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ABSTRACT: Robust regression methods including, least trimmed squares, are
among the most important methodologies for computing exact coefficient estimators
when data is polluted with outliers. There is interest in generalizing least trimmed
squares for regression models with heavy-tailed stable errors. This manuscript,
compares estimating coefficients methods with the robust least trimmed squares
method in stable errors case. Therefore, we propose stable least trimmed squares
and nonlinear stable least trimmed squares methods for linear/nonlinear regression
models with stable errors, respectively. The joint distribution of ordered errors
is used with the finite variance property of ordered stable errors, whose indexes
are defined by cut-off points (Subsection 3.1). We make many comparisons using
simulated and real datasets.
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1. Introduction

Least Trimmed Squares (LTS) is the most widespread strategy in robust linear regression and is basic for under-
standing regression issues containing outlier values. The robust LTS strategies use the Ordinary Least Squares
(OLS) fit for linear regression models whose errors are Gaussian. Hence, amplifying the robust LTS strategies to
find robust estimations of linear regression coefficients with heavy-tailed stable errors will be imperative.

Heavy-tailed stable data, [20], have a great interest field, [11] and [1]. The reality that stable distributions
are upheld by the generalized central limit theorem makes them the most important among other heavy-tailed
distributions. Stable distributions have seen wide interest, which energized to spread of the regression models with
stable errors. Stable data is characterized by infinite moments, so it would be interesting to search for robust LTS
solutions of the regression coefficients.

In this paper, we are interested in robust LTS estimates of linear and nonlinear regression coefficients when
errors are stable. Here, the performance of classic LTS based on OLS fit can be weak. Therefore, robust strategies

*Corresponding author.
E-mail addresses: ohammadbassam.s@aut.ac.ir, naghshineh@aut.ac.ir

2783-2287/© 2025 The Author(s). Published by Amirkabir University of Technology Press.

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)

241

http://dx.doi.org/10.22060/AJMC.2024.22960.1207
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


M. B. Shiekh Albasatneh et al., AUT J. Math. Comput., 6(3) (2025) 241-255, DOI:10.22060/AJMC.2024.22960.1207

should be used based on Maximum Likelihood Estimator (MLE) to generalize robust LTS for heavy-tailed error
regression.

1.1. Outline

In Section 2, we defined the breakdown point then we mentioned different formulas for its computation using
trimming proportion. We defined the robust LTS method and provided a detailed overview of its development and
contribution to compute optimal robust estimates for linear regression coefficients. We also explain the procedures
for selecting sub-datasets and recall the algorithm of the fast approximate LTS method. Likewise, we mentioned
the robust Nonlinear Least Trimmed Squares (NLTS) method in nonlinear regression based on Nonlinear Least
Squares (NLS), [4] and recall the NLTS algorithm.

Section 3 defined stable distributions by their characteristic function and mentioned the property of ordered
stable errors with finite moments. The MLE method is presented to estimate linear regression coefficients using
the probability density function of stable distributions. Finally, methods for computing MLE for error distribution
parameters based on stable errors with finite variance and regression residuals are presented.

In Section 4, stable linear regression models are defined, and a brief overview of estimating their coefficients
provided. We focus attention on the most important methods, such as the [21] (NOR) and the TLS, [22] methods.
Section 5 presented the method proposed by [2] as the robust Stable Least Trimmed Squares (SLTS) method in
the linear case and the robust Nonlinear Stable Least Trimmed Squares (NSLTS) method in the nonlinear case.
The breakdown point for linear and nonlinear cases was defined, the differences between them were determined,
and the algorithms were presented. Finally, examples of simulated and real datasets are provided in Section 6. The
conclusion of the manuscript is in Section 7.

1.2. Preliminaries

Consider the multiple linear regression model:

Y =Xθ + ε, (1)

where Y = (yi)1≤i≤n is a response variable and, X = (xij)1≤i≤n
1≤j≤p

is a design matrix with xi,1 = 1 for all i.

Components of error vector ε = (εi)1≤i≤n are i.i.d. Gaussian distribution with zero expectation. The coefficient
vector θ = (θ1, . . . , θp)

⊤ to be estimated.
Consider the multiple nonlinear regression model (2):

Y = f(X,θ) + ε, (2)

where X = (xi,j)1≤i≤n
1≤j≤k

is design matrix, f(X,θ) is a nonlinear regression function, and θ,Y , ε are defined as

above.
Using the estimated regression coefficients, θ̂, we can compute the predicted response variable Ŷ = Xθ̂ and

define the linear regression residuals (e) as follows:

e := Y − Ŷ .

The residuals e = (e1, . . . , en)
⊤ are key quantities in calculating robust linear regression estimates and a basis for

finding the optimal solutions.

2. Robust Least Trimmed Squares (LTS)

Robust regression could be a wide extent of coefficient estimation strategy that overcome a blend of complexities
forced by the classical strategies and discover the optimal solutions. The rise of robust regression strategies has
profited from recognizing outlier values and achieving broad results by finding robust solutions to many complex
problems.

Let Zn′ = {(Y ,X)} = {(yi, xi,1, xi,2, . . . , xi,p)}, i = 1, . . . , n′ is the original dataset,
Zm = {(Y ,X)} = {(yi, xi,1, xi,2, . . . , xi,p)}, i = n′ + 1, . . . , n′ +m is the all possible corrupted samples that
are obtained by any m of arbitrary values (outliers), and consider Zn = {(Y ,X)} = {(yi, xi,1, xi,2, . . . , xi,p)},
i = 1, . . . , n′,n′ + 1, . . . , n′ +m = n is the dataset polluted with m outlier, where (xi,1, xi,2, . . . , xi,p) is the ith row
in the design matrix X and (yi) is the ith row in the response variable Y . Applying some regression method to
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Zn′ gives estimated coefficients θ̂n′ = (θ̂′1, . . . , θ̂′p)
⊤ and to Zn gives θ̂n = (θ̂1, . . . , θ̂p)

⊤. Therefore, the breakdown

point B∗
n(θ̂n,Zn) can be defined as follows:

B∗
n(θ̂n,Zn) = min

0≤m<n

{
m

n
; sup

Zm

||θ̂n′ − θ̂n|| = ∞

}
, (3)

where || · || = || · ||p is the L
p

norm. Therefore, as the outlier values increase, we say that the estimate collapses.
Consequently, the breakdown point prevents the estimate from collapsing and leads to determining the optimal
solution corresponding to the minimum sum of the ordered squared residuals.

[13] provided the first definition of the breakdown point, which has been developed by [14]. [8] believed that
the definition of breakdown point must be rearranged and reflect the behavior of the measurable strategies for the
bounded sample. [6] expanded this concept to other cases, such as deriving an upper bound for the breakdown
points of equivalence statistical functional and proving that the connection between breakdown and equivalence
is fragile. The positive breakdown points strategies in the linear regression proposed by [26] are the most robust
linear regression procedures and have different applications, [17]. The most important strategy is the robust LTS
presented by [25].

The computation of the robust LTS estimator depends on detecting the breakdown point h, setting all sub-
datasets, and performing OLS fit for all sub-datasets. The final robust LTS solution has the minimum sum of
ordered squared residuals. The breakdown point is communicated in a few formulas such as h = [n(1 − ϕ)], [28],
where ϕ is the trimming proportion. The breakdown point h = [n/2] + [(p+ 1)/2] is the hieghest breakdown point
in linear regression, [28], page 132, where p is the number of coefficients, and n is the sample size. They assigned
sub-datasets in two ways; h−subset, [24], and p−subset, [30] pages 185-194. The p−subsets strategy gives exact

and solid results, particularly with datasets polluted with outlier values. The estimator θ̂LTS based on p−subsets
exists and can be obtained analytically. The long mathematical operations within the classic strategy are driven by
the robust FAST-LTS strategy proposed by [27]. They consider p−subsets as the essential strategy for computing
the estimator of robust LTS, whether the data is polluted with outliers or not. Quantile regression is considered
a robust strategy that is not affected by outliers, making it comparable with robust regression strategies, [15]. In
this paper, we denoted quantile regression with RQ(·). For example, the RQ(0.5) refers to median regression.

2.1. Linear Computation

To compute θ̂
LTS

of coefficients model (1) based on breakdown point h = [n/2]+ [(p+1)/2], it is necessary to recall
the C−Steps Algorithm 1, convergence, and Algorithm 2 proposed by [27].

Algorithm 1: C-Steps for robust FAST-LTS in linear regression models

1: Take J = 1 and an arbitrary H
J
⊂ {1, . . . , n}, called H

J
= {J1, . . . , Jh} with #H

J
= h.

2: Compute OLS fit using data with index in H
J
.

3: Compute S
J
=

∑h
i=1 e

2
Ji

using the residuals e = (e1, e2, . . . , en)
⊤.

4: Sort the absolute values of residuals |e|π(1) ≤ · · · ≤ |e|π(n), where π is the permutation that gives their ordered
indexes, i.e., π(i) is the index of ith absolute ordered residuals.

5: Put J = J + 1, H
J
= {J1 = π(1), J2 = π(2), . . . , Jh = π(h)}. Go to step 2.

Convergence

The C−Steps loop has iterative steps for H1. It gives many sets H2, H3, . . . and the sums of the squared residuals
corresponding to them S1, S2, S3, . . . , where S1 ≥ S2 ≥ S3 ≥ · · · . If Sm = Sm−1, we say the convergence has
occurred for H1 and the solution here is Hm, m ≥ 2.

2.2. Nonlinear Computation

For nonlinear regression model, many discuss Robust Nonlinear Least Trimmed Squares (NLTS) with breakdown
points in different ways. For example, the unbounded breakdown point and its upper and lower bounds were
determined by [31]. Also, the behavior of the robust NLTS under mixing conditions was discussed by [33] and
others. The NLS has several pillars: a nonlinear model, initial values, and convergence. So, the ϕ could be at most
20% for nonlinear regression, [23]. To compute θ̂NLTS of nonlinear regression coefficients (2) based on a dataset of
size n and given trimming proportion ϕ, perform the following steps in Algorithm 3.
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Algorithm 2: Robust FAST-LTS for linear regression models with Gaussian error

1: For all set k
l
, l = {1, 2, . . . ,

(
n
p

)
}, and coefficients number p, repeat:

I. Draw the set k
l
, k

l
⊂ {1, . . . , n} with #k

l
= p+ 1.

II. Compute θ̂
OLS

using k
l
, and compute the residuals (e1, . . . , en)

⊤.

III. Sort |e|π(1) ≤ · · · ≤ |e|π(n) and put H1 = {π(1), . . . , π(h)}.
IV. Perform twice C−Steps based on H1 yield to S

k
l

2 .

2: For the 10 results with the lowest S
k
l

2 , perform C−Steps until convergence.

3: Report θ̂
LTS

with the minimum S∗
J
and get the optimal set of indexes data H∗

J
.

Algorithm 3: Robust NLTS of nonlinear regression coefficients with Gaussian error

1: Compute the breakdown point h = [n(1− ϕ)], where ϕ is the trimming proportion.
2: Find all sub-datasets of size h and perform NLS fits of all sub-datasets.
3: Derive the optimal solution θ̂NLTS with the minimum sum of the ordered squared residuals.
4: Deduce H∗ with #H∗ = h contains the indexes that give the optimal solution.

3. Stable Distribution and their Order Statistics

Stable distributions are a four parameter family: tail index α ∈ (0, 2], skewness β ∈ [−1, 1], scale γ > 0, and
location δ ∈ (−∞,∞) denoted by S (α, β, γ, δ). The standard stable distribution has zero location and unit scale,
i.e., ε ∼ S (α, β, 1, 0) or simply S (α, β). If ε has a stable distribution, S (α, β, γ, δ), then its characteristic function
can be described in (4) and its moments including variance does not exist.

φε(t) = E (exp (itε)) =

exp
{
−γα|t|α

[
1− iβ

(
tan πα

2

)
(sign t)

]
+ iδt

}
, α ̸= 1,

exp
{
−γ|t|

[
1 + iβ 2

π (sign t) log |t|
]
+ iδt

}
, α = 1.

(4)

There is an interest in estimating the four parameters of a stable distribution, generating stable random variables,
and truncated random variables. For example, simulating truncated stable random variables using a nonlinear
transformation by [29] and truncated stable random variables on the interval (a, b) for any tail index in (0, 2) and
skewness −1 ≤ β ≤ 1 by [32].

3.1. Finite Moments of Trimmed Ordered Stable Variable

Let X1, . . . , Xn be a random sample from S(α, β, 1, 0) and X(1), . . . , X(n) be its corresponding order statistics.
According to Theorem 1 in [18] variance or second moment of the kth ordered stable variable exists, E(ε2(k)) < ∞,

if and only if
[
2
α

]
+1 ≤ k ≤

[
n+ 1− 2

α

]
− 1, where [x] denotes the integer part of x. The numbers c =

[
2
α

]
+1 and

d =
[
n+ 1− 2

α

]
− 1 are called cut−off points.

The most important uses of finite variance for ordered stable variables is computing regression coefficients in
regression models with stable errors. The model (1) can be written with matrix forms as:


Y

y
1

...
yn

 =


X1 X2 · · · Xp

1 x
1,2

· · · x
1,p

...
...

. . .
...

1 x
n,2

· · · x
n,p



θ

θ1
...
θp

+


ε

ε
1

...
εn

,

rewrite model (1) by re-ordering X and Y based on ordered residuals (e
(1)
, . . . , e

(n)
). Trim X and Y by cut−off

points c, and d, and define a new model in (5). This model has finite variance,


Y Trim

y
[c]

...
y
[d]

 =


XTrim

1 XTrim
2 · · · XTrim

p

1 x
[c,2]

· · · x
[c,p]

...
...

. . .
...

1 x
[d,2]

· · · x
[d,p]



θ

θ1
...
θp

+


εTrim

ε
(c)

...
ε
(d)

, (5)
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where
(
y
[c]
, . . . , y

[d]

)⊤
,

(
x

[c,2]
, . . . , x

[d,2]

)⊤
, . . . , and

(
x

[c,p]
, . . . , x

[d,p]

)⊤
are trimmed vectors correspond to the

trimmed order statistics of residuals (e
(c)
, . . . , e

(d)
)⊤. Then compute the MLE of coefficients using (6), [22]:

ℓ(θ) =

d∑
i=c

log f
ε
(i)

(
y
[i]
−

(
θ1 + θ2x[i,2]

+ · · ·+ θpx[i,p]

))
. (6)

For nonlinear regression model (2), the coefficients can be estimated using (7).

ℓ(θ) =

d∑
i=c

log fε(i)
(
y[i] − g(x[i],j ,θ)

)
. (7)

The density function of order statistic f
ε(i)

(t) defined in (8).

fε(i) (t) =
n!

(i− 1)!(n− i)!
(Fε (t))

i−1
(1− Fε (t))

n−i
fε (t) , (8)

where fε(·) and Fε(·) are probability density and cumulative distribution functions of S(α, β), respectively.

3.2. Tail index and Skewness Estimates Using MLE & MLEO

The MLE approach is a usual method for estimating stable distribution parameters. Let ε1, ε2, . . . , εn be random
variables from S(α, β, γ, δ) with observed values t1, . . . , tn. The MLE of α, β, γ, δ called α̂, β̂, γ̂, δ̂ can be computed
by numerical solution of (9), [19]:

MLE: ℓ(α, β, γ, δ) =

n∑
i=1

log fε (ti|α, β, γ, δ). (9)

MLE solutions are suitable and logical in most cases. In the absence of variance of stable variables, the MLE is
not robust and becomes less effective. Therefore, a new estimator, Maximum Likelihood Estimator Order Statistics
(MLEO), is formulated, which is implemented using Algorithm 4.

Algorithm 4: MLEO of stable parameters based on order statistics

1: Let ε1, . . . , εn be a random sample from S (α, β, 1, 0) with observed values t1, . . . , tn.

2: Compute MLE of α̂ and β̂ using all observed values t1, . . . , tn and (9).
3: Define the order statistics ε(1), . . . , ε(n) corresponding to ε1, . . . , εn.

4: Compute cut-off points c =
[
2
α̂

]
+ 1 and d =

[
n+ 1− 2

α̂

]
− 1.

5: Re-estimate parameters α̂, β̂ through the numerical solution of (10).

MLEO: ℓ(α, β, 1, 0) =

d∑
i=c

log fε(i) (ti|α, β, 1, 0). (10)

The probability density function of the order statisticsfε(i) is given in (8). In fact, MLEO estimates have been used
by [22] to compute the MLE of regression coefficients, and here, we used them to estimate the parameters of stable
distributions in different cases. It is interesting to find the superiority between MLE and MLEO, as in Figure 1.

4. Stable Linear Regression methods

We will be interested in the robust LTS strategy with stable linear regression models, i.e., linear regression models
with stable errors. Stable linear regression has a long history, and numerous dialogues around coefficient estimation
were displayed. [3] measure the linear coefficients of stable regression with infinite variance for α > 1. They have
included the MSAE (Mean Square Absolute Errors) estimator for a regression model with stable errors. They
demonstrate that the MSAE overcomes OLS for tail index 1 < α < 1.5, and this predominance will vault with
numerous unstable distributions. [9] extend the [3] method to α ∈ (0, 2) through a ranked set sampling design.
[10] have applied the regression with stable errors in the presence of some restrictions on the tail index, scale, and
skewness parameters. The MLE method was used to estimate coefficients with symmetric stable errors by [16].
[21] clear the way for using robust strategies. They displayed Algorithm 5 to compute MLE of coefficients in linear
and nonlinear stable regression models. Consider in the linear regression model (1) the errors ε1, . . . , εn are i.i.d.
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Figure 1: Comparing unbiasedness and dispersion of tail index estimated using MLE and MLEO for α = 1 (left) and α = 0.55 (right).
The blue line is the exact value. The MLE0 and MLEO0 are the symmetric solutions, β = 0. The MLE.5 and MLEO.5 are the
asymmetric solutions, β = 0.5.

standard stable distribution, at that assumption compute estimated coefficients using numerical MLE (11), [21] as
follows:

ℓ(θ) =

n∑
i=1

log fε (yi − (θ1 + θ2xi,2 + · · ·+ θpxi,p)) . (11)

Also, with similarity for nonlinear model (2), the coefficients estimated using (12), [21].

ℓ(θ) =

n∑
i=1

log fε (yi − g(xi,j ,θ)) , (12)

where fε(·) is the probability density function of the standard stable distribution.

Algorithm 5: NOR estimation method of stable linear and nonlinear regression coefficients

For stable linear regression:

1: Find θ̂ := OLS fit using all data.
2: Compute residuals corresponding to θ̂.
3: Reorder the indexes of the data based on ordered

residuals.
4: Trim a 10% and 90% of reordered data.
5: Perform the second OLS fit to update θ̂ using

trimmed dataset.
6: Using updated residuals, compute MLE of
ϕ̂ = (α̂, β̂, γ̂).

7: Update MLE of coefficients (11) using all data and

θ̂, ϕ̂ as starting values.

For stable nonlinear regression:

1: Find θ̂:= NLS fit using all data.
2: Compute residuals corresponding to θ̂.
3: Use residuals to find MLE of ϕ̂ = (α̂, β̂, γ̂).
4: Update MLE of regression coefficients (12) using

all data and θ̂, ϕ̂ as starting values.

[22] improved the method of trimming based on ordered stable errors, calculated the Best Linear Unbiased Estimator
(BLUE) of regression coefficients, and provided Algorithm 6 to estimate coefficients based on finite variance of
trimmed ordered stable errors.

5. Robust Stable Least Trimmed Squares (SLTS) Method

The model (1) is called a stable multiple linear regression if errors ε1, . . . , εn are i.i.d. standard stable distribution.
In this case, to compute the LTS estimator of regression coefficients, we propose the Stable LTS (SLTS) method
within the MLE framework using (8), [12]. We define a SLTS, [2] as a LTS on truncated data such that order
statistics variance of data exist.

5.1. Linear SLTS

The LTS estimator θ̂
LTS

using Least Squares method defined in (13) by [33] as follows:
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Algorithm 6: TLS estimation method of stable regression coefficients

1: Compute θ̂:= LS fit of all datasets and compute residuals e corresponding to θ̂.
2: Using residuals e to compute MLE of error parameters, called α̂ and β̂.
3: Find cut-off points, c =

[
2
α̂

]
+ 1 and d =

[
n+ 1− 2

α̂

]
− 1.

4: Reorder the indexes of the dataset based on ordered residuals e.
5: Trim c and d of the reordered dataset and perform LS fit of new data to update θ̂.
6: Use the updated residuals corresponding to θ̂ to find MLE of ψ̂ = (α̂, β̂), with γ = 1, δ = 0.

7: Compute update MLE of coefficients (6), (7) using the joint distribution of order statistics and ψ̂, θ̂ as
starting values.

θ̂LTS = argmin
θ

h∑
i=1

e2(i) = argmin
θ

n∑
i=1

e2(i) I{
e2
(i)

⩽e2
(h)

}, (13)

where e = Y − Ŷ = (ei)1≤i≤n is the residuals, e2(i) is the ith ordered squared residuals, and h is the breakdown

point. Consider in multiple linear regression (1) the errors ε1, . . . , εn are i.i.d. standard stable distribution, then
the traditional LTS is considered insufficient with heavy tailed errors, so we recall SLTS Algorithm 8 presented by
[2] and recall LTS Algorithm 7 based on MLE.

5.1.1. Breakdown point for SLTS

The breakdown point in linear regression should not exceed 50%, which is the highest. In the SLTS method, we
compute the breakdown point for linear stable regression models under the condition of the presence variance of
ordered stable errors. The breakdown point hs is defined through Lemma 5.1 as a function of tail index α, number
of coefficients p, and sample size n.

Lemma 5.1. The breakdown point for the robust SLTS was computed in (14),

hs =
[n
2

]
+

[
p+ 1

2

]
+

[
1− 2

α

]
. (14)

Proof. For proof of Lemma 5.1, see [2]. □

5.1.2. SLTSMLE and LTSMLE Algorithm

Now to compute θ̂LTS and θ̂SLTS using MLE approach for stable linear regression models, perform steps in the
following Algorithms, [2]:

Algorithm 7: LTS estimation method based on MLE for stable linear regression coefficients

1: Using the model (1), perform OLS regression, compute residuals (e1, . . . , en), and use them to compute the MLE of the

stable distribution parameters, called α̂, and β̂.
2: Use (α̂, β̂) to find cut−off points c, and d. Compute breakdown point hs in (14).

3: Based on the model (1) and using hs, compute θ̂LTS using Algorithm 2 and deduce the solution H∗ with #H∗ = hs,
where H∗ is the indexes that gives the optimal solution.

4: Re-estimate MLE of ψ̂ = (α, β) using corresponding residuals θ̂LTS .

5: Use θ̂LTS , ψ̂ as initial values to find θ̂LTS-M a numerical MLE using (11) for all i of H∗.

5.2. Nonlinear SLTS

Consider in nonlinear regression model (2) the errors ε1, . . . , εn are i.i.d. standard stable distribution. The popular
method for estimating coefficients is the NLS method. It is considered insufficient with heavy-tailed errors, so this
manuscript considered robust NLTS estimators of nonlinear regression coefficients.
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Algorithm 8: SLTS estimation method of stable linear regression coefficients

1: Using the model (1), perform OLS regression, compute residuals (e1, . . . , en) and use them to compute the MLE of the

stable distribution parameters, called α̂, and β̂.
2: Use (α̂, β̂) to find cut−off points c, and d. Compute breakdown point hs in (14).
3: Re-order X and Y based on ordered residuals (e

(1)
, . . . , e

(n)
).

4: Trim X and Y by cut−off points c, and d, and define the model (5).

5: Based on the model (5) and using hs, compute θ̂LTS using the LTS Algorithm and deduce the solution H∗ with
#H∗ = hs, where H∗ is the indexes that gives the optimal solution.

6: Re-estimate MLE of ψ̂ = (α, β) using corresponding residuals θ̂LTS of the model (5).

7: Use θ̂LTS , ψ̂ as initial values to find θ̂SLTS a numerical MLE using (6) for all i of H∗.

5.2.1. Breakdown Point for Robust NSLTS and NLTS

The breakdown point in the linear regression should not exceed 50%. However, with nonlinear regression, we
considered the minimum trimming proportion and tried to adjust to avoid losing the information. Therefore, ϕ
must be adjusted accurately because the robust NLTS and NSLTS solutions may be bad in nonlinear regression
with high breakdown points. So, the lowest possible trimming proportion must be considered, as in [31]. This paper
considered heavy-tailed errors, i.e., stable nonlinear regression models, so it used ordered stable errors with indexes
between cut-off points c and d that have a finite variance. Lemma 5.2 illustrates computing the robust NLTS and
NSLTS breakdown points for stable nonlinear regression models.

Lemma 5.2. Consider ϕ the trimming proportion and α the tail index in stable distribution, then the breakdown
point of robust NLTS and NSLTS in stable nonlinear regression equals:

h
s
=

[(
n+ 2− 4

α

)
(1− ϕ)

]
. (15)

Proof. In a similar way of Lemma 5.1. □

5.2.2. Robust NSLTSMLEO and NLTSMLE Algorithms

Using the breakdown point (15) through Lemma 5.2, we recall the robust NLTSMLE algorithm based on the MLE
and provided the NSLTSMLEO algorithm.

Algorithm 9: Robust NLTSMLE estimation method of stable nonlinear regression coefficients

1: Perform NLS fit of all data and compute residuals ei = yi − g(xi, θ̂NLS), i = 1, 2, . . . , n.
2: Using ei in step 1, compute MLE of stable parameters, α̂, and β̂.
3: Using α̂ in step 2, compute breakdown point hs in (15).
4: Using hs , compute θ̂NLTS and deduce H∗ using Algorithm 3.
5: Consider θ̂NLTS, α̂, and β̂ as starting values to compute MLE solution using (12).

Algorithm 10: Robust NSLTSMLEO method of stable nonlinear regression coefficients

1: Perform NLS fit through all data.
2: Use residuals to compute MLE of α̂, β̂, and cut-off points c and d.
3: Reorder the response variable and covariate vector using ordered residuals.
4: Trim the reordered dataset using c and d and define a new dataset.
5: Compute hs in (15), compute θ̂NLTS, and deduce H∗ using Algorithm 3.
6: Use residuals corresponding to θ̂NLTS to find MLEO of ψ̂ = (α̂, β̂) using equation (10) and using step 2 values as initial

values.
7: Use θ̂NLTS, ψ̂ as started values to find θ̂NSLTS estimators numerically using (7).

5.3. Simulation

1. Linear case: We compare SLTS with {OLS, TLS, NOR, RQ(0.5), LTS(MLE)} methods described previously.
So, we simulate a simple linear regression model yi = θ1+θ2xi+εi, i = 1, . . . , n, where xi ∼ u(0, 100), θ1 = 5,
θ2 = 2 and εi errors have S (α, β, 1, 0) with α = {0.7, 1, 1.5}, β = {−0.5, 0, 0.5} similar to [21] (NOR) using
sample sizes n = 100, we repeat each simulation k = 1000 times and the estimated values (EST) and errors
(MAE) presented in Tables 1 and 2 computed using (16) and (17), respectively.
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2. Nonlinear case: As [21], consider a nonlinear regression model yi = θ1exp(−θ2xi)+εi where xi = (0.2, 20) by
step=0.2, θ1 = 30, θ2 = 0.1 and ε1, . . . , εn the errors distributed with a stable distribution with α = {0.7, 1, 1.3},
β = {−0.5, 0, 0.5}, δ = 0, γ = 0.5. For trimming proportions ϕ = {10%, 15%, 20%, 25%}. Each case was
repeated 500 times, and the estimated EST and MAE errors in Tables 3 and 4 were computed through (16)
and (17), respectively. Here, We compare NSLTS with {NLS, TLS, NOR, NLTS(MLE)}

EST
(
θ̂
)
=

1

k

k∑
i=1

θ̂i, (16)

MAE
(
θ̂
)
=

1

k

k∑
i=1

|θ̂i − θ|. (17)

5.4. Regression Simulation Results

For linear regression: Table 1 shows that for an asymmetric case β = 0.5, MLE of SLTS are unbiased for all
cases. For the symmetric case, β = 0 and α = 1.5, the MLE of SLTS are unbiased. Also, the SLTS based on MLE
has minimum errors and outperforms all other methods. Table 2 computed stable parameter estimates based on
residuals fitted models. In Figure 2, we find the box plots of estimates. They are unbiased, as the range of estimates
is short.

Figure 2: Estimated linear regression coefficients with θ1exact = 5 and θ2exact = 2 and stable parameters with α = 1 and β = 0, where
SLTS.o= SLTSOLS and SLTS.m= SLTSMLE .

For nonlinear regression: The NSLTS solutions were performed based on the new MLEO methods, and it was
noted that MLEO solutions are closer to being unbiased, especially in asymmetric cases. Almost all solutions are
unbiased for symmetric cases, but their ranges were wide compared to the NSLTSMLEO. Also, NSLTSMLEO has the
minimum errors for the estimated coefficients in all cases, as in Table 3. These results were obtained by selecting
the appropriate range γ = 0.5, as in [21]. It is noted that the estimates of the tail indexes and skewness are similar
for all methods, as in Table 4 and Figure 3.

6. Real Datasets

To evaluate SLTS and NSLTS Algorithms for real datasets, we consider U.S. Federal Reserve Differences
(FRD) and Ultrasonic Calibration (UC) datasets. The solutions were evaluated using Bootstrap for computing
standard deviation estimators, [7], as in Table 5, using Algorithm 11.

6.1. U.S. Federal Reserve Differences Data (2005-2008)

The Federal Reserve is considered the most important bank in the U.S. As [21] we will be interested in weekly
data on interest rates. Particularly, on U.S. Treasury bonds with a fixed entitlement of 10 years (x) versus an
inflation-indicated (y) period between 2005−2008. The differences from week to week were computed, and the
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Table 1: The robust estimates of linear regression coefficients with exact values θ1 = 5, θ2 = 2. The minimum MAEs are bolded

SLTS

OLS TLS NOR RQ(0.5) LTS(MLE) OLS MLE

α β θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2

0.7 −0.5 EST 1.326 1.685 4.683 2.003 -22.697 2.349 4.592 2.001 4.872 2.002 5.045 2.001 5.002 2.000

MAE 118.634 1.932 0.583 0.009 34.434 0.463 0.589 0.009 0.396 0.010 0.391 0.006 0.181 0.001

0 EST 49.648 1.399 5.004 2.000 41.521 1.591 5.034 2.000 5.041 1.999 5.055 1.999 5.002 2.000

MAE 148.244 2.509 0.348 0.006 47.506 0.568 0.349 0.006 0.317 0.006 0.334 0.006 0.167 0.001

0.5 EST -21.787 3.410 5.320 1.997 11.616 1.934 5.333 2.000 5.090 1.999 4.925 2.000 5.003 2.000

MAE 102.583 2.554 0.556 0.009 7.903 0.107 0.539 0.009 0.420 0.007 0.405 0.007 0.163 0.001

1 −0.5 EST 4.799 2.001 4.770 2.001 4.856 1.998 4.716 2.001 4.950 1.997 5.052 2.000 5.001 2.000

MAE 6.658 0.145 0.459 0.007 1.244 0.018 0.492 0.008 0.455 0.011 0.488 0.009 0.188 0.001

0 EST 90.265 1.058 5.017 2.000 131.148 0.477 5.009 2.000 5.074 1.999 5.003 2.000 5.008 2.000

MAE 89.469 1.016 0.383 0.006 127.096 1.537 0.410 0.007 0.532 0.009 0.522 0.009 0.207 0.001

0.5 EST 16.249 1.869 5.195 2.000 5.831 1.994 5.238 2.001 5.064 1.999 4.963 2.000 5.033 2.000

MAE 13.838 0.204 0.431 0.007 1.196 0.016 0.460 0.008 0.542 0.016 0.536 0.009 0.193 0.001

1.5 -0.5 EST 4.590 1.997 4.870 2.000 4.809 2.000 4.817 2.000 5.053 1.996 5.044 1.999 5.002 2.000

MAE 0.827 0.012 0.378 0.006 0.436 0.007 0.413 0.007 0.434 0.011 0.676 0.011 0.213 0.001

0 EST 5.030 1.999 4.971 2.000 4.990 2.000 5.007 1.999 4.949 2.000 5.067 1.998 5.011 2.000

MAE 0.675 0.014 0.387 0.007 0.370 0.007 0.406 0.007 0.441 0.007 0.656 0.012 0.216 0.001

0.5 EST 4.959 1.999 5.252 2.000 5.196 2.006 4.673 2.000 5.608 2.004 4.528 2.001 5.036 2.000

MAE 0.760 0.013 0.792 0.007 0.813 0.022 0.494 0.007 1.168 0.011 0.863 0.013 0.520 0.001

Table 2: The estimates of tail index α̂ and skewness β̂ using residuals in linear simulation. The best MAEs are bolded.

SLTS

OLS TLS NOR RQ(0.5) LTS(MLE) OLS MLE

α β α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

0.7 -0.5 EST 0.716 -0.178 0.722 -0.410 0.716 -0.178 0.760 -0.406 0.709 -0.462 1.054 -0.770 0.705 -0.503

MAE 0.230 0.901 0.116 0.192 0.142 0.400 0.121 0.194 0.113 0.190 0.358 0.340 0.100 0.155

0 EST 0.708 0.020 0.707 0.032 0.708 0.020 0.705 0.019 0.705 0.029 1.123 0.061 0.714 0.027

MAE 0.219 0.500 0.098 0.159 0.109 0.253 0.093 0.135 0.096 0.186 0.426 0.346 0.089 0.172

0.5 EST 0.719 0.250 0.727 0.424 0.719 0.250 0.756 0.413 0.707 0.466 1.033 0.706 0.703 0.497

MAE 0.211 0.895 0.102 0.194 0.115 0.337 0.108 0.185 0.103 0.174 0.340 0.337 0.088 0.155

1 -0.5 EST 1.032 -0.351 1.031 -0.435 1.032 -0.351 1.044 -0.408 1.006 -0.447 1.248 -0.670 1.007 -0.488

MAE 0.248 0.713 0.136 0.205 0.140 0.272 0.140 0.211 0.138 0.262 0.259 0.324 0.133 0.201

0 EST 1.027 -0.006 1.025 0.008 1.027 -0.006 1.018 0.006 1.014 -0.001 1.282 0.004 1.025 0.009

MAE 0.208 0.386 0.143 0.210 0.148 0.243 0.151 0.192 0.148 0.272 0.290 0.356 0.145 0.235

0.5 EST 1.052 0.350 1.041 0.456 1.052 0.350 1.055 0.417 1.017 0.468 1.255 0.677 1.017 0.506

MAE 0.241 0.740 0.147 0.195 0.153 0.272 0.144 0.197 0.145 0.242 0.274 0.319 0.140 0.193

1.5 -0.5 EST 1.578 -0.407 1.576 -0.445 1.578 -0.407 1.573 -0.427 1.524 -0.535 1.679 -0.500 1.547 -0.502

MAE 0.221 0.482 0.182 0.398 0.188 0.418 0.183 0.391 0.181 0.424 0.234 0.538 0.174 0.396

0 EST 1.509 0.053 1.507 0.051 1.509 0.053 1.500 0.046 1.491 0.058 1.679 0.089 1.495 0.059

MAE 0.191 0.291 0.181 0.368 0.179 0.372 0.180 0.346 0.177 0.469 0.236 0.623 0.178 0.398

0.5 EST 1.493 0.350 1.547 0.303 1.493 0.350 1.469 0.482 1.519 0.111 1.618 0.580 1.544 0.274

MAE 0.212 0.481 0.209 0.492 0.237 0.509 0.205 0.481 0.234 0.608 0.210 0.561 0.208 0.507
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Table 3: Estimated nonlinear coefficients (first line) and their errors (second line) using NSLTS and other methods with exact θ1 =
30, θ2 = 0.1. The minimum errors are bolded.

NLS TLS NOR NLTSMLE NSLTSMLEO NSLTSNLS

ϕ α β θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2

10% 1.3 -0.5 EST 29.628 0.102 30.005 0.100 29.988 0.100 29.980 0.100 30.021 0.100 29.920 0.101

MAE 0.771 0.004 0.208 0.002 0.211 0.001 0.207 0.001 0.046 3.5e-4 0.233 0.002

20% EST 29.628 0.102 30.005 0.100 29.988 0.100 29.988 0.100 30.011 0.100 29.964 0.100

MAE 0.7710 0.004 0.208 0.001 0.211 0.001 0.206 0.001 0.052 5e-4 0.223 0.001

25% EST 29.628 0.102 30.005 0.100 29.988 0.100 29.990 0.100 30.006 0.100 29.954 0.101

MAE 0.7710 0.004 0.208 0.001 0.211 0.001 0.206 0.001 0.056 5e-4 0.236 0.001

10% 1.3 0.00 EST 29.980 0.100 29.994 0.100 30.089 0.099 30.005 0.099 30.001 0.100 30.022 0.100

MAE 0.814 0.005 0.251 0.002 0.366 0.003 0.247 0.001 0.094 8e-4 0.220 0.001

20% EST 29.980 0.100 29.994 0.100 30.089 0.099 30.018 0.100 30.009 0.100 30.013 0.100

MAE 0.814 0.005 0.251 0.002 0.366 0.002 0.265 0.001 0.105 8e-4 0.225 0.001

25% EST 29.980 0.100 29.994 0.100 30.089 0.099 30.005 0.100 30.002 0.100 30.005 0.100

MAE 0.814 0.005 0.251 0.002 0.366 0.002 0.253 0.001 0.096 9e-4 0.231 0.001

10% 1.3 0.50 EST 30.577 0.097 30.040 0.100 30.053 0.100 30.066 0.099 30.003 0.100 30.080 0.098

MAE 1.035 0.005 0.201 0.001 0.209 0.001 0.202 0.001 0.047 3e-4 0.164 0.001

20% EST 30.577 0.097 30.040 0.100 30.053 0.100 30.060 0.099 30.005 0.100 30.065 0.098

MAE 1.035 0.005 0.201 0.001 0.209 0.001 0.203 0.001 0.050 5e-4 0.151 0.002

25% EST 30.577 0.097 30.040 0.100 30.053 0.100 30.059 0.099 30.004 0.100 30.049 0.098

MAE 1.035 0.005 0.201 0.001 0.209 0.001 0.201 0.001 0.049 5e-4 0.139 0.002

Table 4: Estimates of tail index α̂ and skewness β̂ using residuals for nonlinear simulated data. The minimum MAEs are bolded.

NLS TLS NOR NLTSMLE NSLTSMLEO NSLTSNLS

ϕ α β α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

10% 1.3 -0.5 EST 1.345 -0.440 1.300 -0.470 1.302 -0.470 1.437 -0.561 1.333 -0.485 1.445 -0.554

MAE 0.110 0.202 0.104 0.161 0.104 0.160 0.164 0.225 0.102 0.155 0.168 0.229

20% EST 1.345 -0.440 1.300 -0.470 1.302 -0.470 1.438 -0.547 1.327 -0.483 1.438 -0.556

MAE 0.110 0.202 0.104 0.161 0.104 0.160 0.165 0.234 0.101 0.147 0.163 0.226

25% EST 1.345 -0.440 1.300 -0.470 1.302 -0.470 1.436 -0.564 1.328 -0.488 1.437 -0.547

MAE 0.110 0.202 0.104 0.161 0.104 0.160 0.164 0.226 0.101 0.143 0.163 0.224

10% 1.3 0.00 EST 1.349 0.002 1.309 -0.011 1.316 -0.007 1.441 -0.001 1.300 -0.002 1.452 -0.017

MAE 0.123 0.266 0.120 0.221 0.118 0.222 0.178 0.280 0.107 0.118 0.185 0.292

20% EST 1.349 0.002 1.309 -0.011 1.316 -0.007 1.442 -0.009 1.360 -0.007 1.445 -0.007

MAE 0.123 0.266 0.120 0.221 0.118 0.222 0.178 0.286 0.114 0.148 0.179 0.282

25% EST 1.349 0.002 1.309 -0.011 1.316 -0.007 1.440 0.003 1.363 -0.011 1.442 -0.005

MAE 0.123 0.266 0.120 0.221 0.118 0.222 0.177 0.288 0.102 0.153 0.178 0.279

10% 1.3 0.50 EST 1.331 0.441 1.285 0.480 1.286 0.479 1.417 0.590 1.315 0.504 1.426 0.592

MAE 0.114 0.231 0.114 0.180 0.112 0.177 0.156 0.243 0.131 0.169 0.158 0.242

20% EST 1.331 0.441 1.285 0.480 1.286 0.479 1.416 0.591 1.317 0.504 1.421 0.590

MAE 0.114 0.231 0.1143 0.180 0.112 0.177 0.156 0.242 0.128 0.169 0.156 0.239

25% EST 1.331 0.441 1.285 0.480 1.286 0.479 1.416 0.591 1.321 0.505 1.421 0.588

MAE 0.114 0.231 0.114 0.180 0.112 0.177 0.156 0.242 0.128 0.167 0.156 0.240
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Figure 3: The range of estimated nonlinear coefficients (above) and stable parameters (bottom) for tail index α = 1.3, where L.10=10%
of NLTSMLE, S.10=10% of NSLTSMLEO, and N.10=10% of NSLTSNLS and so on. A horizontal solid line donates the coefficient values.

Algorithm 11: Bootstrap to compute estimated coefficients standard deviations

1: Draw bootstrap samples (Y ∗
1 , X

∗
1 )l, . . . , (Y

∗
n , X

∗
n)l, l = 1, . . . ,m, m = 1000.

2: For the given nonlinear regression model, compute θ̂l = (θ̂l1, . . . , θ̂lp)
⊤ of the drawn sample in step 1.

3: Compute

SD(θ̂j) =

√√√√ 1

m

m∑
l=1

(
θ̂lj − θj

)2
,

where θj =
1
m

m∑
l=1

θ̂lj , j = 1, . . . , p.

4: Report SD(θ̂) = (SD(θ̂1), . . . ,SD(θ̂p))
⊤ the standard deviation of estimated coefficients.
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linear representation is shown in Figure 4 and model (18). It is suitable for stable studies as its residuals lie within

the tail index α̂ε = 1.573 and the skewness β̂ε = 0.351.

y = β1 + β2x+ ε. (18)

6.2. Ultrasonic Calibration Data (UC)

[5] measures how the experimental response of the ultrasonic (yi) is affected by the metal distance (xi) by Ultrasonic
Calibration Dataset. These data result from NIST fitted through model (19) shown in Figure 4. It is appropriate

for stable data, as their errors have tail index α̂ε = 0.983 and the skewness errors terms β̂ε = 1.000, using the initial
values (θ1 = 0.190, θ2 = 0.006, θ3 = 0.011).

yi =
exp(−θ1xi)

θ2 + θ3xi
+ εi. (19)

Table 5: Estimating coefficients real datasets models. The estimated value in the first line (Est) and the Bootstrap standard deviation
in the second line (SD)

Data n p Trimming Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

U.S. FRD Data 208 2 50% SLTSOLS Est 0.0111 0.8462
SD 0.0331 0.0351

SLTSMLE Est 0.0026 0.8246
SD 8e-06 0.0001

OLS Est 0.0092 0.7864
SD 0.0048 0.0463

NOR Est 0.0066 0.8156
SD 0.0002 0.0021

TLS Est 0.0063 0.8157
SD 0.0002 0.0021

UC Data 214 3 5% NSLTSNLS Est 0.1667 0.0061 0.0112
SD 0.0228 0.0004 0.0009

NSLTSMLEO Est 0.1742 0.0060 0.0112
SD 0.0159 0.0002 0.0001

TLS Est 0.1697 0.0059 0.0114
SD 0.0200 0.0002 0.0003

NOR Est 0.1633 0.0058 0.0113
SD 0.0200 0.0003 0.0005

NLS Est 0.1902 0.0061 0.0105
SD 0.0219 0.0003 0.0007

7. Conclusion

We have provided a review of the LTS method for stable data using SLTS and NSLTS methods. The concept of
trimming is basic to robust computations and makes results seem more logical with heavy-tailed, stable data. The
LTS method is like data mining under the permutation method and minimum sum of squared residuals. SLTS and
NSLTS methods are based on the MLE using the property of finite variance of ordered stable errors, and this makes
that very important for estimating stable regression coefficients.
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Figure 4: Scatter plots of real datasets fitted with linear and nonlinear regression fits using SLTSOLS, SLTSMLE, OLS, NOR, and TLS
for U.S. FRD Data and NSLTSNLS, NSLTSMLEO, TLS, NOR, and NLS for UD dataset.
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