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ABSTRACT: This paper investigates.a specific form of weighted Ricci curvature Review History:
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1. Introduction

In Finsler geometry, the choice of a measure is not as straightforward as in Riemannian geometry, where there
is a unique canonical measure. Consider (M, F,m) to be a Finsler-measured manifold, where (M, F') is a Finsler
manifold with the metric F, and m is a positive C*°-measured on M. For N_€ R\ {n}, Ohta introduced the
following Finsler weighted Ricci curvature:

0

Ricy () = Ric(z) + 4, (0) N_n’

where ), is C* in R and 7 is the geodesic M with 7(0) = v, respectively [1]. As N'— oo, we arrive at the following
relation:

Ricoo () = Ric(z) + 4//(0),

which is called an co-weighted Ricci curvature [3]. When N — n and 1, (0) = 0, we have

Ric,, (v) = Ric(v) + 1,/ (0),
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and when N — n and 1/4’7(0) = 0, we have Ric,, = —oo. Both cases are known as n-weighted Ricci curvatures. We
also assume that Ricy (0) = 0.

Z. Shen in 1997, introduced a new quantity which is called the S-curvature [15]. Substituting vy (0) with S(x),
yields the following equation:

rncN(x)::Rxxx)+-3(x)-ﬁfé7;s2, (1)

wlhere S is the eovariant derivative of S along a geodesic of F. Again, as N — oo,
Rics () = Ric(z) + S(x). (2)

This was first studied by 'Ohta [10]. In the special case, a Finsler metric F is called quasi-Finstein (QE) [25]; if it
satisfies

Ric(gp) = Rics = (n — 1)cF>. (3)

The projective Ricci curvature introduced by Z. Shen [16], is a specific type of weighted Ricci curvature that
possesses the property,of projectivedinvariance, when the volume form is fixed [17] (additionally [6][7]), and can be
formulated as

S‘+52
n+1  (n+1)2

PRic(y) =Ric(y) + (n— 1) . (4)

The weighted projective Ricci curvature with respect to a fixed Finsler metric and a volume form, with coefficient
00, is defined as

WPRic, = Ric+(n — 1)S% + S‘kyk,

where § = n%rl [S+dIn(2)], and o is the eoeffi¢ient of Finsler manifold [22].

Another weighted Ricci curvature is the (a, c)-weighted Ricci curvature in Finsler geometry, that was proposed
by Z. Shen and R. Zhao [2], and we express it as
Ric(q,¢)(y) = Ric(y) + as — 82, (5)

where a and c are constants. Finally; we define the generalized weighted Ricci curvature by

. . K . 4 v
Ric(q,¢)(y) = PRic(y) — i <S + N 152> + msz, (6)

where k= (n—1) —a(n+1), and v == 3(n — 1) —4a(n+ 1) — c¢(n + 1)2. To find/out why we express (a, c)-weighted
Ricci curvature in the form (6), see [2, 20].

C. Robles investigated the Randers Einstein metrics in her Ph.D thesis and obtained the necessary and sufficient
condition for the Randers metric to be Einstein [14] (see also [23]). B. Rezaei andfothers in 2007, obtained the
necessary and sufficient condition for the Kropina, Matsumoto, and square metrics to be Einstein, when 3 is a
constant Killing form [13]. In 2012 he proved that every n-dimensional (n >“3) Einstein Matsumoto metric is a
Ricci-flat metric with vanishing S-curvature[12]. H. Zhu introduced the notion of quasi-Einstein Finsler metrics and
characterized it. He also determined the quasi-Einstein square metrics [25]. In 2014, Shen and /Yu classified the
Einstein square metrics [19]. The natural question that arises is that, under what conditions is the Randers metric
F defined by (h, W), a quasi-Einstein Finsler metric? By answering this question, we can establish'the relationship
between the curvatures of a Finsler metric F' defined by (h, W), and another Finsler metric F {defined by (F, V).

Considering the navigation data (h, W), and assuming that ||[W|[, < 1; we define the Randers metric F as

VARZ+WE W,
F=Y_ __ 0 __ 2 7
3 3 (7)
where W; := h;;WJ and A :=1— ||WH,2L > 0.
Based on the above result, we first prove a characterization as follows in section 3:
Theorem 1.1. Let F = a+ (8 be the Randers metric on an n-dimensional manifold M, defined by the navigation

data (h, W), according to (7); with dV as the volume form. Then F will be a quasi-Finstein Finsler metric; if and
only if it satisfies the following conditions:
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1) ROO = —20’h2,

ii) Ricoo = —2A8 — (? +38?) (B — (n — 1)c(x)) — 4B8G (a® + 2) — € — 2k(z)h?,
iii) Sy, = A+28(B—(n—1)c(z)) +G(a® +36%) — (C+4Bo(x))A,
where A, B, C, D, £, F, G, and £ are polynomials, and X is a scalar function on M.
Z. Shen and Q. Xia in 2012, proved the relationship between non-Rimannian quantities, such as the isotropic S-
curvature, and the weakly isotropic flag curvature of the Randers metrics F', with F'(x, —V,) < 1 and F'; expressed
by the navigation problem (F, V), where V is a conformal vector field on M [18]. The same result was proved for the

Kropinadnetrics F, with F(z, —V,) < 1 and F [4]. In theorem 1.2; we prove a similar result for the quasi-Einstein
Fingler metrics.

Theorem 1.2. Let F'= a+ 3 be a Randers metric on a manifold M with dimensions n > 3, and V' be a conformal
vector field on (M, F'), with conformal factor c(x). Consider F' to be a Randers metric defined from navigation data
(F,V) by (7). Then if F' isya quasi-Einstein Finsler metric with

Riceo (2, y) = Ric(z,y) + S(z,y) = (n — 1)cF?(z,y),

then F is also a quasi=Binstein’ Finsler metric with

—

Rics (2, u) = Ric(z, u) + Sz, u) = (n — 1)éF2(z, u).

2. Preliminaries

Let (M, F) be a Finsler manifold. / The non-negative function F' on T'M is a Finsler metric of M (or Finsler
structure), if it satisfies three conditions: (i) regularity, (ii) positive 1-homogeneity, and (iii) strong convexity. The
Busemann-Hausdorff measure on M, shich is the most fundamental measure in Finsler geometry, is defined by [11]

mpy(de)é= Oy (r)de'da?®. .. dz",

where the function ®pp is given by

Vol(B"(1)) i f
Do) Vol({(y ) eR

F(Lyz%) < 1})

The quantity S, measures the distortions rate of change along the geodesics, where distortions 7(z, y) are defined as

detg;(z,y)

=1
The S-curvature and S are defined by
d . i
S(z,y) = pn [7(c(t),é(t))] = 7:(2,9)y’,
t=0
. d . ;
S(xvy) = %[S(C(t)ac(t))] :S|z(m7y)y 9
t=0
where ¢ = ¢(x) is the geodesic with ¢(0) = z, and ¢ = y, and “|” denotes the horizontal ¢ovariant derivative with

respect to F. A vector field G, induced by a Finsler metric F' on T My, is given by [9]

S 2G ) L

; 0
G:yl @7

ozt

and is called the spray of F, and G'(x,y) are local functions on T My, satisfying G*(z, \y) ==X2G" (@), Where
A > 0 is called the spray coefficient of F.
Consider F to be a Randers metric defined by (7) and let

1
Rij = 5 (Vi + Vi), Sij= §(Vilj — Vjii)

1
2

Ri=RijVI, R=R, V) S =8,;Vi, S=8;Vi=0.
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The spray coefficients of F' can be expressed by [5]
G'=Gp +T1,

where

, 1 . 1y
I' = —PS'y - SF* (R +8) + 2{y

o Vi} (QFRO — Roo — FQR).

Then Rij =R’ (x,y) may be written as

R'; =R'; + 21|Zj — Tm.jym +21"r,, ; — I, 17, (8)
where “|” and “.” are the horizontal and vertical covariant derivatives with respect to h, respectively. Then R := R’ j
family is calledythe Riémann curvature [21, 24].

Let (M, F) be a Finsler manifold, and ¢; a diffeomorphism on M. A vector field V' : M — T, M is called
a conformal vector field, or an infinitesimal conformal transformation on manifold (M, F'), with conformal factor
p = p(z) on M, if a L-parameter infinitesimal generator group {¢:}, generated by a vector field V', is a conformal
transformation on manifold (M #). This implies that F(¢(2), (¢).(y)) = e**@'F(z,y). If p is constant, then
the vector field V' is called hemothetic;/and if p is zero, V is called isometric, or a Killing vector field.
Conformal vector fields have been investigated on Finsler manifolds with («, 8)-metric, and we have the following
proposition for their special cases.

Proposition 2.1 ([8]). Let F =fa + Svbe’a Randers metric on a manifold M, and (h,W) be its navigation

representation. Then a vector field V. on (M, EY isyconformal; if and only if V' satisfies the following system of
PDEs:

1) Vijj + Vi = dohij,

where we use h;; to raise and lower the indices of V and W, and 7 is the covariant derivative with respect to the
Levi-Civita connection of Riemannian metric h.

3. Proof of the Theorems

Proof of Theorem 1.1 Let F = a+ 8 be a Randers metric defined by a vector field W, and a Riemannian metric
h, on a manifold M, and consider R?; to be a Ricci scalar of . According £6.(8), we may write

Ry =R+ 20, — T, ™ + 27T, , =T, 17, (9)

|m.
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where
20, = F{ = (RT+ ), + VIR + V'R;;}
+ F{ — 28", = 2F;i(R'+ 8") = Rjo — 4V'V{;RoRoji + 2viﬂiR}
. ‘ . : 1 1
+ {2730‘0 —2F)0S"y — FloR + V{;Roo — 2V FiRo + V’ROOH} - F{Romo} + ﬁ{ﬂoRoo},

1 1
<& 2
=AM F+ B F +E1+CIF+D1F2’

n+3)

= F{QFIO-i(Ri +8%) = 2F;(R' + Si)\o ( ——Rjo— ViyRo+ V' (Fo.R+ F.iRlo)}

1. 1 1
+ F2{ = 2VZ¢R} + F{Romo} - ﬁ{(n +1)FoRoo } + Eo,

1
ﬁ?

_ 1
aA™L = { 228° A F?(R™+ S™) +y™ <2R0 — FROO — FR) — V™(2FRoRoo — FZR)}

1
= AoF + BoF? 4 B, + o + Do

{ FiiS'y =2F,Fi(R'+8") = 2FF 1, ;(R' + §")

. F, 1 i = Fiflm Fom F; 1
+4",, <Ro + TFQROO + FROZ FZR) +y ( —="Roo + 72 —5 Roi + ﬁROm - FRim)
F 1 Fm %

1 1
. 2 3
= A3F + B3F* + G5 F® B3 + C3 —Dg—

Similarly; we have

, 1 1
I 1" = AyF % B4 F? + By + Cy— + Dy—.
mb i 4 by ™ + fuy + Oy ja + Dy 72
On the other hand; for the Randers metric expressed by (h, W)gthe S-curvature is of the form

S:(n—i—l

{2FRo— Roo — FZR )\
Consequently; we have

S:

n+1 F 1
( 5 ) {2R0|0 + FQROO - fR00|0 =FoR — FR|0} )

1 1
_ 2
= A;F + BsF +E5+C’5F+D5F2

Let F be a quasi-Einstein Finsler metric. Note that the Ricci curvature of F' is related tothe Ricci curvature “Ric
of a by *Ric + 17, [25]. Then

0 =Ric+S — (n — 1)e(z)F?, (10)
=Ric+ 1", + 5 — (n— 1)c(z)F?,

. 1 1
= “Ric + AF + BF* + GF3 + € + Cx+ D —(n- De(az)F?,

where A, B, C, D, £, F, G, and £ are polynomials in which

5 5 5 5 5
A=A, B:Z:BZ, czzljci, D= D, E£=)E
1 1 1

Multiplying (10) by F?, will yield
Rat +aIrrat = 0,
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where Rat and Irrat given below are both polynomials of y:
Rat = {5ﬂg +(B=(n- 1)c(x))}a4 (11)
+{ ("Ric+ &) + 384+ 65 (B — (n — 1)e(x)) + 108°G pa®
+{8C+ B2 ("Ric + €) + A+ B (B~ (n - )e(x)) + B°G + D},
Irrat = {G}a* (12)
+ {5 + A+ 48(B - (n— () + 10f}2g}a2
+{28("Ric + £) + 3824+ 46 (B~ (n — 1)e(x)) +58'G + C}.

The necessary and sufficient,condition for F' to be a quasi-Einstein Finsler metric, is that Rat = 0 and Irrat = 0.
A similar proofican bé found iny[14], and we omit it. Now;

0 = Rat — g Irrat, (13)
= (a?%8?) {aRicoo € — 28A+4B(a* + )G + (a® +38%) (B — (n — 1)0(3:))} +D,

in which

(3—mn) 3 n nV™F .,

It is clear that (o — 3?) divides D, whére D =#(2)Roo, and we have
Rao = ol(x) (a2 — B2) = —2((x)h?, (15)
which proves the first part. We also have
Rij = —2chyj, Rijjo = —2¢j0hay,
R=—2|V[;,  Rpo = —2(col VI +2¢(Ro + S0)).-
For the second part; inserting (15) into (13), and dividing by (042 - 52), we get
*Ricgo = —€ + 28A — 4B(a® + %)G — (a® +85°) (B (n — 1)c(x)). (16)

Returning to the expression Irrat = 0; replacing *Ricgg, and wherever pessible, using R and its derivatives, as
stated above; and also making use of

2¢F(yr, — FVi) + F(FSy. + Sio)

B =

M )
F2
Flo=2cF? 4+ —§
|0 c =+ M 0
h? F F? F
Fomjo = (MSSO + 26M>yk - FVi — WSOVk - ZSkO,

where M = \/m ; we arrive at the following formula:
Sio‘i =A+ QB(B —(n— 1)c(ac)) + Q(a2 + 352) - (C + 4ﬁ0(x))>\, (17)

which concludes our proof. O

To prove theorem 1.2, we need the following two propositions:

Proposition 3.1 ([18]). Let F(z,y) be a Finsler metric on a manifold M, and Vi be a vector field onsM with
F(xz,—V1) < 1. Suppose F(z,y) is a Finsler metric defined from the navigation data (F,Vi) by (7); and V4 is a
vector field on M with F(x,—Va) < 1. Then the Finsler metric F(x,y) defined from (F,V) by (7), satisfies the
identity

ﬁ'(m,u) = F(v,u — F(z,u)(Vi + V2)), (18)

where y =u — F(x,y)V.
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For the special case of the above proposition, we have the following:

Proposition 3.2 ([20]). Let F be a Randers metric on an n-dimensional manifold M, defined by the navigation
data (h,W). F is a weakly (a,b)-Ricci weighted Finstein, satisfying

Rico, = (n — 1) (i’f + 0) F?,

with respect 40 some volume form dV ; if and only if h is a Ricci almost gradient soliton, satisfying "Ric+ Hess, f =
(n—1)puh?; and F is of isotropic S-curvature Rog = —2ch?, for some scalar function c. In this case, dV = e~ fdVpg,
and/we have

o=u— 62 — QCZ'W’L + m{ - fi;szwj + fiSZ},

= gy {20 = Ve W2 4 138~ efi}.

For the special case of § =0, we have the following corollary for the quasi-Einstein Finsler metric:

Corollary 3.3. Let F be a Randers metric on an n-dimensional manifold M, defined by the navigation data (h, W).
F is a weakly weighted Einstein, satisfying

Rico, = (n — 1)oF?, (19)

with respect to some volume form dV ; ifsand only if h is a Ricci almost gradient soliton, satisfying "Ric+ Hess, f =
(n—1)puh?, and F is of isotropic S-curvatureRog = —2ch?, for some scalar function c. In this case, dV = e~ fdVpg,
and we have

C: M—O’2 — QCin + ’{ — fi;jW’W] —l—flSl}
n—1 '

Proof of Theorem 1.2 By assumption, Vis a conformaltvector field on F', with conformal factor ¢(x). Then,
according to the proposition in [18], V must be a conformal vector field of h, with conformal factor ¢(z). Since F'is a
quasi-Einstein Finsler metric with Ric+S = (n —=1)o () F2gaccording to theorem 1.1, F' is of isotropic S-curvature
o(x). It follows from corollary 3.3 that h is a Ricci almest gradient,soliton with "Ric + Hessy, f = (n — 1)uh?, and
C=p—o0%—-20,W"+ ﬁ {—fi;jWin + fiSi}. On the othershand; according to the main theorem in [18], Fis

of isotropic S-curvature, and by proposition 3.1; F' defined ffomy(F, V) by (7), satisfies

F(z,u) = h(x,u—ﬁ(a:,u)(V—i—W)). (20)

Consequently; F' can be regarded as a Finsler metric, generated from (h, V 4 W) by (7). Thus; (V + W) is also a
conformal vector field of h, with conformal factor (¢ — ¢). Then byeorollary 3.3; F(x, u) is a quasi-Einstein Finsler

metric, given by Ric(z, u) + S(z,u) = (n — 1)(c — ) F(x,u), and we have

. , , 1 o B ) ,
{=C—cle—20)+2(c; =)V + 2 W' — — 1{ — [ WV AL VD) + £S5,
hereby, completing our proof. O

Proposition 3.4 ([20]). Let F be a Randers metric on an n-dimensional manifold M, défined by the navigation
data (h,W); and it is assumed that v # 0. F is a weakly (a,b)-weighted Einstein, satisfying

0
R(a,b) = (Tl — 1) (i_, + 0)F2,

with respect to a volume form dV = e~ fdVgy; if and only if h is (a,b)- weighted Einstein, satisfying "Rie +
aHessy, f — b(df @ df) = (n — 1)ph? with respect to dV = e~ dVj,, and W satisfies Wi; + Wy = —4chy; for some
scalar functions f, ¢, and p, on M. In this case; we have

o=pu—c—2c,W'+ ﬁ{ — afi;jWin +af; St — ch(n + 1)2 + bfifjWin},
1 . ; ;
0; = m{[i’)(n — 1) +a(n+1)]c; + 2afy; W + 2af; 8, — 2¢f;[a+ (n+ 1)b] — 2bfifjWJ}.
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Corollary 3.5. Let F' = a+ 3 be a Randers metric on a manifold M with dimensionsn > 3, and V' be a conformal
veetor field on (M, F'), with conformal factor c(x). Let F' be a Randers metric defined from navigation data (F,V)
by (7). If F is a weakly (a,b)-weighted Finstein metric with

Ric(2:9) = (0= 1) (s + ) F2a0)

T,y

thed F islalso a weakly (a,b)-weighted Einstein metric with

R\ig(a,b)(xv’u’> =(n— 1) ( = 3 +&> FQ(J?,U),

F(x,u)
where
0 := (0; — c;)u',
g: =(— A+ QCiVi,
u=y+ F(z,y)V = y—|—F(sc,u)V,

in which, 0 and 8 are 1-formis on M,-dnd o and G are scalar functions on M.
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