

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 6(3) (2025) 217-221 https://doi.org/10.22060/AJMC.2024.22566.1173

Short Contribution

A new characterization of Chevalley groups $G_2(3^n)$ by the order of the group and the number of elements with the same order

Behnam Ebrahimzadeh*, Hamid Shahbandarzadeh

Department of Mathematics, Persian Gulf University, Bushehr, Iran

ABSTRACT: In this paper, we prove that Chevalley groups $G_2(q)$, where $q = 3^n$ and $q^2 + q + 1$ is a prime numbers can be uniquely determined by the order of group and the number of elements with the same order.

Review History:

Received:19 July 2023 Revised:28 March 2024 Accepted:14 April 2024 Available Online:01 July 2025

Keywords:

Element order Prime graph Chevalley group

MSC (2020):

20D06; 20D60

1. Introduction

Throughout this paper G be a finite group, $\pi(G)$ be the set of prime divisors of order of G and $\pi_e(G)$ be the set of orders of elements in G. If $k \in \pi_e(G)$, then we denote the set of the number of elements of order k in G by $m_k(G)$ and the set of the number of elements with the same order in G by $\operatorname{nse}(G)$. In other words,

$$nse(G) = \{ m_k(G) | k \in \pi_e(G) \}.$$

Also we denote a Sylow p-subgroup of G by G_p and the number of Sylow p-subgroups of G by $n_p(G)$. The prime graph $\Gamma(G)$ of group G is a graph whose vertex set is $\pi(G)$, and two vertices u and v are adjacent if and only if $uv \in \pi_e(G)$. Moreover, assume that $\Gamma(G)$ has t(G) connected components π_i , for $i = 1, 2, \ldots, t(G)$. In the case where G is of even order, we assume that $2 \in \pi_1$.

The group characterization by nse(G) pertains to Thompson's problem ([14]) which professor Shi posed it in [17]. The first time, this type of characterization was studied by Shao and Shi. In [16], they proved that if S

 $\hbox{\it E-mail addresses:} \ \ behnam.ebrahimzadeh@gmail.com, shabandarzadeh@gmail.com$

^{*}Corresponding author.

is a finite simple group with $|\pi(S)| = 4$, then S is characterizable by $\operatorname{nse}(S)$ and |S|. Following this result, in [1,3,4,5,6,7,8,9,12,13,15], it is proved that sporadic simple groups, suzuki groups Sz(q), where q-1 is a prime numbers and also Ree groups ${}^2G_2(q)$ where $q \pm \sqrt{3q} + 1$ are prime numbers, suzuki group, the symplectic groups $C_2(3^n)$, the projective special unitary groups $U_3(3^n)$, the projective special linear groups $L_3(q)$, the Chevalley groups $G_2(2^n)$, the orthogonal groups $B_2(2^{4n})$, the projective special linear groups $L_2(q)$ and certain finite simple groups can be uniquely determined by order of group and nse(G). In this paper, we prove that Chevalley groups $G_2(q)$, where $q=3^n$ and q^2+q+1 is a prime numbers can be uniquely determined by $\operatorname{nse}(G_2(q))$ and $|G_2(q)|$. In fact, we prove the following main theorem.

Main Theorem. Let G be a group with $nse(G) = nse(G_2(q))$ and $|G| = |G_2(q)|$, where $q = 3^n$ and $q^2 + q + 1$ is a prime number. Then $G \cong G_2(q)$.

2. Notations and Preliminaries

Lemma 2.1 ([11]). Let G be a Frobenius group of even order with kernel K and complement H. Then

- (1) t(G) = 2, $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$;
- (2) $|H| \ divides \ |K| 1;$
- (3) K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a normal series $1 \le H \le K \le G$ such that G/Hand K are Frobenius groups with kernels K/H and H, respectively.

Lemma 2.3 ([2]). Let G be a 2-Frobenius group of even order. Then

- (1) t(G) = 2, $\pi(H) \cup \pi(G/K) = \pi_1$ and $\pi(K/H) = \pi_2$;
- (2) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.4 ([19]). Let G be a finite group with $t(G) \ge 2$. Then one of the following statements holds:

- (1) G is a Frobenius group;
- (2) G is a 2-Frobenius group;
- (3) G has a normal series $1 \leq H \leq K \leq G$ such that H and G/K are π_1 -groups, K/H is a non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.5 ([10]). Let G be a finite group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G \mid g^m = 1\}$, then $m \mid |L_m(G)|$.

Lemma 2.6. Let G be a finite group. Then for every $i \in \pi_e(G)$, $\varphi(i)$ divides $m_i(G)$, and i divides $\sum_{j|i} m_j(G)$. Moreover, if i > 2, then $m_i(G)$ is even.

Proof. By Lemma 2.5, the proof is straightforward.

Lemma 2.7 ([18]). Let G be a non-abelian simple group such that (5, |G|) = 1. Then G is isomorphic to one of the following groups:

- (a) $L_n(q)$, n = 2, 3, $q \equiv \pm 2 \pmod{5}$;
- (b) $G_2(q), q \equiv \pm 2 \pmod{5}$;
- (c) $U_3(q), q \equiv \pm 2 \pmod{5}$;
- (d) ${}^{3}D_{4}(q), q \equiv \pm 2 \pmod{5};$
- (e) ${}^{2}G_{2}(q), q = 3^{2m+1}, m \ge 1.$

Lemma 2.8 ([20]). Let q, k, l be natural numbers. Then

(1)
$$(q^k - 1, q^l - 1) = q^{(k,l)} - 1.$$

$$(2) (q^k + 1, q^l + 1) = \begin{cases} q^{(k,l)} + 1 & \text{if both } \frac{k}{(k,l)} \text{ and } \frac{l}{(k,l)} \text{ are odd,} \\ (2, q+1) & \text{otherwise.} \end{cases}$$

(1)
$$(q^{k}-1, q^{l}-1) = q^{(k,l)}-1.$$

(2) $(q^{k}+1, q^{l}+1) = \begin{cases} q^{(k,l)}+1 & \text{if both } \frac{k}{(k,l)} \text{ and } \frac{l}{(k,l)} \text{ are odd,} \\ (2, q+1) & \text{otherwise.} \end{cases}$
(3) $(q^{k}-1, q^{l}+1) = \begin{cases} q^{(k,l)}+1 & \text{if } \frac{k}{(k,l)} \text{ is even and } \frac{l}{(k,l)} \text{ is odd,} \\ (2, q+1) & \text{otherwise.} \end{cases}$

In particular, for every $q \ge 2$ and $k \ge 1$ the inequality $(q^k - 1, q^k + 1) \le 2$ holds.

3. Main parts of manuscrips

In this section, we prove the main theorem by the following lemmas. For this purpose, we denote the Chevalley groups $G_2(q)$, where $q=3^n$ and prime number q^2+q+1 by B and p, respectively. Recall that G is a group with |G| = |B| and nse(G) = nse(B). First we prove the following lemma.

Lemma 3.1. Let B be a Chevalley groups $G_2(q)$, where q^2+q+1 is a prime numbers. Then $m_p(B)=(p-1)|B|/(6p)$ and for every $i \in \pi_e(B) - \{1, p\}$, p divides $m_i(B)$.

Proof. First, since that $|B_p| = p$, we deduce that B_p is a cyclic group of order p. Thus $m_p(B) = \varphi(p)n_p(B) = (p-1)n_p(B)$. Now it is enough to show $n_p(B) = |B|/(6p)$. By [19], p is an isolated vertex of $\Gamma(G)$. Hence $|C_B(B_p)| = p$ and $|N_B(B_p)| = xp$ for a natural number x. On the other hand, $N_B(B_p)/C_B(B_p)$ embed in $Aut(B_p)$, which implies $x \mid p-1$. Furthermore, by Sylow's Theorem, $n_p(B) = |B| : N_B(B_p)$ and $n_p(B) \equiv 1 \pmod{p}$. Hence p divides |G|/(xp)-1 it follows that q^2+q+1 divides $\frac{q^6(q^6-1)(q^2-1)}{q^2+q+1}-x$. So $q^2+q+1 \mid q^{12}-q^{11}-q^{10}+2q^9-q^8-q^7+q^6-x$ hence $q^2+q+1 \mid (q^2+q+1)(q^{10}-2q^9+4q^7-5q^6+6q^4-6q^2+6q-6)+(6-x)$. It follows that $p \mid 6-x$ and since $x \mid p-1$, we deduce that x=6.

Let $i \in \pi_e(B) - \{1, p\}$. Since p is an isolated vertex of $\Gamma(B)$, we conclude that $p \nmid i$ and $pi \notin \pi_e(B)$. Thus B_p acts fixed point freely on the set of elements of order i by conjugation and hence $|B_p| \mid m_i(B)$. So, we conclude that $p \mid m_i(B)$.

Lemma 3.2. $m_2(G) = m_2(B)$, $m_p(G) = m_p(B)$, $n_p(G) = n_p(B)$, p is an isolated vertex of $\Gamma(G)$ and $p \mid m_k(G)$ for every $k \in \pi_e(G) - \{1, p\}$.

Proof. By Lemma 2.6, for every $2 = i \in \pi_e(G)$, if and only if $m_i(G)$ is odd. Thus we deduce that $m_2(G) = m_2(R)$. According to Lemma 2.6, $(m_p(G), p) = 1$. Thus $p \nmid m_p(G)$ and hence Lemma 2.6 implies that $m_p(G) \in \{m_1(B), m_2(B), m_p(B)\}$. Moreover, $m_p(G)$ is even, so we conclude that $m_p(G) = m_p(B)$. Since G_p and B_p are cyclic groups of order p and $m_p(G) = m_p(B)$, we deduce that $m_p(G) = \varphi(p)n_p(G) = \varphi(p)n_p(B) = m_p(B)$, so $n_p(G) = n_p(B)$.

Now we prove that p is an isolated vertex of $\Gamma(G)$. On opposite, there is $t \in \pi(G) - \{p\}$ such that $tp \in \pi_e(G)$. So $m_{tp}(G) = \varphi(tp)n_p(G)k$, where k is the number of cyclic subgroups of order t in $C_G(G_p)$ and since $n_p(G) = n_p(B)$, it follows that $m_{tp}(G) = (t-1)(p-1)|R|k/(6p)$. If $m_{tp}(G) = m_p(B)$, then t=2 and k=1. Furthermore, Lemma 2.5 yields $p \mid m_2(G) + m_{2p}(G)$ and since $m_2(G) = m_2(B)$ and $p \mid m_2(B)$, we have $p \mid m_{2p}(G)$ which is a contradiction. So Lemma 3.1 implies that $p \mid m_{tp}(G)$. Hence $p \mid t-1$ and since $m_{tp}(G) < |G|$, we deduce that $p-1 \le 6$. But this is impossible because $p = q^2 + q + 1$ and $q = 3^n$.

Let $k \in \pi_e(G) - \{1, p\}$. Since p is an isolated vertex of $\Gamma(G)$, $p \nmid k$ and $pk \notin \pi_e(G)$. Thus G_p acts fixed point freely on the set of elements of order k by conjugation and hence $|G_p| \mid m_k(G)$. So we conclude that $p \mid m_k(G)$.

Lemma 3.3. The group G is not a Frobenius group.

Proof. Let G be a Frobenius group with kernel K and complement H. Then by Lemma 3.3, t(G)=2 and $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$ and |H| divides |K|-1. Now by Lemma 3.2, p is an isolated vertex of $\Gamma(G)$. Thus we deduce that (i) |H|=p and |K|=|G|/p or (ii) |H|=|G|/p and |K|=p. Since |H| divides |K|-1, we conclude that the last case can not occur. So |H|=p and |K|=|G|/p, hence q^2+q+1 $\frac{q^6(q^6-1)(q^2-1)}{q^2+q+1}-1$. In result q^2+q+1 $|q^{14}-q^{12}-q^8+q^6-q^2-q-1$. so q^2+q+1 $|q^{12}-q^{11}-q^{10}+2q^9-q^8-q^7+q^6-1$, in finally q^2+q+1 $|q^{10}-2q^9+4q^7-5q^6+6q^4-6q^3+6q-6)+5$. Thus p |S which is impossible.

Lemma 3.4. *G* is not a 2-Frobenius group.

Proof. We show that G is not a 2-Frobenius group. On opposite, assume G be a 2-Frobenius group so G has a normal series $1 \subseteq H \subseteq K \subseteq G$ such that G/H and K are Frobenius groups by kernels K/H and H respectively. Set |G/K| = x. Since p is an isolate vertex of $\Gamma(G)$, we have |K/H| = p and |H| = |G|/(xp). By Lemma 3.4, |G/K| divides |Aut(K/H)|. Thus $x \mid q^2 + q$ and $|H| = q^5(q-1)^2(q^3+1)$. Now we consider 2-Sylow subgroup of H where has order of $(q-1)^2$. Hence, $H_2 \rtimes K/H$ is a Frobenius group with kernel H_2 and complement K/H. So |K/H| divides $|H_2| - 1$. It implies that $q^2 + q + 1 \mid (q-1)^2 - 1$, but this is a contradiction.

Lemma 3.5. The group G is isomorphic to the group B.

Proof. By Lemma 3.2, p is an isolated vertex of $\Gamma(G)$. Thus t(G) > 1 and G satisfies one of the cases of Lemma 2.4. Now Lemma 3.3 and Lemma3.4 implies that G is neither a Frobenius group nor a 2-Frobenius group. Thus only the case (c) of Lemma 2.4 occure. So G has a normal series $1 \le H \le K \le G$ such that H and G/K are π_1 -groups, K/H is a non-abelian simple group. Since p is an isolated vertex of $\Gamma(G)$, we have $p \mid |K/H|$. On the other hand, we know that $5 \nmid |G|$. Thus K/H is isomorphic to one of the groups in Lemma 2.7.

(1) $K/H \ncong {}^3D_4(q')$, where $q' \equiv \pm 2 \pmod{5}$. Then by [19, Table Ic], $\pi({}^3D_4(q')) = q'^4 - q'^2 + 1$. So we consider $q^2 + q + 1 = q'^4 - q'^2 + 1$, in result $q(q+1) = q'^2(q'^2 - 1)$. Now since that (q, q+1) = 1, so we deduce $q'^2 = q + 1$. In finally, since $|{}^3D_4(q')| \nmid |G|$, which is a contradiction.

- (2) If $K/H \cong U_3(q')$, where $q' \equiv \pm 2 \pmod 5$, then by [19, Table Ic], $\pi(U_3(q') = (q'^2 q' + 1)/(3, q' + 1)$. If (3, q' + 1) = 1, then we consider $q^2 + q + 1 = q'^2 q' + 1$ it follows that q(q + 1) = q'(q' 1). Now since (q, q + 1) = 1, we deduce q' = q + 1. But $|U_3(q')| \nmid |G|$, where this is a contradiction. Now we assume (3, q' + 1) = 3. Then we consider $q^2 + q + 1 = q'^2 q' + 1)/3$, so 3q(q + 1) = (q' 2)(q' + 1). Now we deduce that (q' 2, q' + 1) = 1 or 3. First if (q' 2, q' + 1) = 1, then $3q \mid q' + 1$ and $q' 2 \mid q + 1$. But $q'^3(q'^3 + 1)(q'^2 1) \mid q^6(q^6 1)(q^2 1)$, so we deduce $q'^3 \mid q^2 1$. On the other hand, we have $3q \leq q' + 1$, so $q'^3 \leq q^2 1 \leq 3q \leq q' + 1$, which is a contradiction. Now if (q' 2, q' + 1) = 3, then to similarly the last proof we have a contradiction.
- (3) If $K/H \cong {}^2G_2(q')$, where $q' = 3^{2m+1}$, then by [19, Table Id], $\pi({}^2G_2(q')) = q' \pm \sqrt{3q'} + 1$. For this purpose, we consider $q^2 + q + 1 = q' \pm \sqrt{3q'} + 1$, as a result $q(q+1) = q' \pm \sqrt{3q'}$. Hence $3^n(3^n + 1) = 3^{m+1}(3^m \pm 1)$, it follows that $3^n = 3^m \pm 1$ and also $3^n + 1 = 3^{m+1}$. First, if $3^n = 3^m \pm 1$, then $3^m + 1(3^m + 2) = 3^{m+1}(3^m + 1)$. As a result, we deduce $3^m + 2 = 3^{m+1}$, where this is a contradiction. Now, if $3^n + 1 = 3^{m+1}$, then $(3^{m+1} 1)(3^{m+1} = 3^{m+1}(3^m + 1))$, where this a contradiction.
- (4) If $K/H \cong L_n(q')$, where n=2 and $q'\equiv \pm 2\pmod{5}$. Then by [19, Table Ib], $\pi(L_n(q'))=q',\frac{q'+1}{(2,q'-1)}$. First, we consider $q^2+q+1=q'$, then since that $|L_2(q')|\nmid |G|$, so we have a contradiction. Now if $q^2+q+1=q'+1$, where (2,q'-1)=1, then we deduce q(q+1)=q' that this is a contradiction, because $q'=p'^m$. Next, we consider $q^2+q+1=\frac{q'+1}{2}$, then we have $2q^2+2q+2=q'+1$. So $2q^2+2q+1=q'$. Now since $|L_2(q')|\nmid |G|$, which is a contradiction.
- (5) If $K/H \cong L_n(q')$, where n = 3 and $q' \equiv \pm 2 \pmod{5}$. Then by [19, Table Ib], $\pi(L_3(q')) = \frac{q'^2 + q' + 1}{(3,q'-1)}$. First, we consider $q^2 + q + 1 = q'^2 + q' + 1$, then q(q+1) = q'(q'+1). As a result q = q'. On the other hand, we know $q^2 + q + 1 \mid q'^3(q'^3 1)(q'^2 1)$ as a result $q^2 + q + 1 \leq q'^2 1$. But we have q = q' so $q^2 + q + 1 \leq q^2 1$, where this is a contradiction. Now if $q^2 + q + 1 = \frac{q'^2 + q' + 1}{3}$, then $3q^2 + 3q + 3 = q'^2 + q' + 1$. Hence, 3q(q+1) = (q'+2)(q'-1), now by proof (2) we have a contradiction, similarly.

So we deduce that $K/H \cong G_2(q')$, where $q' = 3^{n'}$. Now since $\pi(G_2(q')) = q'^2 + q' + 1$, we conclude that, $p = q'^2 + q' + 1$. Thus $q^2 + q + 1 = q'^2 + q' + 1$ and hence n = n' and q = q' and $K/H \cong B$. Now since |K/H| = |B| = |G| and $1 \subseteq H \subseteq K \subseteq G$, we have H = 1, $G = K \cong B$ and the proof is completed

References

- [1] A. K. ASBOEI, S. S. S. AMIRI, A. IRANMANESH, AND A. TEHRANIAN, A characterization of sporadic simple groups by nse and order, J. Algebra Appl., 12 (2013), p. 1250158 (3 pages).
- [2] G. Y. Chen, On structure of Frobenius and 2-Frobenius group, J. Southwest China Normal Univ., 20 (1995), pp. 485–487.
- [3] B. EBRAHIMZADEH, A new characterization of projective special linear groups $L_3(q)$, Algebra Discrete Math., 31 (2021), pp. 212–218.
- [4] B. EBRAHIMZADEH AND A. IRANMANESH, A new characterization of projective special unitary groups $U_3(3^n)$ by the order of group and the number of elements with the same order, Algebr. Struct. Appl., 9 (2022), pp. 113–120.
- [5] B. EBRAHIMZADEH, A. IRANMANESH, AND H. PARVIZI MOSAED, A new characterization of Ree group ${}^{2}G_{2}(q)$ by the order of group and the number of elements with the same order, Int. J. Group Theory, 6 (2017), pp. 1–6.
- [6] B. EBRAHIMZADEH AND A. KHAKSARI, A new characterization of projective special linear groups L₂(q), Kragujev. J. Math., 49 (2025), pp. 925–931.
- [7] B. EBRAHIMZADEH AND R. MOHAMMADYARI, A new characterization of Suzuki groups, Arch. Math. (Brno), 55 (2019), pp. 17–21.
- [8] —, A new characterization of symplectic groups C₂(3ⁿ), Acta Comment. Univ. Tartu. Math., 23 (2019), pp. 117–124.
- [9] B. EBRAHIMZADEH AND A. NAZARI, A new characterization of chevalley groups $G_2(2^n)$ by $NSE(G_2(2^n))$, J. Pure Math., 32 (2023), pp. 37–44.
- [10] G. Frobenius, Verallgemeinerung des Sylow'schen Satzes, Berl. Ber., 1895 (1895), pp. 981–993.
- [11] D. GORENSTEIN, Finite groups, Chelsea Publishing Co., New York, second ed., 1980.

- [12] H. HASANZADEH-BASHIR, B. EBRAHIMZADEH, AND B. AZIZI, A new characterization of orthogonal simple groups $B_2(2^{4n})$, Quasigroups Related Systems, 31 (2023), pp. 233–240.
- [13] A. Iranmanesh, H. Parvizi Mosaed, and A. Tehranian, Characterization of Suzuki group by nse and order of group, Bull. Korean Math. Soc., 53 (2016), pp. 651–656.
- [14] V. D. MAZUROV AND E. I. KHUKHRO, eds., Unsolved problems in group theory. Including archive of solved problems, The Kourovka notebook, Novosibirsk: Institute of Mathematics, Russian Academy of Sciences, Siberian Div., 16th ed. ed., 2006.
- [15] S. Rahbariyan and A. Azad, On the NSE characterization of certain finite simple groups, Algebr. Struct. Appl., 8 (2021), pp. 51–65.
- [16] C. Shao, W. Shi, and Q. Jiang, Characterization of simple K₄-groups, Front. Math. China, 3 (2008), pp. 355–370.
- [17] W. J. Shi, A new characterization of the sporadic simple groups, in Group theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 531–540.
- [18] W.-J. Shi, A characterization of $U_3(2^n)$ by their element orders, Xinan Shifan Daxue Xuebao Ziran Kexue Ban, 25 (2000), pp. 353–360.
- [19] J. S. WILLIAMS, Prime graph components of finite groups, J. Algebra, 69 (1981), pp. 487–513.
- [20] A. V. ZAVARNITSINE, Recognition of the simple groups $L_3(q)$ by element orders, J. Group Theory, 7 (2004), pp. 81–97.

Please cite this article using:

Behnam Ebrahimzadeh, Hamid Shahbandarzadeh, A new characterization of Chevalley groups $G_2(3^n)$ by the order of the group and the number of elements with the same order, AUT J. Math. Comput., 6(3) (2025) 217-221

https://doi.org/10.22060/AJMC.2024.22566.1173

