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ABSTRACT: The Rayleigh distribution is widely used to model events that occur
in different fields such as medicine and natural sciences. In this article, we suggest
some test statistics for examining the Rayleigh goodness of fit based on the empirical
distribution function. Critical points and power of the tests are obtained by Monte
Carlo simulation. We show that the proposed tests have a good performance against
different alternatives and therefore these tests can be confidently used in practice.
Finally, the proposed tests are illustrated by real data examples.
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1. Introduction

The Rayleigh distribution is an important statistical model in communications theory, engineering, physical sciences,
clinical studies and medical imaging. This distribution was proposed by Lord Rayleigh [25] in the field of acoustics
and then it was used to model wind speed, wave heights and sound/light radiation and multiple paths of dense
scattered signals reaching a receiver. Also, it appears as a suitable model in life testing and reliability theory. For
more details on the Rayleigh distribution the reader is referred to [18].

A random variable X follows the Rayleigh distribution if and only if it has probability density function

f0(x; θ) =
x

θ2
exp

{
− x2

2θ2

}
, x > 0, θ > 0.

*Corresponding author.
E-mail addresses: alizadehhadi@birjand.ac.ir, mohamad.shafaee@gmail.com

2783-2287/© 2025 The Author(s). Published by Amirkabir University of Technology Press.

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)

205

http://dx.doi.org/10.22060/AJMC.2024.22768.1193
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


H. Alizadeh Noughabi et al., AUT J. Math. Comput., 6(3) (2025) 205-215, DOI:10.22060/AJMC.2024.22768.1193

where θ is a scale parameter.
The cumulative distribution function of Rayleigh distribution is as

F0(x; θ) = 1− exp

{
− x2

2θ2

}
, x > 0.

The mean and variance of this distribution are

µ = E(X) = θ

√
π

2
,

and

σ2 = Var(X) =
4− π

2
θ2,

respectively.
A detailed study about various properties of Rayleigh distribution is conducted by [28] and [29]. Inferences for this
distribution have been discussed by several authors. Dyer and Whisenand [13] demonstrated the importance of this
distribution in communication engineering. Bhattacharya and Tyagi [6] mentioned that in some clinical studies
dealing with cancer patients, the survival pattern follows the Rayleigh distribution. [9] obtained the best invariant
estimator and the Bayes estimator of the parameter of Rayleigh distribution under entropy loss. Fernandez [14]
addressed the problems of estimating the parameter, hazard rate and reliability function of the Rayleigh distribution
on the basis of sample quantiles. Dey and Maiti [11] derived Bayes estimator of the Rayleigh parameter and its
associated risk based on extended Jeffrey’s prior.
Suppose X1, X2, . . . , Xn is a random sample from the Rayleigh distribution, the estimator for the maximum likeli-
hood estimate (MLE) of the parameter θ is

θ̂ =

√√√√ 1

2n

n∑
i=1

X2
i .

The estimator θ̂ of θ is a biased estimator and also consistent. We will use the ML estimator for the proposed
statistics.
Because of the mentioned applications, it is meaningful to construct new goodness of fit tests for this distribution.
Toward this end, we construct some distribution-free goodness of fit tests for the Rayleigh distribution, which are
based on the empirical distribution function.
An important problem in statistics is to obtain information about the form of the population from which the sample
is drawn. Goodness of fit (GOF) tests are designed to measure how well the observed sample data fit some proposed
model. One class of GOF tests that can be used consists of tests based on the distance between the empirical and
hypothesized distribution functions. Five of the known tests in this class are Cramer-von Mises (W 2), Kolmogorov-
Smirnov (D), Kuiper (V ), Watson (U2), and Anderson-Darling (A2). For more details about these tests, see [10].
Inferences for the Rayleigh distribution based on progressively Type II censored data have been done by some
authors such as [19, 22], and [24]. Moreover, recently some researchers suggested tests for Rayleigh distribution,
see for example, [1, 16, 17, 23, 26, 32, 35].
Recently, Torabi el al. [30] proposed a new test statistic based on the empirical distribution function and then
constructed a test of fit for the normal distribution and show their test is powerful against some alternatives. Also,
Torabi el al. [31] again used their test statistic and suggested a test for the exponential distribution. Here, we
investigate the behavior of Torabi el al.’s test for the Rayleigh distribution and propose some test statistics for test
of fit for the Rayleigh model.
The paper is organized as follows. In Section 2, some goodness of fit tests for the composite Rayleigh hypothesis
based on the empirical distribution function are suggested. Also, properties of the test statistics are given. The
critical values and the power values of the new tests are presented in Section 3. A real data example is provided to
examine the performance of the proposed tests in Section 4. Section 5 contains conclusions.

2. The proposed test statistics

Given X and Y two absolutely continuous random variables with cdfs F0 and F , respectively, [30] defined the
following discrepancy measure:

D(F0, F ) =

∫ ∞

−∞
h(

1 + F0(x)

1 + F (x)
)dF (x) = EF

[
h(

1 + F0(x)

1 + F (x)
)

]
,
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where EF [.] is the expectation under F and h : (0,∞) → R+ is a continuous function, decreasing on (0,1) and
increasing on (1,∞) with an absolute minimum at x = 1 such that h(1) = 0. For this measure, D(F, F0) = 0 if and
only if F = F0, almost everywhere.

Torabi et al. [30] proposed to use this measure as a criterion of goodness of fit of an iid sample X1, . . . , Xn with
empirical distribution function Fn, to a given distribution F0. It is clear that D(F, F0) can be estimated by

Hn = D(F0, Fn) =
1

n

n∑
i=1

h

(
1 + F0(X(i))

1 + Fn(X(i))

)
=

1

n

n∑
i=1

h

(
1 + F0(X(i))

1 + i/n

)
,

and we can consider it as a test statistic.
Let X1, . . . , Xn be a random sample from an unknown continuous cumulative distribution function F with a density
f(x). We want to test the hypothesis

H0 : f(x) = f0(x; θ) =
x

θ2
exp

{
−x2

/
2θ2
}
, x > 0, for some θ ∈ Θ ,

where θ is unspecified and Θ = R+. The alternative to H0 is

H1 : f(x) ̸= f0(x; θ), for any θ ∈ Θ .

Here, we construct tests for the Rayleigh distribution based on Hn as follows. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) are
the order statistics based on the random sample X1, . . . , Xn. Applying the Torabi et al. [30] distance we have

Hn =
1

n

n∑
i=1

h

(
1 + F0(X(i))

1 + Fn(X(i))

)
=

1

n

n∑
i=1

h

(
1 + F0(X(i); θ̂)

1 + i/n

)
,

where F0(x) is the cumulative distribution function of the Rayleigh distribution and θ̂ is the maximum likelihood
estimate of the parameter θ. It can be shown that the maximum likelihood estimate (MLE) of the parameter θ is

θ̂ =

√√√√ 1

2n

n∑
i=1

x2
i .

The test statistic Hn is expected to take values close to zero when H0 is true. Hence, the null hypothesis is rejected
for large values of Hn. Here, we consider the following functions for h.

h1(x) = x log(x)− x+ 1,

h2(x) =

(
x− 1

x+ 1

)2

,

h3(x) = h2(x)I[0,1](x) + h1(x)I[1,∞)(x),

h4(x) = h1(x)I[0,1](x) + h2(x)I[1,∞)(x).

The first and second functions are suggested by [30].
Note that hk : [0,∞) → R+ is a non-negative function with the absolute minimum at x = 1, such that hk(1) = 0,

k = 1, 2, 3, 4. Under H0, we expect that Fn(x) ≈ F0(x). Hence hk

(
1+F0(X)
1+Fn(X)

)
≈ 0. Thus the value of test statistic

is expected to be near zero when H0 is true. Therefore, it is justifiable to reject H0 for large values of Hn. Finally,
we can write the proposed test statistic as follow.

H(k)
n =

1

n

n∑
i=1

hk

(
1 + F0(X(i); θ̂)

1 + i/n

)
,

where F0(x; θ̂) = 1− exp
{
− x2

2θ̂2

}
.

Proposition 2.1. The support of statistics H
(k)
n , k = 1, . . . , 4, are given by

supp(H(1)
n ) = [0, 0.38629], supp(H(2)

n ) = [0, 0.11111],

supp(H(3)
n ) = [0, 0.38629], supp(H(4)

n ) = [0, 0.15342].
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Proof. From Proposition 2.3 of [30], we have that for all x ∈ R

0 ≤ hk

(
1 + F0(X)

1 + Fn(X)

)
≤ max (hk(1/2), hk(2)) =


0.38629 k = 1

0.11111 k = 2

0.38629 k = 3

0.15342 k = 4

Finally, since H
(k)
n is the mean of hk(.) over the transformed data, the results are obtained. □

Proposition 2.2. Let F1 be an arbitrary continuous cdf in H1. Then under the assumption that the observed
sample have cdf F1, the test based on Hn is consistent.

Proof. Based on Glivenko-Cantelli theorem, for enough large n, we have that Fn(x) ≈ F1(x), for all x ∈ R. Also,

θ̂ is MLE of θ, and hence is consistent. Therefore,

Hn =
1

n

n∑
i=1

h

(
1 + F0(X(i); θ̂)

1 + Fn(X(i))

)
=

1

n

n∑
i=1

h

(
1 + F0(Xi; θ̂)

1 + Fn(Xi)

)

≈ 1

n

n∑
i=1

h

(
1 + F0(Xi; θ̂)

1 + F1(Xi)

)
≈ 1

n

n∑
i=1

h

(
1 + F0(Xi; θ̂)

1 + F1(Xi)

)

→ EF1

[
h

(
1 + F0(Xi; θ̂)

1 + F1(Xi)

)]
= D(F0, F1), as n → ∞.

Note that the convergence holds by the law of large numbers and D(F0, F1) is a divergence between F0 and F1. So,
the test based on Hn is consistent. □

Remark 2.3. As θ is a scale parameter of Rayleigh distribution we consider a scale transformation group as
G = {gc : gc(x) = cx, c > 0}. Since

Hn(g(x)) = Hn(x) ∀g ∈ G,

therefore, Hn is a scale-free statistic or invariant under G.

Remark 2.4. Since the test statistic Hn is invariant under the scale transformations and the parameter space is
transitive, the distribution of the proposed test statistic Hn is free of θ. Then, the test is exact and the critical
values does not depend on θ. Therefore, the critical values of the test statistic can be obtained by simulation when
θ = 1.

According to the mentioned properties, the Hn test is a reasonable test for the Rayleigh distribution which has
some good properties such as to be scale-free, invariancy and consistency. In the next section, we investigate the
power values of the proposed tests and then compared them with the power values of the competing tests.

3. Simulation study

In this section, we first obtain the critical points of the proposed tests by Monte Carlo method. Then power of the
tests is computed and compared with the power of the competing tests.

3.1. Critical points

The null hypothesis H0, at the significance level α is rejected if
(
H

(1)
n , H

(2)
n , H

(3)
n , H

(4)
n

)
≥ C(α), where the critical

point C(α) is determined by the α−quantile of the distribution of the test statistics under the null hypothesis.
In order to obtain the critical points of the test statistics, 100,000 samples of size n were generated from the
Rayleigh distribution with the parameter one. For each sample (n = 10, 20, 30, 40, 50, 75, 100) the test statistics was
computed and by using these values the critical points C(α), were determined. The critical points of the statistics

H
(1)
n , H

(2)
n , H

(3)
n , and H

(4)
n are presented in Table 1. Also, in Figure 1, we show the behavior of the critical values

of the proposed tests. From Table 1 and Figure 1, we can see that when the sample size increases the critical values
decreases.
Figures 2 and 3 show the empirical probability density functions of the proposed test statistics with Monte Carlo

samples. From these figures, it is evident that H
(2)
n has closer values to 0 than the other statistics. Then the bias

of H
(2)
n is smallest. Also, we can see that the test statistic H

(2)
n has the smallest variance.
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Table 1: Critical values of the proposed test statistics for α = 0.05

n H
(1)
n H

(2)
n H

(3)
n H

(4)
n

10 0.00579 0.00309 0.00391 0.00537

20 0.00295 0.00153 0.00207 0.00262

30 0.00198 0.00101 0.00141 0.00172

40 0.00148 0.00076 0.00107 0.00128

50 0.00118 0.00060 0.00086 0.00100

75 0.00079 0.00040 0.00058 0.00066

100 0.00059 0.00030 0.00044 0.00049
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Figure 1: Critical values of the proposed tests for different values of sample sizes.
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Figure 2: Empirical densities of the test statistics based on 100,000 simulations under the Rayleigh hypothesis and n = 20.
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Figure 3: Empirical densities of the test statistics based on 100,000 simulations under the Rayleigh hypothesis and n = 50.

3.2. Power comparison

For power comparison, we consider the well-known tests based on the empirical distribution function (EDF) that
used widely in practice. These tests are Cramer von Mises W 2, Kolmogorov-Smirnov D, Anderson-Darling A2,
Kuiper V , and Watson U2. The test statistics of the EDF-tests are briefly described as follows. For more details
about these tests, see [10].

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics based on the random sample X1, . . . , Xn.
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1) The Cramer-von Mises statistic [33]:

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F0(X(i); θ̂)

)2

.

2) The Watson statistic [34]:

U2 = W 2 − n
(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); θ̂), i = 1, . . . , n.

3) The Kolmogorov-Smirnov statistic [20]:
D = max(D+, D−)

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); θ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); θ̂)−

i− 1

n

}
.

4) The Kuiper statistic [21]:
V = D+ +D−

5) The Anderson-Darling statistic [3]:

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{
logF0(X(i); θ̂) + log

[
1− F0(X(n−i+1); θ̂)

]}
.

In the above test statistics, F0(x) is the cumulative distribution function of the Rayleigh distribution and θ̂ are the
maximum likelihood estimates of the parameter θ.
Moreover, we consider three recent tests introduced by authors and compare our tests with them in terms of power.
These tests are as follows.

• Alizadeh et al. [2] proposed a goodness of fit test based on Kullback-Leibler divergence for Rayleigh distribu-
tion. Their proposed statistic is

KLmn = −HVmn + 2 log(θ̂)− 1

n

n∑
i=1

log(Xi) + 1 ,

where θ̂ is the ML estimate of θ and HVmn is Vasicek’s estimator of entropy given by

HVmn =
1

n

n∑
i=1

log
{ n

2m
(X(i+m) −X(i−m))

}
,

where the window size m is a positive integer smaller than n/2, X(i) = X(1) if i < 1, X(i) = X(n) if i > n and
X(1) ≤ X(2) ≤ · · · ≤ X(n) are order statistics based on a random sample of size n.

• Baratpour and Khodadadi [4] based on the cumulative residual entropy suggested a test for Rayleigh distri-
bution which is

CKn =

n∑
i=1

(
1− i

n

)
log
(
1− i

n

) {
X(i+1) −X(i)

}
+
√

π
2

√
n∑

i=1

X3
i

/
3

n∑
i=1

Xi

X̄
.

• Safavinejad et al. [27] proposed a test of fit for Rayleigh distribution based on the empirical likelihood ratio.
Their test statistic is

Rn =

min
1≤m<nδ

n∏
j=1

{
n
2m

(
X(i+m) −X(i−m)

)}
(

n∏
i=1

Xi

/
θ̂2n
)
exp

{
−

n∑
i=1

X2
i

/
2θ̂2
} ,

where θ̂ is the ML estimate of θ and 0 < δ < 1.

We compute the power of the considered tests and the proposed tests against various distributions. In power
comparison, we considered the following alternatives.
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• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ);

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ);

• the lognormal law LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)

2
/
(2θ2)

)
;

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
;

• the uniform distribution U with density 1, 0 ≤ x ≤ 1;

• the modified extreme value EW (θ), with distribution function 1− exp
(
θ−1(1− ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1 + θx) exp
(
−x− θx2

/
2
)
;

• Dhillon’s [12] law DL(θ) with distribution function 1− exp
(
−(log(x+ 1))

θ+1
)
;

• Chen’s [8] distribution CH(θ), with distribution function 1− exp
(
2
(
1− ex

θ
))

.

These alternatives include densities f with decreasing failure rates (DFR), increasing failure rates (IFR) as well as
models with unimodal failure rate (UFR) functions and bathtub failure rate (BFR) functions.
To assess the power values of the tests, we generate 100,000 random samples from the alternative hypothesis for
different choices of sample sizes and then the test statistics are calculated. Then power of the corresponding test is
computed by the frequency of the event “the statistic is in the critical region”. Tables 2 and 3 display and compares
the power values of the tests for sample sizes n = 10, 20, 30 at the significance level α = 0.05.
For each sample size and alternative, the bold type in these tables indicates the tests achieving the maximal power.

Table 2: Empirical powers of the tests against IFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 CKn KLmn Rn H
(1)
n H

(2)
n H

(3)
n H

(4)
n

W (1.4) 10 0.224 0.194 0.158 0.156 0.323 0.274 0.101 0.102 0.354 0.368 0.279 0.383

20 0.417 0.368 0.274 0.292 0.524 0.427 0.241 0.263 0.548 0.565 0.431 0.597

30 0.584 0.524 0.412 0.439 0.692 0.572 0.413 0.402 0.684 0.699 0.560 0.733

Γ(2) 10 0.209 0.181 0.140 0.141 0.265 0.256 0.073 0.087 0.308 0.318 0.244 0.332

20 0.367 0.324 0.230 0.250 0.421 0.404 0.172 0.181 0.476 0.492 0.366 0.527

30 0.511 0.460 0.340 0.364 0.560 0.542 0.279 0.290 0.605 0.621 0.483 0.660

HN 10 0.282 0.244 0.215 0.226 0.466 0.320 0.206 0.219 0.441 0.458 0.359 0.472

20 0.523 0.469 0.384 0.412 0.703 0.495 0.444 0.450 0.662 0.678 0.553 0.709

30 0.705 0.649 0.558 0.598 0.847 0.626 0.635 0.650 0.807 0.817 0.700 0.841

U 10 0.119 0.103 0.163 0.152 0.268 0.123 0.172 0.178 0.170 0.178 0.140 0.179

20 0.181 0.154 0.262 0.281 0.385 0.210 0.453 0.449 0.240 0.249 0.193 0.257

30 0.280 0.222 0.391 0.421 0.522 0.367 0.712 0.693 0.320 0.334 0.257 0.335

CH(1) 10 0.353 0.312 0.264 0.275 0.545 0.371 0.252 0.253 0.513 0.530 0.429 0.546

20 0.603 0.553 0.461 0.506 0.777 0.569 0.538 0.549 0.747 0.760 0.649 0.784

30 0.795 0.749 0.661 0.698 0.908 0.723 0.756 0.693 0.876 0.886 0.794 0.904

CH(1.5) 10 0.059 0.054 0.064 0.060 0.099 0.057 0.041 0.052 0.094 0.099 0.071 0.103

20 0.068 0.069 0.076 0.076 0.119 0.045 0.071 0.076 0.111 0.119 0.075 0.133

30 0.081 0.079 0.094 0.099 0.143 0.048 0.093 0.099 0.117 0.125 0.073 0.143

LF (2) 10 0.237 0.205 0.177 0.188 0.402 0.283 0.161 0.163 0.383 0.399 0.306 0.413

20 0.427 0.379 0.304 0.337 0.606 0.408 0.357 0.354 0.573 0.589 0.456 0.620

30 0.597 0.544 0.453 0.484 0.766 0.514 0.533 0.541 0.715 0.731 0.599 0.760

LF (4) 10 0.167 0.142 0.133 0.134 0.302 0.195 0.113 0.125 0.285 0.299 0.219 0.313

20 0.292 0.259 0.214 0.225 0.467 0.282 0.239 0.242 0.428 0.445 0.315 0.477

30 0.433 0.379 0.312 0.340 0.618 0.382 0.379 0.370 0.547 0.567 0.418 0.607

EV (0.5) 10 0.350 0.309 0.271 0.275 0.542 0.385 0.248 0.269 0.518 0.533 0.434 0.548

20 0.609 0.557 0.471 0.497 0.777 0.577 0.541 0.556 0.749 0.763 0.650 0.787

30 0.796 0.749 0.655 0.696 0.909 0.719 0.752 0.754 0.876 0.886 0.795 0.904

EV (1.5) 10 0.150 0.132 0.138 0.134 0.310 0.152 0.126 0.130 0.263 0.275 0.203 0.285

20 0.251 0.228 0.221 0.240 0.458 0.199 0.274 0.279 0.376 0.394 0.273 0.423

30 0.362 0.332 0.323 0.355 0.589 0.227 0.433 0.421 0.496 0.517 0.370 0.553

211



H. Alizadeh Noughabi et al., AUT J. Math. Comput., 6(3) (2025) 205-215, DOI:10.22060/AJMC.2024.22768.1193

Table 3: Empirical powers of the tests against UFR, DFR and BFR alternatives at level %.

Alternative n W 2 D V U2 A2 CKn KLmn Rn H
(1)
n H

(2)
n H

(3)
n H

(4)
n

LN(0.8) 10 0.423 0.380 0.313 0.314 0.453 0.461 0.215 0.227 0.525 0.536 0.459 0.548

20 0.702 0.664 0.545 0.574 0.717 0.741 0.501 0.514 0.766 0.773 0.691 0.792

30 0.861 0.830 0.734 0.754 0.858 0.866 0.689 0.710 0.889 0.896 0.835 0.909

LN(1.5) 10 0.910 0.890 0.847 0.851 0.956 0.920 0.855 0.856 0.959 0.962 0.944 0.964

20 0.997 0.996 0.989 0.992 0.999 0.996 0.993 0.995 0.999 0.999 0.998 0.999

30 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DL(1) 10 0.410 0.363 0.295 0.296 0.482 0.455 0.202 0.216 0.526 0.537 0.458 0.551

20 0.696 0.647 0.530 0.541 0.744 0.712 0.475 0.487 0.768 0.778 0.686 0.799

30 0.856 0.818 0.708 0.723 0.885 0.853 0.681 0.689 0.894 0.901 0.837 0.915

DL(1.5) 10 0.165 0.144 0.108 0.110 0.185 0.206 0.060 0.065 0.238 0.248 0.186 0.258

20 0.284 0.255 0.171 0.180 0.304 0.352 0.123 0.143 0.363 0.375 0.270 0.405

30 0.406 0.361 0.251 0.270 0.419 0.470 0.200 0.213 0.469 0.486 0.352 0.524

W (0.8) 10 0.812 0.774 0.706 0.706 0.925 0.836 0.764 0.762 0.904 0.910 0.869 0.915

20 0.985 0.976 0.945 0.951 0.997 0.979 0.976 0.981 0.994 0.995 0.989 0.996

30 0.999 0.998 0.993 0.993 1.000 0.997 0.999 0.999 1.000 1.000 0.999 1.000

Γ(0.4) 10 0.949 0.930 0.898 0.901 0.992 0.955 0.967 0.967 0.981 0.983 0.970 0.984

20 0.999 0.999 0.995 0.996 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH(0.5) 10 0.929 0.907 0.865 0.866 0.984 0.933 0.941 0.940 0.972 0.975 0.956 0.976

20 0.999 0.998 0.992 0.995 1.000 0.998 0.999 0.999 0.999 0.999 0.999 0.999

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Powerful tests against different alternatives.

IFR UFR DFR-BFR

H
(4)
n &A2 H

(4)
n A2

Based on the power values in Table 2, it is seen that the tests based on H
(4)
n and A2 statistics have the most

power against IFR alternatives. The power differences between the proposed test and the other tests are substantial.

Tables 3 reveals a superiority of the proposed test H
(4)
n to all other tests as we can say that these tests outperform

all other tests against UFR alternatives. The power differences between the proposed test H
(4)
n and the other tests

are substantial.
From Table 3, it is evident that the test based on A2 statistic has the most power against DFR and BFR alternatives.

However, the power differences between this test and the proposed test H
(4)
n are small and therefore we can select

one of the tests based on A2 or H
(4)
n statistics as a powerful test.

Although there is no uniformly most powerful test against all alternatives, the tests based on A2 and H
(4)
n statistics

can be recommended in practice. Generally, we summarized the results in Table 4. This table presents the best
test in terms of power against different alternatives.

4. Applications to real data

In this section, to show the behavior of the proposed tests in real cases, two real data set are analyzed.

Example 4.1. We consider the data set discussed by [7]. The data set consists the failure times of 25 ball bearings
in endurance test. The failure times are as follows:
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 67.80, 67.80, 68.64, 68.64, 68.88,
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.
In Figure 4, we depict the histogram of this data set. Baratpour and Khodadadi [5] applied a goodness of fit test
based on the cumulative residual entropy and concluded that this data set follows on the Rayleigh distribution. Then,
Safavinejad et al. [27] considered these data and they found that Rayleigh distribution is fitting the above data quite
satisfactorily.
The proposed tests can be used to investigate whether the data come from a Rayleigh distribution. The ML estimator
of θ is computed as

θ̂ = 56.584 .
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Figure 4: Histogram of failure times and a fitted Rayleigh density function.

The values of the proposed test statistics are

H(1)
n = 0.000655, H(2)

n = 0.000335, H(3)
n = 0.000440, H(4)

n = 0.000550,

and the critical values at the 5% are obtained as 0.00237, 0.00122, 0.00166, 0.00208, respectively. Since the values
of the test statistics are smaller than the corresponding critical values, the Rayleigh assumption is not rejected at
the significance level of 0.05. Therefore, we can conclude that the data come from a Rayleigh distribution.

Example 4.2. Hinkley [15] presented data consist of thirty successive March precipitation (in inches) observations.
The data are given in the following:
0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.
Histogram of the considered data set is presented in Figure 5. Also, a fitted Rayleigh density function for these data
is displayed.
Here, we apply the proposed tests to investigate whether the data come from a Rayleigh distribution. The ML
estimator of θ is computed as

θ̂ = 1.374 .

The values of the test statistics are

H(1)
n = 0.000717, H(2)

n = 0.000370, H(3)
n = 0.000371, H(4)

n = 0.000716,

and the critical values at the 5% are obtained from Table 1 as 0.00198, 0.00101, 0.00141, 0.00172, respectively.
Since the values of the test statistics are smaller than the corresponding critical values, the Rayleigh assumption
is not rejected at the significance level of 0.05. Therefore, we can conclude that the data come from a Rayleigh
distribution.
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Figure 5: Histogram of observations in Example 2 and a fitted Rayleigh density function.

5. Conclusions

In this paper, we have proposed some goodness of fit test statistics for the Rayleigh distribution. Then, we have
presented the properties of these test statistics. We have obtained the power values of the proposed test statistics
with Monte Carlo simulation and compared them with the competing test statistics against various alternatives.

We have observed that the tests based on H
(4)
n and A2 statistics have the most power against IFR alternatives.

Against UFR alternatives, the proposed test H
(4)
n has the most power in compared to all other tests so that we can
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say the new test outperforms all other tests. Moreover, we have observed that the test based on A2 statistic has the
most power against DFR and BFR alternatives and the power differences between the test A2 and the proposed

test H
(4)
n were small and so the both tests worked well. Generally, we have concluded that among the proposed and

competing tests, the proposed test H
(4)
n has a good performance against different alternatives. Therefore, this test

can be confidently recommended in practice. Finally, we have illustrated the performance of the new test statistics
in real cases and shown that they worked well.
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