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On Zermelo’s navigation problem and weighted Einstein Randers metrics
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ABSTRACT: This paper investigates a specific form of weighted Ricci curvature
known as the quasi-Einstein metric. Two Finsler metrics, F and F̃ are considered,
which are generated by navigation representations (h,W ) and (F, V ), respectively,
where W represents a vector field, and V represents a conformal vector field on the
manifoldM . The main focus is on identifying the necessary and sufficient condition
for the Randers metric F to qualify as a quasi-Einstein metric. Additionally; we
establish the relationship between the curvatures of the given Finsler metrics F and
F̃ .
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1. Introduction

In Finsler geometry, the choice of a measure is not as straightforward as in Riemannian geometry, where there
is a unique canonical measure. Consider (M,F,m) to be a Finsler-measured manifold, where (M,F ) is a Finsler
manifold with the metric F , and m is a positive C∞-measured on M . For N ∈ R \ {n}, Ohta introduced the
following Finsler weighted Ricci curvature:

RicN (x) := Ric(x) + ψ′′
η (0)−

ψ′
η(0)

2

N − n
,

where ψη is C∞ in R and η is the geodesic M with η̇(0) = v, respectively [1]. As N → ∞, we arrive at the following
relation:

Ric∞(x) = Ric(x) + ψ′′
η (0),

which is called an ∞-weighted Ricci curvature [3]. When N → n and ψ′
η(0) = 0, we have

Ricn(v) = Ric(v) + ψ′′
η (0),
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and when N → n and ψ′
η(0) ̸= 0, we have Ricn = −∞. Both cases are known as n-weighted Ricci curvatures. We

also assume that RicN (0) = 0.
Z. Shen in 1997, introduced a new quantity which is called the S-curvature [15]. Substituting ψ′

η(0) with S(x),
yields the following equation:

RicN (x) = Ric(x) + Ṡ(x)− 1

N − n
S2, (1)

where Ṡ is the covariant derivative of S along a geodesic of F . Again, as N → ∞,

Ric∞(x) = Ric(x) + Ṡ(x). (2)

This was first studied by Ohta [10]. In the special case, a Finsler metric F is called quasi-Einstein (QE) [25]; if it
satisfies

Ric(QE) := Ric∞ = (n− 1)cF 2. (3)

The projective Ricci curvature introduced by Z. Shen [16], is a specific type of weighted Ricci curvature that
possesses the property of projective invariance, when the volume form is fixed [17] (additionally [6][7]), and can be
formulated as

PRic(y) = Ric(y) + (n− 1)

[
Ṡ

n+ 1
+

S2

(n+ 1)2

]
. (4)

The weighted projective Ricci curvature with respect to a fixed Finsler metric and a volume form, with coefficient
σ0, is defined as

WPRic0 := Ric+(n− 1)S2 + S|ky
k,

where S := 1
n+1

[
S + d ln

(
σ0

σ

)]
, and σ is the coefficient of Finsler manifold [22].

Another weighted Ricci curvature is the (a, c)-weighted Ricci curvature in Finsler geometry, that was proposed
by Z. Shen and R. Zhao [2], and we express it as

Ric(a,c)(y) = Ric(y) + aṠ − cS2, (5)

where a and c are constants. Finally; we define the generalized weighted Ricci curvature by

Ric(a,c)(y) = PRic(y)− κ

n+ 1

(
Ṡ +

4

n+ 1
S2

)
+

ν

(n+ 1)
S2, (6)

where κ := (n− 1)− a(n+1), and ν := 3(n− 1)− 4a(n+1)− c(n+1)2. To find out why we express (a, c)-weighted
Ricci curvature in the form (6), see [2, 20].

C. Robles investigated the Randers Einstein metrics in her Ph.D thesis and obtained the necessary and sufficient
condition for the Randers metric to be Einstein [14] (see also [23]). B. Rezaei and others in 2007, obtained the
necessary and sufficient condition for the Kropina, Matsumoto, and square metrics to be Einstein, when β is a
constant Killing form [13]. In 2012 he proved that every n-dimensional (n ≥ 3) Einstein Matsumoto metric is a
Ricci-flat metric with vanishing S-curvature[12]. H. Zhu introduced the notion of quasi-Einstein Finsler metrics and
characterized it. He also determined the quasi-Einstein square metrics [25]. In 2014, Shen and Yu classified the
Einstein square metrics [19]. The natural question that arises is that, under what conditions is the Randers metric
F defined by (h,W ), a quasi-Einstein Finsler metric? By answering this question, we can establish the relationship
between the curvatures of a Finsler metric F defined by (h,W ), and another Finsler metric F̃ , defined by (F, V ).

Considering the navigation data (h,W ), and assuming that ∥W∥h < 1; we define the Randers metric F as

F =

√
λh2 +W 2

0

λ
− W0

λ
, (7)

where Wi := hijW
j and λ := 1− ∥W∥2h > 0.

Based on the above result, we first prove a characterization as follows in section 3:

Theorem 1.1. Let F = α+ β be the Randers metric on an n-dimensional manifold M , defined by the navigation
data (h,W ), according to (7); with dV as the volume form. Then F will be a quasi-Einstein Finsler metric; if and
only if it satisfies the following conditions:
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i) R00 = −2σh2,

ii) R̃ic00 = −2Aβ −
(
α2 + 3β2

)(
B − (n− 1)c(x)

)
− 4βG

(
α2 + β2

)
− E − 2k(x)h2,

iii) Si
0|i = A+ 2β

(
B − (n− 1)c(x)

)
+ G

(
α2 + 3β2

)
−
(
C + 4βσ(x)

)
λ,

where A, B, C, D, E, F , G, and E are polynomials, and λ is a scalar function on M .

Z. Shen and Q. Xia in 2012, proved the relationship between non-Rimannian quantities, such as the isotropic S-
curvature, and the weakly isotropic flag curvature of the Randers metrics F , with F (x,−Vx) < 1 and F̃ ; expressed
by the navigation problem (F, V ), where V is a conformal vector field onM [18]. The same result was proved for the
Kropina metrics F , with F (x,−Vx) ≤ 1 and F̃ [4]. In theorem 1.2; we prove a similar result for the quasi-Einstein
Finsler metrics.

Theorem 1.2. Let F = α+β be a Randers metric on a manifold M with dimensions n ≥ 3, and V be a conformal
vector field on (M,F ), with conformal factor c(x). Consider F̃ to be a Randers metric defined from navigation data
(F, V ) by (7). Then if F is a quasi-Einstein Finsler metric with

Ric∞(x, y) = Ric(x, y) + Ṡ(x, y) = (n− 1)cF 2(x, y),

then F̃ is also a quasi-Einstein Finsler metric with

R̃ic∞(x, u) = R̃ic(x, u) + ˙̃S(x, u) = (n− 1)c̃F̃ 2(x, u).

2. Preliminaries

Let (M,F ) be a Finsler manifold. The non-negative function F on TM is a Finsler metric of M (or Finsler
structure), if it satisfies three conditions: (i) regularity, (ii) positive 1-homogeneity, and (iii) strong convexity. The
Busemann-Hausdorff measure onM , which is the most fundamental measure in Finsler geometry, is defined by [11]

mBH(dx) := ΦBH(x)dx1dx2 . . . dxn,

where the function ΦBH is given by

V ol(Bn(1))

ΦBH(x)
= V ol

({
(yi) ∈ Rn

∣∣∣∣F (x, yi ∂

∂xi
)
< 1

})
.

The quantity S, measures the distortions rate of change along the geodesics, where distortions τ(x, y) are defined as

τ(x, y) := ln

√
det gij(x, y)

σ(x)
.

The S-curvature and Ṡ are defined by

S(x, y) :=
d

dt

[
τ
(
c(t), ċ(t)

)]∣∣∣∣
t=0

= τ|i(x, y)y
i,

Ṡ(x, y) :=
d

dt

[
S
(
c(t), ċ(t)

)]∣∣∣∣
t=0

= S|i(x, y)y
i,

where c = c(x) is the geodesic with c(0) = x, and ċ = y, and “|” denotes the horizontal covariant derivative with
respect to F . A vector field G, induced by a Finsler metric F on TM0, is given by [9]

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂xi
,

and is called the spray of F , and Gi(x, y) are local functions on TM0, satisfying G
i(x, λy) = λ2Gi(x, y), where

λ > 0 is called the spray coefficient of F .
Consider F to be a Randers metric defined by (7) and let

Rij :=
1

2

(
Vi|j + Vj|i

)
, Sij :=

1

2

(
Vi|j − Vj|i

)
,

Ri = RijV
j , R = RiV

i, Si = SijV
j , S = SjV

i = 0.
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The spray coefficients of F can be expressed by [5]

Gi = Gi
h + Ii,

where

Ii = −FSi
0 −

1

2
F 2(Ri + Si) +

1

2

{
yi

F
− V i

}(
2FR0 −R00 − F 2R

)
.

Then Ri
j = Ri

j(x, y) may be written as

Ri
j = R̄i

j + 2Ii|j − Ii|m.jy
m + 2ImIi.m.j − Ii.mIm.j , (8)

where “|” and “.” are the horizontal and vertical covariant derivatives with respect to h, respectively. Then R := Ri
j

family is called the Riemann curvature [21, 24].
Let (M,F ) be a Finsler manifold, and φ; a diffeomorphism on M . A vector field V : M → Tφ(x)M is called

a conformal vector field, or an infinitesimal conformal transformation on manifold (M,F ), with conformal factor
ρ = ρ(x) on M , if a 1-parameter infinitesimal generator group {φt}, generated by a vector field V , is a conformal
transformation on manifold (M,F ). This implies that F

(
φt(x), (φt)∗(y)

)
= e2ρ(x)tF (x, y). If ρ is constant, then

the vector field V is called homothetic; and if ρ is zero, V is called isometric, or a Killing vector field.
Conformal vector fields have been investigated on Finsler manifolds with (α, β)-metric, and we have the following
proposition for their special cases.

Proposition 2.1 ([8]). Let F = α + β be a Randers metric on a manifold M , and (h,W ) be its navigation
representation. Then a vector field V on (M,F ) is conformal; if and only if V satisfies the following system of
PDEs:

i) Vi|j + Vj|i = 4σhij ,

ii) V jWi|j +W jVj|i = 2σWi,

where we use hij to raise and lower the indices of V and W , and “;” is the covariant derivative with respect to the
Levi-Civita connection of Riemannian metric h.

3. Proof of the Theorems

Proof of Theorem 1.1 Let F = α+β be a Randers metric defined by a vector field W , and a Riemannian metric
h, on a manifold M , and consider Ri

i to be a Ricci scalar of F . According to (8), we may write

Ri
i = R̄i

i + 2Ii|i − Ii|m.iy
m + 2ImIi.m.i − Ii.mIm.i, (9)
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where

2Ii|i = F 2
{
−
(
Ri + Si

)
|i + V i

|iR+ V iR|i

}
+ F

{
− 2Si

0|i − 2F|i
(
Ri + Si

)
−R|0 − 4V iV i

|iR0R0|i + 2V iF|iR
}

+
{
2R0|0 − 2F|0Si

0 − F|0R+ V i
|iR00 − 2V iF|iR0 + V iR00|i

}
− 1

F
{R00|0}+

1

F 2
{F|0R00},

= A1F +B1F
2 + E1 + C1

1

F
+D1

1

F 2
,

−Ii|m.iy
m = F

{
2F|0.i

(
Ri + Si

)
− 2F.i

(
Ri + Si

)
|0 −

(n+ 3)

2
R|0 − V i

|0R0 + V i
(
F|0.iR+ F.iR|0

)}
+ F 2

{
− 1

2
V i

|iR
}
+

1

F
{R00|0} −

1

F 2

{
(n+ 1)F|0R00

}
+ E2,

= A2F +B2F
2 + E2 + C2

1

F
+D2

1

F 2
,

2ImIi.m.i =

{
− 2S0

m − F 2
(
Rm + Sm

)
+ ym

(
2R0 −

1

F
R00 − FR

)
− V m

(
2FR0R00 − F 2R

)}
×
{
− F.m.iSi

0 − 2F.mF.i

(
Ri + Si

)
− 2FF.m.i

(
Ri + Si

)
+ δim

(
R0 +

F.i

2F 2
R00 +

1

F
R0i −

1

2
F.iR

)
+ yi

(
− F.iF.m

F 3
R00 +

F.m

F 2
R0i +

F.i

F 2
R0m − 1

F
Rim

)
+ n

(
Rm +

F.m

2F 2
R00 −

1

F
R0m − F.m

2
R
)
− V i

(
F.m.iR0 + F.mRi −Rim − F.iF.mR− FF.m.iR

)}
,

= A3F +B3F
2 +G3F

3 + E3 + C3
1

F
+D3

1

F 2
.

Similarly; we have

−Ii.mIm.i = A4F +B4F
2 + E4 + C4

1

F
+D4

1

F 2
.

On the other hand; for the Randers metric expressed by (h,W ), the S-curvature is of the form

S =
(n+ 1)

2F

{
2FR0 −R00 − F 2R

}
.

Consequently; we have

Ṡ =
(n+ 1)

2

{
2R0|0 +

F|0

F 2
R00 −

1

F
R00|0 − F|0R− FR|0

}
,

= A5F +B5F
2 + E5 + C5

1

F
+D5

1

F 2
.

Let F be a quasi-Einstein Finsler metric. Note that the Ricci curvature of F is related to the Ricci curvature αRic
of α by αRic + Ii i, [25]. Then

0 = Ric+Ṡ − (n− 1)c(x)F 2, (10)

= αRic + Ii i + Ṡ − (n− 1)c(x)F 2,

= αRic +AF + BF 2 + GF 3 + E + C 1

F
+D 1

F 2
− (n− 1)c(x)F 2,

where A, B, C, D, E , F , G, and E are polynomials in which

A =

5∑
1

Ai, B =
5∑
1

Bi, C =
5∑
1

Ci, D =
5∑
1

Di, E =
5∑
1

Ei.

Multiplying (10) by F 2, will yield
Rat+α Irrat = 0,
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where Rat and Irrat given below are both polynomials of y:

Rat =
{
5βG +

(
B − (n− 1)c(x)

)}
α4 (11)

+
{(

αRic + E
)
+ 3βA+ 6β2

(
B − (n− 1)c(x)

)
+ 10β3G

}
α2

+
{
βC + β2

(
αRic + E

)
+ β3A+ β4

(
B − (n− 1)c(x)

)
+ β5G +D

}
,

Irrat = {G}α4 (12)

+
{
E +A+ 4β

(
B − (n− 1)c(x)

)
+ 10β2G

}
α2

+
{
2β
(
αRic + E

)
+ 3β2A+ 4β3

(
B − (n− 1)c(x)

)
+ 5β4G + C

}
.

The necessary and sufficient condition for F to be a quasi-Einstein Finsler metric, is that Rat = 0 and Irrat = 0.
A similar proof can be found in [14], and we omit it. Now;

0 = Rat−β Irrat, (13)

=
(
α2 − β2

){
αRic00 + E − 2βA+ 4β

(
α2 + β2

)
G +

(
α2 + 3β2

)(
B − (n− 1)c(x)

)}
+D,

in which

D =

{
(3− n)

2
F|0 −

(
3

2F 2
+

n

2F 2
− nV mF.m

2F 2

)
R00

}
R00. (14)

It is clear that
(
α2 − β2

)
divides D, where D = κ(x)R00, and we have

R00 = σ(x)
(
α2 − β2

)
= −2ζ(x)h2, (15)

which proves the first part. We also have

Rij = −2chij , Rij|0 = −2c|0hij ,

R = −2c∥V ∥2h, R|0 = −2
(
c0∥V ∥2h + 2c(R0 + S0)

)
.

For the second part; inserting (15) into (13), and dividing by
(
α2 − β2

)
, we get

αRic00 = −E + 2βA− 4β
(
α2 + β2

)
G −

(
α2 + 3β2

)(
B − (n− 1)c(x)

)
. (16)

Returning to the expression Irrat = 0; replacing αRic00, and wherever possible, using R and its derivatives, as
stated above; and also making use of

F|k =
2cF (yk − FVk) + F (FSk + Sk0)

M
,

F|0 = 2cF 2 +
F 2

M
S0,

F.m|0 =

(
h2

M3
S0 + 2c

F

M

)
yk − FVk − F 2

M2
S0Vk − F

A
Sk0,

where M =
√
λh2 + V 2

0 ; we arrive at the following formula:

Si
0|i = A+ 2β

(
B − (n− 1)c(x)

)
+ G

(
α2 + 3β2

)
−
(
C + 4βσ(x)

)
λ, (17)

which concludes our proof. □

To prove theorem 1.2, we need the following two propositions:

Proposition 3.1 ([18]). Let F (x, y) be a Finsler metric on a manifold M , and V1 be a vector field on M with

F (x,−V1) ≤ 1. Suppose F̃ (x, y) is a Finsler metric defined from the navigation data (F, V1) by (7); and V2 is a

vector field on M with F̃ (x,−V2) ≤ 1. Then the Finsler metric ˜̃F (x, y) defined from (F̃ , V ) by (7), satisfies the
identity

˜̃F (x, u) = F
(
x, u− ˜̃F (x, u)(V1 + V2)

)
, (18)

where y = u− F̃ (x, y)V .

274



I. Khamonezhad et al., AUT J. Math. Comput., 6(3) (2025) 269-277, DOI:10.22060/AJMC.2024.22745.1189

For the special case of the above proposition, we have the following:

Proposition 3.2 ([20]). Let F be a Randers metric on an n-dimensional manifold M , defined by the navigation
data (h,W ). F is a weakly (a, b)-Ricci weighted Einstein, satisfying

Ric∞ = (n− 1)

(
3θ

F
+ σ

)
F 2,

with respect to some volume form dV ; if and only if h is a Ricci almost gradient soliton, satisfying hRic+Hessh f =
(n−1)µh2, and F is of isotropic S-curvature R00 = −2ch2, for some scalar function c. In this case, dV = e−fdVBH ,
and we have

σ = µ− c2 − 2ciW
i +

1

n− 1

{
− fi;jW

iW j + fiSi
}
,

θi =
1

3(n− 1)

{
(2n− 1)ci + fi;jW

j + fjSj
i − cfi

}
.

For the special case of θ = 0, we have the following corollary for the quasi-Einstein Finsler metric:

Corollary 3.3. Let F be a Randers metric on an n-dimensional manifoldM , defined by the navigation data (h,W ).
F is a weakly weighted Einstein, satisfying

Ric∞ = (n− 1)σF 2, (19)

with respect to some volume form dV ; if and only if h is a Ricci almost gradient soliton, satisfying hRic+Hessh f =
(n−1)µh2, and F is of isotropic S-curvature R00 = −2ch2, for some scalar function c. In this case, dV = e−fdVBH ,
and we have

ζ = µ− σ2 − 2ciW
i +

1

n− 1

{
− fi;jW

iW j + fiSi
}
.

Proof of Theorem 1.2 By assumption, V is a conformal vector field on F , with conformal factor c(x). Then,
according to the proposition in [18], V must be a conformal vector field of h, with conformal factor c(x). Since F is a
quasi-Einstein Finsler metric with Ric+Ṡ = (n− 1)σ(x)F 2, according to theorem 1.1, F is of isotropic S-curvature
σ(x). It follows from corollary 3.3 that h is a Ricci almost gradient soliton with hRic + Hessh f = (n− 1)µh2, and
ζ = µ− σ2 − 2σiW

i + 1
n−1

{
−fi;jW iW j + fiSi

}
. On the other hand; according to the main theorem in [18], F̃ is

of isotropic S-curvature, and by proposition 3.1; F̃ defined from (F, V ) by (7), satisfies

F̃ (x, u) = h
(
x, u− F̃ (x, u)(V +W )

)
. (20)

Consequently; F̃ can be regarded as a Finsler metric, generated from (h, V +W ) by (7). Thus; (V +W ) is also a
conformal vector field of h, with conformal factor (σ− c). Then by corollary 3.3; F̃ (x, u) is a quasi-Einstein Finsler

metric, given by R̃ic(x, u) + ˜̇S(x, u) = (n− 1)(c− σ)F̃ (x, u), and we have

ζ̃ = ζ − c(c− 2σ) + 2(ci − σi)V
i + 2ciW

i − 1

n− 1

{
− fi;j

(
2W iV j + V iV j

)
+ fiSi

}
,

hereby, completing our proof. □

Proposition 3.4 ([20]). Let F be a Randers metric on an n-dimensional manifold M , defined by the navigation
data (h,W ); and it is assumed that ν ̸= 0. F is a weakly (a, b)-weighted Einstein, satisfying

R(a,b) = (n− 1)

(
3θ

F
+ σ

)
F 2,

with respect to a volume form dV = e−fdVBH ; if and only if h is (a, b)- weighted Einstein, satisfying hRic +
aHessh f − b(df ⊗ df) = (n− 1)µh2 with respect to dV = e(−f)dVh, and W satisfies Wi|j +Wj|i = −4chij for some
scalar functions f , c, and µ, on M . In this case; we have

σ = µ− c2 − 2ciW
i +

1

n− 1

{
− afi;jW

iW j + afiSi − bc2
(
n+ 1

)2
+ bfifjW

iW j
}
,

θi =
1

3(n− 1)

{[
3(n− 1) + a(n+ 1)

]
ci + 2afi;jW

j + 2afjSj
i − 2cfi

[
a+ (n+ 1)b

]
− 2bfifjW

j
}
.
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Corollary 3.5. Let F = α+β be a Randers metric on a manifold M with dimensions n ≥ 3, and V be a conformal
vector field on (M,F ), with conformal factor c(x). Let F̃ be a Randers metric defined from navigation data (F, V )
by (7). If F is a weakly (a, b)-weighted Einstein metric with

Ric(a,b)(x, y) = (n− 1)

(
3θ

F (x, y)
+ σ

)
F̃ 2(x, y),

then F̃ is also a weakly (a, b)-weighted Einstein metric with

R̃ic(a,b)(x, u) = (n− 1)

(
3θ̃

F̃ (x, u)
+ σ̃

)
F̃ 2(x, u),

where

θ̃ := (θi − ci)u
i,

ζ̃ := ζ − c2 + 2ciV
i,

u := y + F (x, y)V = y + F̃ (x, u)V,

in which, θ and θ̃ are 1-forms on M , and σ and σ̃ are scalar functions on M .
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