^{**}(m_{\alpha}) = \widetilde{\phi} \circ \pi_{\mathcal{A}}^{**} \circ \rho(a_{\alpha}) = \phi(a_{\alpha}) = 1.$$

By Goldstine's Theorem, there exists a bounded net $(n_{\alpha}^{\gamma})_{\gamma \in \Gamma} \subseteq \mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $w^* - \lim_{\gamma} n_{\alpha}^{\gamma} = m_{\alpha}$ in $(\mathcal{A} \widehat{\otimes} \mathcal{A})^{**}$. For each $a \in \mathcal{A}$ then we have

$$w^* - \lim_{\gamma} a \cdot n_{\alpha}^{\gamma} - a \cdot m_{\alpha} = 0$$
 and $w^* - \lim_{\gamma} \phi(a) n_{\alpha}^{\gamma} - \phi(a) m_{\alpha} = 0$

in $(\mathcal{A}\widehat{\otimes}\mathcal{A})^{**}$. Thus for $a \in \mathcal{A}$

$$\lim_{\alpha} w^* - \lim_{\gamma} a \cdot n_{\alpha}^{\gamma} - \phi(a) n_{\alpha}^{\gamma} = \lim_{\alpha} a \cdot m_{\alpha} - \phi(a) m_{\alpha} = 0 .$$

Also w^* -continuity of $\pi^{**}_{\mathcal{A}}$ yields that

$$\lim_{\alpha} w^* - \lim_{\gamma} \phi \circ \pi_{\mathcal{A}}(n_{\alpha}^{\gamma}) = \lim_{\alpha} \widetilde{\phi} \circ \pi_{\mathcal{A}}^{**}(m_{\alpha}) = 1 .$$

Set $\Lambda = I \times \Gamma^{I}$, where Γ^{I} is denoted for the set of all functions from I into Γ . Define the product ordering by

$$(\alpha,\gamma) \preccurlyeq_{\Lambda} (\alpha',\gamma') \Leftrightarrow \alpha \preccurlyeq_{I} \alpha',\gamma \preccurlyeq_{\Gamma^{I}} \gamma$$

where $\gamma \preccurlyeq_{\Gamma^{I}} \gamma'$ means $\gamma(d) \preccurlyeq_{\Gamma} \gamma'(d)$ for each $d \in I$. Take $\lambda = (\alpha, (\gamma_{\alpha})) \in \Lambda$. By Iterated limit theorem [14, p. 69] we obtain a bounded net (n_{λ}) in $\mathcal{A}\widehat{\otimes}\mathcal{A}$ such that for all $a \in \mathcal{A}$

$$w^* - \lim_{\lambda} a \cdot n_{\lambda} - \phi(a)n_{\lambda} = 0$$
 in $(\mathcal{A}\widehat{\otimes}\mathcal{A})^{**}$ and $\lim_{\lambda} \phi \circ \pi_{\mathcal{A}}(n_{\lambda}) - 1 = 0$

or equivalently

$$wk - \lim_{\lambda} a \cdot n_{\lambda} - \phi(a)n_{\lambda} = 0$$
 in $\mathcal{A}\widehat{\otimes}\mathcal{A}$ and $\lim_{\lambda} \phi \circ \pi_{\mathcal{A}}(n_{\lambda}) - 1 = 0$.

Applying Mazur's Lemma, we may assume that

$$\lim_{\lambda} a \cdot n_{\lambda} - \phi(a) n_{\lambda} = 0 \quad \text{and} \quad \lim_{\lambda} \phi \circ \pi_{\mathcal{A}}(n_{\lambda}) = 1 \quad (a \in \mathcal{A}) \; .$$

Putting $u_{\lambda} = \pi_{\mathcal{A}}(n_{\lambda}) \in \mathcal{A}$, we see that

$$\lim_{\lambda} a \cdot u_{\lambda} - \phi(a)u_{\lambda} = 0 \quad \text{and} \quad \lim_{\lambda} \phi(u_{\lambda}) = 1 \quad (a \in \mathcal{A})$$

so that \mathcal{A} is left ϕ -amenable, by [13, Theorem 1.4].

For a Banach algebra \mathcal{A} , we write $\Upsilon_{\mathcal{A}}$ for the *flip map* on $\mathcal{A} \otimes \mathcal{A}$ given by $\Upsilon_{\mathcal{A}}(a \otimes b) = b \otimes a$ for $a, b \in \mathcal{A}$.

The following example shows that the ϕ -inner amenability assumption in Proposition 2.1 can not be dropped.

Example 2.1. We give a left ϕ -biflat Banach algebra which is not left ϕ -amenable. Let \mathcal{V} be a Banach space with $\dim \mathcal{V} \geq 1$, and let $f \in \mathcal{V}^*$ be a non-zero element such that $||f|| \leq 1$. It is known that \mathcal{V} equipped with either products defined by a * b = f(a)b and $a \bullet b = f(b)a$ for $a, b \in \mathcal{V}$, is a Banach algebra denoted by ${}_f\mathcal{V}$ and \mathcal{V}_f , respectively. It is easy to see that $\Delta(\mathcal{V}_f) = \Delta({}_f\mathcal{V}) = \{f\}$. Put $\mathcal{A} = {}_f\mathcal{V} \otimes \mathcal{V}_f$. Clearly the map ϕ defined by $\phi(a \otimes b) = f(a)f(b)$ for all $a, b \in \mathcal{V}$, is a non-zero multiplicative linear functional on \mathcal{A} . Choose $a_0 \in \mathcal{V}$ such that $f(a_0) = 1$. We can easily obtain that the map $\rho: \mathcal{V}_f \to \mathcal{V}_f \otimes \mathcal{V}_f$ given by $\rho(a) = a \otimes a_0$ for all $a \in \mathcal{V}_f$, is a bounded \mathcal{V}_f -bimodule morphism such that $\pi_{\mathcal{V}_f} \circ \rho(a) = a$ for all $a \in \mathcal{V}_f$. It follows that \mathcal{V}_f is biprojective. Also the composition map $\Upsilon_{f\mathcal{V}} \circ \rho: {}_f\mathcal{V} \to {}_f\mathcal{V} \otimes {}_f\mathcal{V}$ is a bounded ${}_f\mathcal{V}$ -bimodule morphism such that $\pi_{f\mathcal{V}} \circ \Upsilon_f \otimes \rho(a) = a$ for all $a \in {}_f\mathcal{V}$. So ${}_f\mathcal{V}$ is also biprojective. Applying [20, Proposition 2.4], we see that \mathcal{A} is biprojective. Hence \mathcal{A} is left ϕ -biflat.

We suppose in contradiction that \mathcal{A} is left ϕ -amenable. Then by [13, Theorem 3.3] \mathcal{V}_f is left f-amenable. So by [13, theorem 1.4] there is a bounded net (a_{α}) in \mathcal{V}_f such that $a \bullet a_{\alpha} - f(a)a_{\alpha} \to 0$ and $f(a_{\alpha}) = 1$, for each $a \in \mathcal{V}$. It follows that

$$a - f(a)a_{\alpha} = af(a_{\alpha}) - f(a)a_{\alpha} \to 0, \quad (a \in \mathcal{V}_f)$$

Pick $b_0 \in \mathcal{V}_f$ such that $f(b_0) = 1$. Putting $a = b_0$ in above equation, we obtain that $a_\alpha \to b_0$. Combining with $a \bullet a_\alpha - f(a)a_\alpha \to 0$ implies that $a = a \bullet b_0 = f(a)b_0$. It follows that dim $\mathcal{V} = 1$ which is impossible. Thus \mathcal{A} is not left ϕ -amenable.

From [9] we recall that a Banach algebra \mathcal{A} is *left* ϕ -contractible if there exists an element $m \in \mathcal{A}$ such that $a \cdot m = \phi(a)m$ and $\phi(m) = 1$ for all $a \in \mathcal{A}$.

Lemma 2.2. Let \mathcal{A} be a Banach algebra, and let $\phi \in \Delta(\mathcal{A})$.

(i) If \mathcal{A} is left ϕ -amenable, then \mathcal{A} is left ϕ -biflat;

(ii) If \mathcal{A} is left ϕ -contractible, then \mathcal{A} is left ϕ -biprojective.

Proof. The proofs are similar, so we only prove the clause (i).

Suppose that \mathcal{A} is left ϕ -amenable. Then there exists an element $m \in \mathcal{A}^{**}$ such that $a \cdot m = \phi(a)m$ and $\phi(m) = 1$ for all $a \in \mathcal{A}$. Set $\eta: \mathcal{A} \to \mathcal{A}^{**} \widehat{\otimes} \mathcal{A}^{**}$ by $\eta(a) = a \cdot m \otimes m$. By [6, Lemma 1.7], there exists a bounded linear map $\psi: \mathcal{A}^{**} \widehat{\otimes} \mathcal{A}^{**} \to (\mathcal{A} \widehat{\otimes} \mathcal{A})^{**}$ satisfying

$$\psi(a\otimes b)=a\otimes b,\qquad \psi(n)\cdot a=\psi(n\cdot a),\qquad a\cdot\psi(n)=\psi(a\cdot n),\qquad \pi^{**}_A(\psi(n))=\pi_{\mathcal{A}^{**}}(n)$$

for $a, b \in \mathcal{A}$ and $n \in \mathcal{A}^{**} \widehat{\otimes} \mathcal{A}^{**}$. Setting $\rho = \psi \circ \eta$, it is routinely checked that

$$\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b), \quad \phi \circ \pi_{\mathcal{A}}^{**} \circ \rho(a) = \phi(a) \quad (a, b \in \mathcal{A})$$

so \mathcal{A} is left ϕ -biflat.

The clause (i) of Lemma 2.2 is a converse for [10, Corollary 2.2].

The following describe the connection between left ϕ -biflatness of a Banach algebra and its second dual under ϕ -inner amenability.

Proposition 2.3. Let \mathcal{A} be a Banach algebra, and let $\phi \in \Delta(\mathcal{A})$. Suppose that \mathcal{A} is ϕ -inner amenable. Then \mathcal{A}^{**} is left ϕ -biflat if and only if \mathcal{A} is left ϕ -biflat.

Proof. Let \mathcal{A}^{**} be left ϕ -biflat. Then there exists a bounded linear map $\rho: \mathcal{A}^{**} \to (\mathcal{A}^{**} \widehat{\otimes} \mathcal{A}^{**})^{**}$ such that

$$\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a), \quad \widetilde{\widetilde{\phi}} \circ \pi^{**}_{\mathcal{A}^{**}} \circ \rho(a) = \widetilde{\phi}(a),$$

for all $a \in \mathcal{A}^{**}$. Here ϕ -inner amenability of \mathcal{A} guarantees the existence of a bounded net (a_{α}) in \mathcal{A} such that $aa_{\alpha} - a_{\alpha}a \to 0$ and $\phi(a_{\alpha}) = 1$, for all $a \in \mathcal{A}$. By [6, Lemma 1.7], there exists a bounded linear map $\psi \colon \mathcal{A}^{**} \widehat{\otimes} \mathcal{A}^{**} \to (\mathcal{A} \widehat{\otimes} \mathcal{A})^{**}$ satisfying

$$\psi(a \otimes b) = a \otimes b, \qquad \psi(m) \cdot a = \psi(m \cdot a), \qquad a \cdot \psi(m) = \psi(a \cdot n), \qquad \pi_{\mathcal{A}}^{**}(\psi(m)) = \pi_{\mathcal{A}^{**}}(m)$$

for $a, b \in \mathcal{A}$ and $m \in \mathcal{A}^{**} \widehat{\otimes} \mathcal{A}^{**}$. Set $m_{\alpha} = \pi_{\mathcal{A}}^{****} \circ \psi^{**} \circ \rho_{|\mathcal{A}}(a_{\alpha})$. Clearly (m_{α}) is a bounded net in \mathcal{A}^{****} . Putting things together, we obtain

$$am_{\alpha} - \phi(a)m_{\alpha} = a\pi_{\mathcal{A}}^{****} \circ \psi^{**} \circ \rho_{|_{\mathcal{A}}}(a_{\alpha}) - \phi(a)\pi_{\mathcal{A}}^{****} \circ \psi^{**} \circ \rho_{|_{\mathcal{A}}}(a_{\alpha})$$
$$= \pi_{\mathcal{A}}^{****} \circ \psi^{**} \circ \rho_{|_{\mathcal{A}}}(aa_{\alpha} - a_{\alpha}a) \to 0$$
(1)

and

$$\widetilde{\widetilde{\phi}}(m_{\alpha}) = \widetilde{\widetilde{\phi}} \circ \pi_{\mathcal{A}}^{****} \circ \psi^{**} \circ \rho|_{\mathcal{A}}(a_{\alpha}) = \widetilde{\widetilde{\phi}} \circ \pi_{\mathcal{A}^{**}}^{***} \circ \rho|_{\mathcal{A}}(a_{\alpha}) = \widetilde{\phi}(a_{\alpha}) = \phi(a_{\alpha}) = 1.$$
(2)

Using Goldstine's Theorem (twice), we may assume that m_{α} 's are in \mathcal{A} . Thus \mathcal{A} is left ϕ -amenable. Now by Lemma 2.2 (i), \mathcal{A} is left ϕ -biflat.

Conversely, if we suppose that \mathcal{A} is left ϕ -biflat, it admits a bounded linear map $\rho: \mathcal{A} \to (\mathcal{A} \widehat{\otimes} \mathcal{A})^{**}$ such that

$$\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b), \quad \phi \circ \pi_{\mathcal{A}}^{**} \circ \rho(a) = \phi(a),$$

for all $a, b \in \mathcal{A}$. Let the net (a_{α}) be as above. Set $m_{\alpha} = \pi_{\mathcal{A}}^{**} \circ \rho(a_{\alpha})$. One can see that (m_{α}) is a bounded net in \mathcal{A}^{**} such that $a \cdot m_{\alpha} - \phi(a)m_{\alpha} \to 0$ and $\tilde{\phi}(m_{\alpha}) = 1$ for all $a \in \mathcal{A}$. Using Goldstine's Theorem we can assume that m_{α} 's belong to \mathcal{A} . Thus \mathcal{A} is left ϕ -amenable. According to [13, Proposition 3.4], \mathcal{A}^{**} is left ϕ -amenable. Thus \mathcal{A}^{**} is left ϕ -biflat, again by Lemma 2.2 (i).

The following may be compared with [19, Corollary 3.3].

Proposition 2.4. Let \mathcal{A} be a Banach algebra with a left approximate identity, and let $\Delta(\mathcal{A})$ be non-empty. If \mathcal{A} is a left ϕ -biprojective for all $\phi \in \Delta(\mathcal{A})$, then $\Delta(\mathcal{A})$ is discrete with respect to the w^* -topology.

Proof. Suppose that \mathcal{A} is left ϕ -biprojective for all $\phi \in \Delta(\mathcal{A})$. Since \mathcal{A} has a left approximate identity, \mathcal{A} is left ϕ -contractible for all $\phi \in \Delta(\mathcal{A})$ by [23, Proposition 2.4]. From [3, Proposition 2.3], we conclude that $\Delta(\mathcal{A})$ is discrete with respect to the w^* -topology.

3. Application to algebras related to locally compact groups and discrete semigroups

A discrete semigroup S is an *inverse* semigroup if for each $s \in S$ there exists a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$. There exists a partial order on each inverse semigroup S, that is, $s \leq t \iff s = ts^*s$ for all $s, t \in S$.

Let (S, \leq) be an inverse semigroup. For each $s \in S$, set $(x] = \{y \in S | y \leq x\}$. We say S is uniformly locally finite if $\sup\{|(x)| : x \in S\} < \infty$. We write E(S) for the set of all idempotents of S. For every $e \in E(S)$, it is known that $\mathcal{G}_e = \{s \in S | ss^* = s^*s = e\}$ is a maximal subgroup of S with respect to e. Moreover, $\mathcal{G}_{e_1} \cap \mathcal{G}_{e_2} = \emptyset$ for all $e_1, e_2 \in S$ with $e_1 \neq e_2$. An inverse semigroup S is a *Clifford* semigroup if $ss^* = s^*s$ for all $s \in S$. See [8] as a main reference of semigroup theory.

Left ϕ -biflatness of semigroup algebras related to Clifford semigroups has been studied in [24]. We now characterize left ϕ -biprojectivity of Clifford semigroup algebras.

Proposition 3.1. Let $S = \bigcup_{e \in E(S)} \mathcal{G}_e$ be a Clifford semigroup such that E(S) is uniformly locally finite. Then the following are equivalent:

(i) $\ell^1(\mathcal{S})$ is left ϕ -biprojective for all $\phi \in \Delta(\ell^1(\mathcal{S}))$;

- (ii) Each maximal subgroup \mathcal{G}_e is finite;
- (iii) $\ell^1(\mathcal{S})$ is biprojective.

Proof. $(i) \Rightarrow (ii)$ Let $\ell^1(S)$ be left ϕ -biprojective for all $\phi \in \Delta(\ell^1(S))$. It is known that $\ell^1(S)$ is isometrically isomorphic to $\bigoplus_{e \in E(S)} \ell^1(\mathcal{G}_e)$, see [20, Theorem 2.18]. Thus $\Delta(\ell^1(S)) = \bigcup_{e \in E(S)} \Delta(\ell^1(\mathcal{G}_e))$. Let $\phi \in \Delta(\ell^1(\mathcal{G}_e))$. Since each $\ell^1(\mathcal{G}_e)$ has an identity element, there exists an element x in $\mathcal{Z}(\ell^1(S))$ (the center of $\ell^1(S)$) such that $\phi(x) = 1$. Applying [23, Lemma 2.2], we observe that $\ell^1(S)$ is left ϕ -contractible. So there exists an element a_1 in $\ell^1(S)$ such that

$$aa_1 = \phi(a)a_1, \quad \phi(a_1) = 1, \quad (a \in \ell^1(\mathcal{S})).$$

Pick $a_0 \in \ell^1(\mathcal{G}_e)$ such that $aa_0 = a_0a$ and $\phi(a_0) = 1$ for all $a \in \ell^1(\mathcal{S})$. Since $\ell^1(\mathcal{G}_e)$ is a closed ideal of $\ell^1(\mathcal{S})$, element $b = a_1a_0$ is in $\ell^1(\mathcal{G}_e)$ and satisfies

$$ab = \phi(a)b, \quad \phi(b) = 1, \quad (a \in \ell^1(\mathcal{G}_e))$$

Then $\ell^1(\mathcal{G}_e)$ is left ϕ -contractible. Then \mathcal{G}_e is compact by [1, Theorem 3.3]. Whence \mathcal{G}_e is finite.

 $(ii) \Rightarrow (iii)$ This is proved in [20, Theorem 3.7].

 $(iii) \Rightarrow (i)$ This is trivial.

Remark 3.2. Notice that every discrete group \mathcal{G} is uniformly locally finite. Therefore, as a consequence of Proposition 3.1, the group algebra $\ell^1(\mathcal{G})$ is left ϕ -biprojective for all $\phi \in \Delta(\ell^1(\mathcal{G}))$ if and only if \mathcal{G} is finite.

Let \mathbb{N}_{\min} and \mathbb{N}_{\max} be the semigroup \mathbb{N} with products $m *_{\min} n = \min\{m, n\}$ and $m *_{\max} n = \max\{m, n\}$, respectively. Take $\ell^1(\mathbb{N}_{\min})$ and $\ell^1(\mathbb{N}_{\max})$ with convolution products. We write δ_n for the point mass at $\{n\}$. For every $n \in \mathbb{N}$ we consider a homomorphism $\phi_n : \ell^1(\mathbb{N}_{\min}) \longrightarrow \mathbb{C}$ defined by $\phi_n(\sum_{i=1}^{\infty} \alpha_i \delta_i) = \sum_{i=n}^{\infty} \alpha_i$. There is also a homomorphism $\psi_n : \ell^1(\mathbb{N}_{\max}) \longrightarrow \mathbb{C}$ with the formula $\psi_n(\sum_{i=1}^{\infty} \alpha_i \delta_i) = \sum_{i=1}^{n} \alpha_i$ for each $n \in \mathbb{N} \cup \{\infty\}$. It is known that $\Delta(\ell^1(\mathbb{N}_{\min})) = \{\phi_n : n \in \mathbb{N}\}$ and $\Delta(\ell^1(\mathbb{N}_{\max})) = \{\psi_n : n \in \mathbb{N} \cup \{\infty\}\}$. Notice that $\psi_n = \phi_1 - \phi_{n+1}$ $(n \in \mathbb{N})$, and that $\phi_1 = \psi_\infty$ is the augmentation character, see [2].

Proposition 3.3. (i) $\ell^1(\mathbb{N}_{\min})$ is left ϕ_1 -biprojective.

(ii) $\ell^1(\mathbb{N}_{\max})$ is not left ψ_{∞} -biprojective.

Proof. (i) Define $\rho: \ell^1(\mathbb{N}_{\min}) \to \ell^1(\mathbb{N}_{\min}) \widehat{\otimes} \ell^1(\mathbb{N}_{\min})$ by $\rho(f) = \phi_1(f)\delta_1 \otimes \delta_1$ for all $f \in \ell^1(\mathbb{N}_{\min})$. Clearly $\rho(fg) = f \cdot \rho(g) = \phi_1(g)\rho(f)$, and $\phi_1 \circ \pi_{\ell^1(\mathbb{N}_{\min})} \circ \rho(f) = \phi_1(f)$ for $f, g \in \ell^1(\mathbb{N}_{\min})$. So $\ell^1(\mathbb{N}_{\min})$ is left ϕ_1 -biprojective.

(*ii*) Towards a contradiction, suppose that $\ell^1(\mathbb{N}_{\max})$ is left ψ_{∞} -biprojective. Since $\ell^1(\mathbb{N}_{\max})$ is unital, it is left ψ_{∞} -contractible [23, Proposition 2.4]. Define $m = \delta_n - \delta_{n+1}$, clearly $m \in \ell^1(\mathbb{N}_{\max})$. Thus $a \cdot m = \psi_n(a)m$, and $\psi_n(m) = 1$ for all $a \in \ell^1(\mathbb{N}_{\max})$ and $n \in \mathbb{N}$. So $\ell^1(\mathbb{N}_{\max})$ is left ψ_n -contractible for all $n \in \mathbb{N} \cup \{\infty\}$. It follows from [3, Corollry 2.2] that $\Delta(\ell^1(\mathbb{N}_{\max})) = \mathbb{N} \cup \{\infty\}$ is discrete with respect to the w^* -topology. On the other hand by Gelfand representation theorem $\Delta(\ell^1(\mathbb{N}_{\max})) = \mathbb{N} \cup \{\infty\}$ is compact. So $\Delta(\ell^1(\mathbb{N}_{\max})) = \mathbb{N} \cup \{\infty\}$ is finite which is impossible.

Let S be a locally compact space. A compact space is called Stone-Čech-compactification of S (denoted by βS) if satisfying the following universal property:

(*) For each compact Hausdorff space \mathcal{K} and each continuous mapping $f: S \longrightarrow \mathcal{K}$, there exists a uniquely determined continuous mapping $\tilde{f}: \beta S \longrightarrow \mathcal{K}$ such that $\tilde{f}_{|S} = f$.

Let \mathcal{S} be a discrete semigroup. By the above characterization we have

$$\ell^1(\mathcal{S})^{**} \cong \ell^\infty(\mathcal{S})^* \cong C(\beta \mathcal{S})^* \cong M(\beta \mathcal{S}).$$

For more information see [2, Chapter 6].

We recall that a Banach algebra \mathcal{A} is ϕ -pseudo-amenable if there exists a net (a_{α}) in \mathcal{A} such that $aa_{\alpha} - \phi(a)a_{\alpha} \to 0$ and $\phi(a_{\alpha}) \to 1$ for all $a \in \mathcal{A}$, see [17, Proposition 2.3].

Proposition 3.4. Let S be an infinite, commutative and cancellative semigroup. Then $\ell^1(S)^{**} = M(\beta S)$ is not left ϕ -biflat, where ϕ is the augmentation character on $\ell^1(S)$.

Proof. We assume in contradiction that $\ell^1(S)^{**} = M(\beta S)$ is left ϕ -biffat. Since S is commutative, $\ell^1(S)$ is ϕ -inner amenable. So by Proposition 2.3, is $\ell^1(S)$ left ϕ -amenable. Using [13, Proposition 3.4], $\ell^1(S)^{**} = M(\beta S)$ is left ϕ -amenable. Then $\ell^1(S)^{**} = M(\beta S)$ is left ϕ -pseudo-amenable. By [17, Proposition 2.8], $\ell^1(S)^{**} = M(\beta S)$ doesn't have a non-trivial bounded point derivation at the augmentation character and this is in contradiction to [2, Theorem 11.15].

Remark 3.5. It should be stressed that Proposition 3.4 without cancellativity condition does not hold. To see this, consider the semigroup algebra $\ell^1(\mathbb{N}_{\min})$ with the augmentation character ϕ . It is easily checked that (δ_n) is a bounded approximate identity for $\ell^1(\mathbb{N}_{\min})$, and thus it is ϕ -inner amenable. Hence $\ell^1(\mathbb{N}_{\min})^{**}$ is left ϕ -biflat, by Propositions 2.3 and 3.3(i).

Proposition 3.6. Let \mathcal{G} be a locally compact group. Then $L^1(\mathcal{G})$ is left ϕ -biflat for all $\phi \in \Delta(L^1(\mathcal{G}))$ if and only if \mathcal{G} is amenable.

Proof. We first notice that $L^1(\mathcal{G})$ is ϕ -inner amenable for all $\phi \in \Delta(L^1(\mathcal{G}))$, because it has a bounded approximate identity. If $L^1(\mathcal{G})$ is left ϕ -biflat for all $\phi \in \Delta(L^1(\mathcal{G}))$, then it is left ϕ -amenable for all $\phi \in \Delta(L^1(\mathcal{G}))$ by Proposition 2.1. Now by [16, Corollary 2.4], \mathcal{G} is amenable.

Conversely if \mathcal{G} is amenable, then $L^1(\mathcal{G})$ is left ϕ -amenable for all $\phi \in \Delta(L^1(\mathcal{G}))$ again by [16, Corollary 2.4]. Hence, the result follows from Lemma 2.2(*i*).

Recall that $M(\mathcal{G})$ is denoted for the measure algebra of a locally compact group \mathcal{G} .

Proposition 3.7. Let \mathcal{G} be a locally compact group. Then $M(\mathcal{G})$ is left ϕ -biprojective for all $\phi \in \Delta(M(\mathcal{G}))$ if and only if \mathcal{G} is finite.

Proof. Suppose that $M(\mathcal{G})$ is left ϕ -biprojective for all $\phi \in \Delta(M(\mathcal{G}))$. Since $M(\mathcal{G})$ is unital, its left ϕ -biprojectivity is equivalent to its left ϕ -contractibility. So \mathcal{G} must be finite, by [18, Corollary 6.2].

The converse is trivial.

Proposition 3.8. Let \mathcal{G} be a locally compact group. Then the following are equivalent:

- (i) $M(\mathcal{G})^{**}$ is left ϕ -biflat for all $\phi \in \Delta(M(\mathcal{G}))$;
- (ii) $M(\mathcal{G})$ is left ϕ -biflat for all $\phi \in \Delta(M(\mathcal{G}))$;
- (iii) \mathcal{G} is discrete and amenable.

Proof. (i) \iff (ii) It is immediate from Proposition 2.3, just note that $M(\mathcal{G})$ is unital and so it is ϕ -inner amenable for all $\phi \in \Delta(M(\mathcal{G}))$.

 $(ii) \iff (iii)$ Left ϕ -biflatness of $M(\mathcal{G})$ is equivalent to its left ϕ -amenability, because $M(\mathcal{G})$ is unital. The proof completes by [16, Corollary 2.5].

4. Applications to some triangular Banach algebras

Let \mathcal{A} and \mathcal{B} be a Banach algebras and let \mathcal{X} be a Banach $(\mathcal{A}, \mathcal{B})$ -module, that is, \mathcal{X} is a Banach space, a left \mathcal{A} -module and a right \mathcal{B} -module with the compatible module action that satisfies $(a \cdot x) \cdot b = a \cdot (x \cdot b)$ and $||a \cdot x \cdot b|| \leq ||a|| ||x|| ||b||$ for every $a \in \mathcal{A}, x \in \mathcal{X}, b \in \mathcal{B}$. With the usual 2×2 matrix operations and the norm

$$\left\| \begin{bmatrix} a & x \\ 0 & b \end{bmatrix} \right\| = ||a|| + ||x|| + ||b||,$$

 $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{X} \\ 0 & \mathcal{B} \end{bmatrix}$ becomes a Banach algebra which is called a *triangular Banach algebra*. One may see [4, 5, 15] for more information and properties on these algebras.

Let $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{X} \\ 0 & \mathcal{B} \end{bmatrix}$ be a triangular Banach algebra. For every $\phi \in \Delta(\mathcal{B})$, we may consider an element $\Psi_{\phi} \in \Delta(\mathcal{T})$ defined by

$$\Psi_{\phi}\left(\left[\begin{array}{cc}a & x\\ 0 & b\end{array}\right]\right) = \phi(b), \quad (a \in \mathcal{A}, x \in \mathcal{X}, b \in \mathcal{B}) \ .$$

Theorem 4.1. Let \mathcal{A} be a Banach algebra, and let $\phi \in \Delta(\mathcal{A})$. If \mathcal{A} is ϕ -inner amenable, then $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ is not left Ψ_{ϕ} -biflat.

Proof. Assume towards a contradiction that \mathcal{T} is left Ψ_{ϕ} -biflat. Since \mathcal{A} is ϕ -inner amenable, there exists a bounded net (a_{α}) in \mathcal{A} such that $aa_{\alpha} - a_{\alpha}a \to 0$ and $\phi(a_{\alpha}) = 1$, for each $a \in \mathcal{A}$. Set $t_{\alpha} = \begin{bmatrix} a_{\alpha} & 0 \\ 0 & a_{\alpha} \end{bmatrix}$. It is easy to see that (t_{α}) is a bounded net in \mathcal{T} such that

$$tt_{\alpha} - t_{\alpha}t \to 0, \quad \Psi_{\phi}(t_{\alpha}) = \phi(a_{\alpha}) = 1, \quad (t \in \mathcal{T}).$$

So \mathcal{T} is Ψ_{ϕ} -inner amenable. Thus by Proposition 2.1, \mathcal{T} is left Ψ_{ϕ} -amenable. Clearly $\mathcal{I} = \begin{bmatrix} 0 & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ is a closed two-sided ideal of \mathcal{T} for which $\Psi_{\phi} \neq 0$ on \mathcal{I} . One can easily see that \mathcal{I} is left Ψ_{ϕ} -amenable. So there exists a bounded net $m_{\alpha} = \begin{bmatrix} 0 & u_{\alpha} \\ 0 & v_{\alpha} \end{bmatrix}$ in \mathcal{I} such that

$$mm_{\alpha} - \Psi_{\phi}(m)m_{\alpha} \to 0, \quad (m \in \mathcal{I})$$
 (3)

and $\Psi_{\phi}(m_{\alpha}) = \phi(v_{\alpha}) = 1$. Take an element $a \in \mathcal{A}$ with $\phi(a) = 1$, and take $b \in \ker \phi$. Substitute $m_0 = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ for m in (3), we obtain $m_0 m_{\alpha} \to 0$. It follows that $av_{\alpha} \to 0$. Therefore $\phi(v_{\alpha}) = \phi(av_{\alpha}) \to 0$, a contradiction.

Definition 4.2. Let \mathcal{B} be a Banach algebra, let $\phi \in \Delta(\mathcal{B})$, and let \mathcal{X} be a Banach right \mathcal{B} -module. A non-zero linear functional $\psi \in \mathcal{X}^*$ is a right ϕ -character for \mathcal{X} if $\psi(x \cdot b) = \phi(b)\psi(x)$ for each $b \in \mathcal{B}$ and $x \in \mathcal{X}$.

To see an example satisfying conditions of Definition 4.2, consider a Banach right \mathcal{B} -module \mathcal{X} for which $x \cdot b = \phi(b)x, b \in \mathcal{B}, x \in \mathcal{X}$. Then every $0 \neq \psi \in \mathcal{X}^*$ is a right ϕ -character for \mathcal{X} .

Theorem 4.3. Let \mathcal{A} and \mathcal{B} be Banach algebras with bounded left approximate identities, let $\phi \in \Delta(\mathcal{B})$, and let \mathcal{X} be a Banach $(\mathcal{A}, \mathcal{B})$ -module with a right ϕ -character. Then $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{X} \\ 0 & \mathcal{B} \end{bmatrix}$ is not left Ψ_{ϕ} -biflat.

Proof. Assume towards a contradiction that \mathcal{T} is left Ψ_{ϕ} -biflat. Since \mathcal{A} and \mathcal{B} have bounded left approximate identities, \mathcal{T} also has a bounded left approximate identity, by Cohen-Hewit factorization theorem. So $\overline{\mathcal{T} \ker \Psi_{\phi}}^{||\cdot||} = \ker \Psi_{\phi}$. It follows from [23, Lemma 2.1] that \mathcal{T} is left Ψ_{ϕ} -amenable. Clearly $\mathcal{I} = \begin{bmatrix} 0 & \mathcal{X} \\ 0 & \mathcal{B} \end{bmatrix}$ is a closed ideal of \mathcal{T} for which $\Psi_{\phi}|_{\mathcal{I}} \neq 0$. It follows from [13, Lemma 3.1] that \mathcal{I} is left $\Psi_{\phi}|_{\mathcal{I}}$ -amenable. So by [13, Theorem 1.4] there exists a bounded net $n_{\alpha} = \begin{bmatrix} 0 & x_{\alpha} \\ 0 & b_{\alpha} \end{bmatrix}$ in \mathcal{T} such that

$$tn_{\alpha} - \Psi_{\phi}(t)n_{\alpha} \to 0, \quad \Psi_{\phi}(n_{\alpha}) = \phi(b_{\alpha}) = 1, \qquad (t \in \mathcal{I}).$$

Take $t = \begin{bmatrix} 0 & x \\ 0 & b \end{bmatrix}$ for arbitrary elements $x \in \mathcal{X}$ and $b \in \mathcal{B}$. Then we have

$$\begin{bmatrix} 0 & x \\ 0 & b \end{bmatrix} \begin{bmatrix} 0 & x_{\alpha} \\ 0 & b_{\alpha} \end{bmatrix} - \Psi_{\phi} \left(\begin{bmatrix} 0 & x \\ 0 & b \end{bmatrix} \right) \begin{bmatrix} 0 & x_{\alpha} \\ 0 & b_{\alpha} \end{bmatrix} \to 0.$$

It gives that

 $x \cdot b_{\alpha} - \phi(b)x_{\alpha} \to 0, \quad bb_{\alpha} - \phi(b)b_{\alpha} \to 0.$

Let ψ be a right ϕ -character on \mathcal{X} . We then have

$$\psi(x) - \phi(b)\psi(x_{\alpha}) = \phi(b_{\alpha})\psi(x) - \phi(b)\psi(x_{\alpha}) = \psi(x \cdot b_{\alpha} - \phi(b)x_{\alpha}) \to 0, \quad (b \in \mathcal{B}, x \in \mathcal{X}).$$

Hence $\psi(x) = \lim_{\alpha} \phi(b)\psi(x_{\alpha})$ for all $b \in \mathcal{B}, x \in \mathcal{X}$, which is not true. To see this, take $b \in \ker \phi$ and $x \in \mathcal{X}$ with $\psi(x) \neq 0$.

Acknowledgements

The authors are grateful to the referees for their useful comments which improved the manuscript. The corresponding author is thankful to Ilam university, for it's support.

References

- M. ALAGHMANDAN, R. NASR-ISFAHANI, AND M. NEMATI, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc., 82 (2010), pp. 274–281.
- [2] H. G. DALES, A. T.-M. LAU, AND D. STRAUSS, Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc., 205 (2010), pp. vi+165.

- M. DASHTI, R. NASR-ISFAHANI, AND S. SOLTANI RENANI, Character amenability of Lipschitz algebras, Canad. Math. Bull., 57 (2014), pp. 37–41.
- [4] B. E. FORREST AND L. W. MARCOUX, Derivations of triangular Banach algebras, Indiana Univ. Math. J., 45 (1996), pp. 441–462.
- [5] —, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc., 354 (2002), pp. 1435–1452.
- [6] F. GHAHRAMANI, R. J. LOY, AND G. A. WILLIS, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., 124 (1996), pp. 1489–1497.
- [7] A. Y. HELEMSKII, The homology of Banach and topological algebras, vol. 41 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West.
- [8] J. M. HOWIE, Fundamentals of semigroup theory, vol. 12 of London Mathematical Society Monographs. New Series, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications.
- [9] Z. HU, M. S. MONFARED, AND T. TRAYNOR, On character amenable Banach algebras, Studia Math., 193 (2009), pp. 53–78.
- [10] A. JABBARI, T. M. ABAD, AND M. Z. ABADI, On φ-inner amenable Banach algebras, Colloq. Math., 122 (2011), pp. 1–10.
- B. E. JOHNSON, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math., 94 (1972), pp. 685–698.
- [12] B. E. JOHNSON, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, RI, 1972.
- [13] E. KANIUTH, A. T. LAU, AND J. PYM, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144 (2008), pp. 85–96.
- [14] J. L. KELLEY, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955.
- [15] A. R. MEDGHALCHI AND M. H. SATTARI, Biflatness and biprojectivity of triangular Banach algebras, Bull. Iranian Math. Soc., 34 (2008), pp. 115–120, 162.
- [16] M. S. MONFARED, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144 (2008), pp. 697–706.
- [17] R. NASR-ISFAHANI AND M. NEMATI, Character pseudo-amenability of Banach algebras, Colloq. Math., 132 (2013), pp. 177–193.
- [18] R. NASR-ISFAHANI AND S. SOLTANI RENANI, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math., 202 (2011), pp. 205–225.
- [19] A. POURABBAS AND A. SAHAMI, On character biprojectivity of Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 78 (2016), pp. 163–174.
- [20] P. RAMSDEN, Biflatness of semigroup algebras, Semigroup Forum, 79 (2009), pp. 515–530.
- [21] A. SAHAMI, On left φ-biprojectivity and left φ-biflatness of certain Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), pp. 97–106.
- [22] A. SAHAMI AND A. POURABBAS, On φ -biflat and φ -biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), pp. 789–801.
- [23] A. SAHAMI AND M. ROSTAMI, Some cohomological notions in Banach algebras based on maximal ideal space, Iran. J. Sci. Technol. Trans. A Sci., 46 (2022), pp. 173–179.
- [24] A. SAHAMI, M. ROSTAMI, AND A. POURABBAS, On left φ-biflat Banach algebras, Comment. Math. Univ. Carolin., 61 (2020), pp. 337–344.

Please cite this article using:

Solaleh Salimi, Amin Mahmoodi, Mehdi Rostami, Amir Sahami, Left ϕ -biflatness and ϕ -biprojectivity of certain Banach algebras with applications, AUT J. Math. Comput., 6(3) (2025) 279-287 https://doi.org/10.22060/AJMC.2024.22985.1211

