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1. Introduction

In this study, we examine the existence of a nontrivial weak solution for p(x)-Kirchhoff type problem with a source
that has critical growth in the sense of the Sobolev embedding and Robin boundary condition:{

−M (t)∆p(x)u+ ξ (x) |u|q(x)−2
u = λb (x) |u|r(x)−2

u, in Ω;

|∇u|p(x)−2 ∂u
∂ν + β (x) |u|p(x)−2

u = 0, on ∂Ω,
(1)

where t =
∫
Ω

1
p(x) |∇u|p(x)dx+

∫
∂Ω

β(x)
p(x) |u|

p(x)
dσx, Ω ⊂ RN (N ≥ 3), is a bounded smooth domain with cone property,

∂u
∂ν is the outer unit normal derivative on ∂Ω, dσx is the measure on ∂Ω, β ∈ L∞ (∂Ω) with β− := inf

x∈∂Ω
β (x) > 0,

M : R+ → R+ is a continuous map, λ is a positive number and p, q, r, s : Ω → R+ are continuous maps.
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The potential function ξ ∈ Ls(x) (Ω) and in general it is sign-changing. Thus, the left-hand side of (1) is not
coercive. On the right-hand side of the problem (the reaction), b(x) > 0, a.e. x ∈ Ω and b ∈ Lγ(x) (Ω), where

γ (x) = p∗(x)
p∗(x)−r(x) and p∗ (x) = Np(x)

N−p(x) if p (x) < N .

Below, we will use the notations:

g+ := sup
x∈Ω

g (x) and g− := inf
x∈Ω

g (x) .

In addition, in this document, we presume that the following assumptions are valid:

1 < q− < p− ≤ p+ < r− ≤ r+ <
(
p−
)∗

and q(x) < p(x) ≤ p∗ (x) < N < s(x).

Nonlinear boundary value problem with variable exponent growth condition has been received considerable attention
in the last decade. These problems are interesting for modeling a wide range of phenomena, and pose many
difficult mathematical problems. For example, the model of motion of electrorheological fluids, stationary thermo-
rheological viscous flows of non-Newtonian fluids and the processes filtration of an ideal barotropic gas through a
porous medium, image processing, . . .; see e.g. [3, 4, 16, 19, 20].

The operator ∆p(x)u := div
(
|∇u|p(x)−2∇u

)
, is said to be the p(x)-Laplacian, which is a natural extension of the

classical p-Laplacian, possesses more complicated nonlinearities than the p-Laplacian; mainly due to the fact that
it is inhomogeneous.
The questions relating to the extension of the classical D’Alembert wave equation for the free vibrations of elastic
rope lead to the Kirchhoff-type equations. Robin boundary conditions are a weighted combination of Dirichlet and
Neuman boundary conditions. The problem (1), is a generalization of a model introduced by kirchhoff [19].
This problem is related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ 1

0

∣∣∣∣∂u∂x
∣∣∣∣2dx

)
∂2u

∂x2
= 0,

for 0 < x < L, t ≥ 0 presented by Kirchhoff in 1883, as an extension of the classical D’Alambert wave equation for
free vibration of elastic strings. In above equation, u = u (x, t) is the lateral displacement at the space coordinate
x and the time t, E is the Young modulus, ρ is the mass density, h is the cross-section area, L is the length and
P0 is the initial axial tension. Such nonlinear Kirchhoff model can also be used for describing the dynamics of an
axially moving string (see [21]).
These problems are also noted from the standpoint of pure mathematics thus. These kinds of problems have worked
in many ways.
Allaoui [1] introduced the p (x)-Kirchhoff- type problem involving boundary conditions and examined problem (1),
with M (t) = 1 and positive coefficients. Driven by the aforementioned document and the results on the p (x)-
Laplacian operator, the purpose of this article is to examine the Robin problem (1).
We study the nonlinear problem (1), when the function ξ (x), has an indefinite sign in a suitable variable exponent
Lebesgue space.
For the Kirchhoff function M : R+ → R+, we assume it is continuous and

(M1) there exists a constant m0, such that 0 < m0 ≤ M(t) for every t ∈ [0,∞).

(M2) there exists 0 ≤ t0, such that M̂(t) :=
∫ t

0
M(s)ds ≥ tM(t) for every t ∈ [t0,∞).

The condition (M1) on M is weaker than the condition consider by [7].

Remark 1.1. If β ≡ 0, we recover the Neumann problem. For this reason our current document includes the
Neumann problems as a special case.

The most important result of this document is as follows.

Theorem 1.2. Under the circumstances referred for problem (1), with (M1) and (M2); there exists λ∗ > 0, such
that for every λ ∈ (0, λ∗), problem (1), possesses at least two distinct nontrivial weak solutions.

To achieve this objective, we use the Palais-Smale condition introduced by Ambrosetti-Rabinowitz in [3], and
Ekeland variational principal.
The rest of this paper is organized as follows. In Section 2, we will introduce some necessary preliminary knowledge
and lemmas on variable exponent Sobolev spaces, and in Section 3 and 4, we give the proof of our main result.
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2. Preliminaries

For the convenience of the reader, we recall some necessary basic knowledge and propositions concerning on variable
exponent Lebesgue spaces and Sobolev spaces. We refer the reader to [9, 10, 11, 13, 15, 17] for details. Let Ω be a
bounded open domain of RN (N ≥ 3), with smooth boundary ∂Ω, and p ∈ C+

(
Ω
)
where

C+

(
Ω
)
=
{
p : p ∈ C

(
Ω
)
, p (x) > 1, for all x ∈ Ω

}
.

Define the variable exponent Lebesgue space Lp(x) (Ω) by,

Lp(x) (Ω) =

u : u is a measurable real-valued function and

∫
Ω

|u|p(x)dx < ∞

 ,

under the norm |u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣u(x)λ

∣∣∣p(x)dx ≤ 1

}
.

It becomes a Banach space. We also define the variable exponent Sobolev space W 1,p(x) (Ω) by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)

}
equipped with the norm ∥u∥W 1,p(x)(Ω) = ∥u∥1,p(x) = ||∇u||p(x) + |u|p(x).
Moreover, for any u ∈ W 1,p(x), we define ∥u∥∂ := ||∇u||p(x)+ |u|Lp(x)(∂Ω), then ∥u∥∂ is a norm on W 1,p(x) (Ω) which

is equivalent to the norm ∥u∥, [8]. Now, we introduce a norm, that will be used in this article. Let β ∈ L∞ (∂Ω)
with β− := inf

x∈∂Ω
β (x) > 0, and for u ∈ W 1,p(x) (Ω), define

∥u∥β = inf

λ > 0 :

∫
Ω

∣∣∣∣∇u

λ

∣∣∣∣p(x)dx+

∫
∂Ω

β (x)
∣∣∣u
λ

∣∣∣p(x)dσx ≤ 1

 .

By theorem 2.1 in [8], ∥.∥β is a norm on W 1,p(x) (Ω), which is equivalent to ∥.∥ and ∥u∥∂ .
The following basic properties of the variable exponent Lebesgue and Sobolev spaces are required and listed below
[11, 18, 13, 9, 12, 6].

Lemma 2.1.
(
Lp(x) (Ω) , |.|p(x)

)
is Banach space, and Hölder inequality holds; i.e.∫

Ω

|uv| dx ≤
(

1

p−
+

1

(p′)
−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x)

for all u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω), that 1
p(x) +

1
p′(x) = 1. It is reflexive if and only if 1 < p− ≤ p+ < +∞.

Moreover if 0 < |Ω| < +∞ and p1, p2 are variable exponents so that p1 (x) ≤ p2 (x), a.e. x ∈ Ω, then there exists
the continuous embedding Lp2(x) ↪→ Lp1(x).

Lemma 2.2.
(
W 1,p(x) (Ω) , ∥.∥β

)
is a separable and reflexive Banach space. If s (x) < p∗ (x) for all x ∈ Ω̄, then

the embedding W 1,p(x) (Ω) ↪→ Ls(x) (Ω), is compact and continuous. Also if s ∈ C+ (∂Ω) and s (x) < p∗ (x) for all

x ∈ ∂Ω, then the trace embedding W 1,p(x) (Ω) ↪→ Ls(x) (∂Ω), is compact and continuous, where p∗ (x) =
(N−1)p(x)
N−p(x)

if p (x) < N or p∗ (x) = +∞ if p (x) > N .

So, according to assumption on (1), the embeddings W 1,p(x) (Ω) ↪→ Lq(x) (Ω) and W 1,p(x) (Ω) ↪→ Ls′(x)q(x) (Ω) are
compact and continuous, and there exist a positive constant C > 1, such that |u|q(x) ≤ C ∥u∥β and |u|s′(x)q(x) ≤
C ∥u∥β for all u ∈ W 1,p(x) (Ω).

The modular, which is the mapping ρp(x) : W
1,p(x) (Ω) → R, defined by

ρp(x)(u) =

∫
Ω

|∇u|p(x)dx+

∫
∂Ω

β(x)|u|p(x)dσx,

is a major tool in generalized Lebesgue Sobolev space studies.
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Lemma 2.3 ([8]). For u ∈ W 1,p(x) (Ω) and β− > 0, we have:

i) For u ̸= 0, ∥u∥β = λ ⇔ ρ
(
u
λ

)
= 1;

ii) ∥u∥β < 1 (= 1, > 1) ⇔ ρp(x) (u) < 1 (= 1, > 1);

iii) if ∥u∥β ≤ 1 then ∥u∥p
+

β ≤ ρp(x) (u) ≤ ∥u∥p
−

β ;

if ∥u∥β ≥ 1 then ∥u∥p
−

β ≤ ρp(x) (u) ≤ ∥u∥p
+

β ;

(briefly) min
{
∥u∥p

+

β , ∥u∥p
−

β

}
≤ ρp(x) (u) ≤ max

{
∥u∥p

+

β , ∥u∥p
−

β

}
;

iv) ∥un∥β → 0 ( or +∞) ⇔ ρp(x) (un) = 0(or ∞) as n → ∞.

Remark 2.4. These relations show that; topology defined by the norm and that defined by the modular is equivalent.

Lemma 2.5 ([5]). For measurable functions p, q with p ∈ C+

(
Ω̄
)
and pq ∈ L∞

+ (Ω). Let 0 ̸= u ∈ Lq(x) (Ω), then

|u|p(x)q(x) ≤ 1 ⇒ |u|P
+

p(x)q(x) ≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ |u|P

−

p(x)q(x)

|u|p(x)q(x) ≥ 1 ⇒ |u|P
−

p(x)q(x) ≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ |u|P

+

p(x)q(x) .

Definition 2.6. Let X be a Banach space, and I : X → R be a differentiable functional.

1. A sequence {un} ⊂ X is called (PS)c-sequence for I, if I (un) → c and ∥I ′ (un)∥X∗ → 0, as n → ∞.

2. If every (PS)c-sequence for I, has a converging subsequence (in X), we say that I satisfies the (PS)c-
conditions.

Theorem 2.7 (Mountain Pass Theorem. [2]). Let (X, ∥.∥) be a real Banach space and I : X → R be a con-
tinuously Gâteaux differentiable function, such that I(0X) = 0 and satisfying the (PS)-condition. Suppose that:

1. there exist constants ρ, α > 0, such that I(u) ≥ α, if ∥u∥ = ρ;

2. there exist e ∈ X with ∥e∥ > ρ, such that I(e) ≤ 0,

then I possesses a critical value c ≥ α, which can be characterized as:

c := inf
γ∈Γ

max
u∈γ([0,1])

I(u)

where Γ = {γ ∈ C ([0, 1];X) : γ(0) = 0 and γ(1) = e} .

Here, problem (1) is stated in the framework of the generalized Sobolev space X := W 1,p(x) (Ω).
For β ∈ L∞ (∂Ω) with β− > 0, we define A : X → R, by

A (u) =

∫
Ω

1

p (x)
|∇u|p(x)dx+

∫
∂Ω

β (x)

p (x)
|u|p(x)dσx ∀u ∈ X.

Lemma 2.8 ([14]). 1. A ∈ C1 (X,R) and it’s derivative A′ : X → X∗, is given by

⟨A′ (u) , v⟩ =
∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

β (x) |u|p(x)−2
uvdσx ∀u, v ∈ X;

2. A′ is a continuous, bounded, strictly monotone and an operator of type (S)+, i.e. if un ⇀ u in X, and
lim sup ⟨A′(un), un − u⟩ ≤ 0, then un → u (strongly) in X.
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The Euler-Lagrange functional associated with (1), is Φλ : X → R, that defined as:

Φλ(u) = M̂

∫
Ω

1

p (x)
|∇u|p(x)dx+

∫
∂Ω

β (x)

p (x)
|u|p(x)dσx

+

∫
Ω

ξ (x)

q (x)
|u|q(x)dx− λ

∫
Ω

b (x)

r (x)
|u|r(x)dx.

Standard arguments imply that, the functional Φλ, is well-defined and of C1-class on X, with the derivative given
by

⟨Φ′
λ(u), v⟩ =M

∫
Ω

1

p (x)
|∇u|p(x)dx+

∫
∂Ω

β(x)

p (x)
|u|p(x)dσx

∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

β(x)|u|p(x)−2
uvdσx


+

∫
Ω

ξ(x)|u|q(x)−2
uvdx− λ

∫
Ω

b(x)|u|r(x)−2
uvdx,

for all u, v ∈ X.
We say that u ∈ X, is a weak solution of (1), if

M

∫
Ω

1

p (x)
|∇u|p(x)dx+

∫
∂Ω

β(x)

p (x)
|u|p(x)dσx

∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

β(x)|u|p(x)−2
uvdσx


+

∫
Ω

ξ(x)|u|q(x)−2
uvdx = λ

∫
Ω

b(x)|u|r(x)−2
uvdx

for all v ∈ X. Hence, we can find weak solutions of (1) as the critical points of the functional Φλ, in the space X.

3. Existence of first weak solution

For the proof of our theorem, we will use the Mountain Pass Theorem. Let us verify that all the prerequisites of
this theorem are fulfilled.

Lemma 3.1. With assuming condition on M , the functional Φλ, satisfies the (PS)-condition.

Proof. Suppose that {un} ⊂ X is a (PS)-sequence; that is |Φλ (un)| < c and |⟨Φλ(u), v⟩| ≤ εn∥v∥β , for v ∈ X,
and εn → 0 as n → ∞.
Step 1. For every ϵ > 0, there exist Kϵ such that

max
{
|u|q

+

s′(x)q(x) , |u|
q−

s′(x)q(x)

}
≤ ερp(x) (u) +Kε min

{
|u|q

+

q(x) , |u|
q−

q(x)

}
.

By contradiction, assume that there exist ϵ0 > 0, and a sequence {un} in X, such that |u|s′(x)q(x) = 1, and

ε0ρp(x) (un) + nmin
{
|un|q

+

q(x) , |un|q
−

q(x)

}
< 1.

So by lemma 2.3 and reflection of X, {un} is a bounded sequence in X, and up to a subsequence, if necessary,
it converges weakly to some u0 ∈ X and strongly in Ls′(x)q(x) (Ω). Therefore |u0|s′(x)q(x) = 1 and consequently

min
{
|u0|q

+

q(x) , |u0|q
−

q(x)

}
< 0, that is contradictory.

Step 2. Using the Hölder inequality, lemma 2.5 with choice T > 2
q− |ξ|s(x), we deduce that∣∣∣∣∣∣

∫
Ω

ξ(x)

q (x)
|u|q(x)dx

∣∣∣∣∣∣ ≤ 2

q−
|ξ|s(x) max

{
|u|q

+

s′(x)q(x) , |u|
q−

s′(x)q(x)

}
≤ Tερp(x) (u) + TKε min

{
|u|q

+

q(x) , |u|
q−

q(x)

}
.

Step 3. {un} is bounded in X.
Suppose the contrary. Then passing to a ubsequence, we may assume max {1, t0p+} < ∥un∥β → ∞, as n → ∞, (t0
in (M2)), and so ∫

Ω

1

p (x)
|∇un|p(x)dx+

∫
∂Ω

β(x)

p (x)
|un|p(x)dσx > t0,
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and

c+ 1 + εn∥un∥β ≥ Φλ (un)−
1

r−
⟨Φ′

λ (un) , un⟩

= M̂

∫
Ω

1

p(x)
|∇un|p(x)dx+

∫
∂Ω

β(x)

p(x)
|un|p(x)dσx

+

∫
Ω

ξ(x)

q(x)
|un|q(x)dx− λ

∫
Ω

b(x)

r(x)
|un|r(x)dx

− 1

r−
M

∫
Ω

1

p(x)
|∇un|p(x)dx+

∫
∂Ω

β(x)

p(x)
|un|p(x)dσx

×

∫
Ω

|∇un|p(x)dx+

∫
∂Ω

β(x)|un|p(x)dσx


− 1

r−

∫
Ω

ξ(x)|un|q(x)dx+
λ

r−

∫
Ω

b(x)|un|r(x)dx

≥ m0

(
1

p+
− 1

r−

)
∥un∥p

−

β −
(

1

q−
+

1

r−

)∫
Ω

ξ(x)|un|q(x)dx

≥ m0

(
1

p+
− 1

r−

)
∥un∥p

−

β −
(

1

q−
+

1

r−

)
Tε ∥un∥p

−

β −
(

1

q−
+

1

r−

)
TKε min

{
|u|q

+

q(x) , |u|
q−

q(x)

}
.

Now by choosing ϵ, small enough such that the coefficient of ∥un∥p
−

β
become positive, and also considering the

compact embedding of W 1,p(x) (Ω) ↪→ Lq(x) (Ω), we infer

c+ 1 + εn∥un∥β ≥ A ∥un∥p
−

β − TMε min
{
Cq+ ∥un∥q

+

β , Cq− ∥un∥q
−

β

}
. (2)

Dividing (2), by ∥un∥p
−

β , and passing to the limit, as n → ∞, eventuate 0 > A, it is contradictory.
So {un} is bounded in X, and up to a subsequence, still denoted by {un}, it converges weakly to u0 in X and
converges strongly in Lω(x) (Ω) with 1 < ω (x) < p∗ (x).
Step 4. {un} converges strongly to u0 in X. Since the functional Φλ satisfies the (PS)-condition, we obtain

⟨Φ′
λ (un) , un − u0⟩ = M

∫
Ω

1

p (x)
|∇un|p(x)dx+

∫
∂Ω

β (x)

p (x)
|un|p(x)dσx


×

∫
Ω

|∇un|p(x)−2∇un (∇un −∇u0) dx+

∫
∂Ω

β (x) |un|p(x)−2
un (un − u0) dσx


+

∫
Ω

ξ (x) |un|q(x)−2
un (un − u0) dx− λ

∫
Ω

b (x) |un|r(x)−2
un (un − u0) dx → 0.

So by lemma 2.3

m0 ⟨A′ (un) , un − u0⟩ ≤ ⟨Φ′
λ (un) , un − u0⟩ −

∫
Ω

ξ (x) |un|q(x)−2
un (un − u0) dx

+ λ

∫
Ω

b (x) |un|r(x)−2
un (un − u0) dx.

On the other hand, because 1 < q (x) < p (x), then u ∈ X ⊂ Lp(x) (Ω) ⊂ Lq(x) (Ω) = L(q(x)−1)q′(x) (Ω), and again

|u|q(x)−1 ∈ Lq′(x) (Ω), so by using Sobolev compact embeddings and Hölder inequality, we have∣∣∣∣∣∣
∫
Ω

ξ (x) |un|q(x)−2
un (un − u0) dx

∣∣∣∣∣∣ ≤ C|ξ|s(x)|un|q′(x)|un − u0|α(x) → 0,

as n → ∞, where α (x) = s(x)q(x)
s(x)−q(x) < p∗ (x).
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Similarly, by applying interpolation inequality with appropriate coefficients and powers, we have∣∣∣∣∣∣
∫
Ω

b (x) |un|r(x)−2
un (un − u0) dx

∣∣∣∣∣∣ ≤ 2|b|γ(x)
∣∣∣|un|r(x)−1

(un − u0)
∣∣∣
p∗(x)
r(x)

≤ C
∣∣∣|un|r(x)−1

∣∣∣b
ap(x)

|un − u0|θp∗(x) → 0,

as n → ∞, where 0 < θ < 1, is chosen appropriately. So

lim sup ⟨A′ (un) , un − u0⟩ ≤ 0.

Finally, since the operator A′ has the (S)+ property, it conclusion un → u0 strongly in X, and hence the functional
Φλ fulfills (PS)-condition.

□

The following lemma shows that the functional Φλ has the geometry of the Mountain Pass Theorem.

Lemma 3.2. There exists λ∗ > 0, that for every λ ∈ (0, λ∗), there exists ρ, τ > 0 such that Φλ(u) ≥ τ for every
u ∈ X, whit ∥u∥ = ρ.

Proof. Using Sobolev embedding theorem and equivalent of norms, there exists a positive constant C ≥ 1, such
that |u|p(x) ≤ C ∥u∥β , |u|p∗(x) ≤ C ∥u∥β and |u|s′(x)q(x) ≤ C ∥u∥β for all u ∈ X.

set ρ = 1
nC , that n will determine its value in the future. Thus ρ ∈ ]0, 1[ and |u|p(x) ≤ 1, |u|p∗(x) ≤ 1 and

|u|s′(x)q(x) ≤ 1, for all u ∈ X with ∥u∥β = ρ.
Also we have ∣∣∣∣∣∣

∫
Ω

ξ(x)

q(x)
|u|q(x)dx

∣∣∣∣∣∣ ≤ 2

q−
|ξ|s(x) |u|

q−

q(x)s′(x) ≤
2

q−
|ξ|s(x)C

q−∥u∥q
−

β

∣∣∣∣∣∣
∫
Ω

b(x)

r(x)
|u|r(x)dx

∣∣∣∣∣∣ ≤ 2

r−
|b|γ(x) |u|

r−

p∗(x) ≤
2

r−
|b|γ(x)C

r−∥u∥r
−

β ,

hence

Φλ(u) = M̂

∫
Ω

1

p (x)
|∇u|p(x)dx+

∫
∂Ω

β (x)

p (x)
|u|p(x)dσx

+

∫
Ω

ξ (x)

q (x)
|u|q(x)dx− λ

∫
Ω

b (x)

r (x)
|un|r(x)dx

≥ m0

p+

∫
Ω

|∇u|p(x)dx+

∫
∂Ω

β(x)|u|p(x)dσx

− 2Cq−

q−
|ξ|s(x) ∥u∥

q−

β − 2λCr−

r−
|b|γ(x) ∥u∥

r−

β

≥ m0

p+
∥u∥p

+

β − 2Cq−

q−
|ξ|s(x) ∥u∥

q−

β − 2λCr−

r−
|b|γ(x) ∥u∥

r−

β =
m0

p+
ρp

+

−
2|ξ|s(x)
q−nq−

−
2λ|b|γ(x)
r−nr−

a straightforward computation shows that the right side for

λ∗ =
m0r

−nr−

2p+|b|γ(x)
−

r−nr− |ξ|s(x)
q−nq− |b|γ(x)

is zero, and if n is chosen larg enough such that nq− >
2p+|ξ|s(x)

m0q−
, we have λ∗ > 0, and there exist τ > 0 such that

Φλ (u) ≥ τ , for every λ ∈ (0, λ∗). □

Let us now move on to the proof of the main theorem.

Proof. To apply the Mountain Pass Theorem, we need to prove that there exist e ∈ X, with ∥e∥ > ρ, such that
Φλ (e) ≤ 0.
First, for t > t0 (t0 in (M2) condition on M),

M̂ (t) ≤ M (t0)

t0
t = m1t.
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Now for 0 < u0 ∈ X and t > 1, such that ∥tu0∥ > t0,

Φλ(tu0) = M̂

∫
Ω

tp(x)

p(x)
|∇u0|p(x)dx+

∫
∂Ω

β(x)tp(x)

p(x)
|u0|p(x)dσx

+

∫
Ω

ξ(x)tq(x)

q(x)
|u0|q(x)dx− λ

∫
Ω

b(x)tr(x)

r(x)
|u|r(x)dx

≤ m1t
p+

p−
∥u0∥p

−

β +

∫
Ω

ξ(x)tq(x)

q(x)
|u0|q(x)dx− λtr

−

r+

∫
Ω

b(x)|u|r(x)dx.

Since q−, q+, p+ < r−, we have Φλ(tu0) → −∞ as t → ∞.

This shows that there exists u0 ∈ X, with ∥u0∥β > ρ and Φλ(u0) < 0.
Therefore, there exists a critical point u1 ∈ X for the functional Φλ, with positive energy and characterized by

Φλ(u1) = c̄ = inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > τ > 0,

where Γ := {γ ∈ C ([0, 1] , X) : γ (0) = 0, γ (1) = u1}. □

4. The second nontrivial weak solution of (1)

We establish the existence of the second nontrivial weak solution of (1), by applying the Ekeland variational
principle.

Proof. By lemma 3.2, we see that for a fix λ ∈ (0, λ∗),

inf
u∈∂Bρ(0)

Φλ(u) ≥ τ > 0, (Bρ (0) the ball of radius ρ centered at origin in X) .

Also, according to the choice λ, Φλ(u) is bounded from below. In fact, we have Φλ(u) ≥ −m0

p+ > −∞.
It can be seen from the proof of the first part of the theorem that there exists u0 ∈ X, for small enough t, such
that Φλ(tu0) < 0, so

−∞ < c
¯
:= inf

u∈Bρ(0)
Φλ(u) < 0.

Now if we choose ε > 0, such that

0 < ε < inf
u∈∂Bρ(0)

Φλ(u)− inf
u∈Bρ(0)

Φλ(u),

by applying Ekeland’s variational principle to the functional Φλ|Bρ(0)
, there exists uε ∈ Bρ (0), that

Φλ (uε) < inf
u∈Bρ(0)

Φλ(u) + ε

Φλ (uε) < Φλ(u) + ε∥u− uε∥β u ̸= uε,

so, Φλ (uε) < inf
u∈∂Bρ(0)

Φλ(u), and uε ∈ Bρ (0).

For the functional Ψλ : Bρ (0) → R, with Ψλ (u) = Φλ(u) + ε∥u− uε∥β , and uε as the minimum point of Ψλ,

Ψλ (uε + tν)−Ψλ (uε)

t
≥ 0

for all t > 0, small enough and all ν ∈ Bρ (0), or

Φλ (uε + tν)− Φλ (uε)

t
+ ε∥ν∥β ≥ 0

that when t → 0+, we deduce that
⟨Φ′

λ (uε) , ν⟩ ≥ −ε∥ν∥β .
and by replacing ν by −ν,

⟨Φ′
λ (uε) , ν⟩ ≤ ε∥ν∥β .

Therefore ∥Φ′
λ (uε)∥X∗ ≤ ε. So for ε = 1

n , there exists a sequence {un} ⊂ Bρ (0) such that Φλ(un) → c
¯
< 0 and

Φ′
λ(un) → 0 in X∗, as n → ∞. This sequence converges strongly to some u2 and Φ′

λ (u2) = 0. Thus u2 is a
nontrivial weak solution of (1) with Φλ (u2) = c

¯
< 0, and u2 ̸= u1. □
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