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Plant Diseases Classification Using Pre-trained and Transfer Learning Models: A 
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ABSTRACT: Ocular detection of pests by phytosanitary specialists, as a very imperative and 
challenging task, appears to be time-consuming, costly, and associated with human error in today’s 
farming processes. In modern agriculture, diagnostic softwares by artificial intelligence are advised to 
be used by farmers themselves with little time and cost and with more accuracy. In this paper, two 
different datasets of rice leaf disease have been used with two transfer learning methods for diagnosing 
rice leaf disease. The first method uses a CNN-based output of a pre-trained model with an appropriate 
classifier. In the second method, freezing bottom layers, fine-tuning weights of the last layers of the pre-
trained network, and adding an appropriate classifier to the model are proposed. For this purpose, seven 
CNN models have been designed and evaluated. Next, the weights of the best model among these seven 
proposed models is used to train a second dataset of rice leaves with more disease classes and fewer 
images. Using these weights, an accuracy of over 96% is reached which is higher than other comparing 
methods. Furthermore, Grad-CAM, heat map, and ROC diagram are used to observe the diagnostic areas 
of the best model. 
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1- Introduction
Millions of hectares of agricultural land are cultivated 

annually for rice production, as this crop is a staple for people 
worldwide. Leaf diseases at various stages of growth can 
harm the plant, leading to a decrease in both the quantity and 
quality of the final yield. These diseases may be triggered 
by a range of climatic conditions, including fungal, bacterial, 
and viral infections. Some of the most significant diseases 
include blasts, brown spots, bacterial leaf blight, false smut, 
and tungro virus. However, the excessive use of pesticides to 
combat these diseases can result in environmental pollution 
and pose risks to human health.

Traditional methods of diagnosing rice leaf diseases rely 
on manual and visual inspection, requiring accuracy and 
experience from the observer. Even expert agronomists can 
make errors in identifying the diseases correctly. Moreover, 
these traditional methods are time-consuming and may not 
be accessible in remote areas lacking specialized agricultural 
knowledge. Therefore, there is an increasing need for 
automated detection systems to enable timely and effective 
preventive measures [1]-[3].

Various approaches have been proposed in the literature 
to classify rice leaf diseases, including traditional machine-
learning methods that utilize image processing for disease 
classification. Some of the most important of these methods 

are: Random Forest (RF), Decision Tree (DT), Gradient 
augmentation, and Naïve Bayes (NB) classifiers [4]. In 
[5] and [6], different features were separated using local 
binary patterns and directional gradient histograms using 
segmentation by the Otsu method, and classification was 
done with the Support Vector Machine (SVM). In [7], the 
appropriate features required for classification are extracted 
from diseased plant leaf images and given to Nearest 
Neighbor (NN) networks or Artificial Neural Networks 
(ANN) for classification. 

In [8] and [9], various classifiers including updateable 
Naïve Bayes, Bayes Net, Part, J48, Decision stump, Logistic 
Model Tree (LMT), RF, Jrip, OneR, Filtered Classifier, Multi-
class classifier, Instance-Based learning with parameter K 
(IBK), and Logistic LibSVM from Weka tools are utilized for 
classification. The RGB features of each class are computed 
based on the affected leaf area in [8]. Meanwhile, in [9], 
features are obtained using the Otsu on Vegetation Index (VI) 
method to extract energy, correlation, homogeneity, contrast, 
and entropy of the contaminated areas. Subsequently, 
the tissue value is determined using the Gray-Level Co-
occurrence Matrix (GLCM) technique, and the damaged 
tissue is then fed into the classifier for classification. 

In the realm of traditional intelligence methods, outcomes 
were reliant on features, and image preprocessing played a 
crucial role. Consequently, researchers transitioned to deep 
learning networks like Convolutional Neural Networks 
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(CNNs) due to their ability to achieve high detection 
accuracy and perform automatic feature extraction [10]. For 
instance, in [11], a combination of K-means, SVM, and CNN 
clustering methods is employed. In [12], SVM classification 
is utilized with features extracted from the DCNN model and 
trained with InceptionV3. Subsequently, researchers started 
leveraging pre-trained networks, particularly pre-trained 
CNNs such as VGG16, AlexNet, ResNet152V2, InceptionV3, 
InceptionResNetV2, Xception, MobileNetDenseNet169, and 
NasNetMobile [1], [2], [3], [10], [13], [14] and [15].

In addition, models such as ResNet50, ResNet50V2, 
ResNet101V2, VGG19, SqueezeNet, MobileNetv2, and 
DENS-INCEP methods, which are a combination of 
DenseNet and Inception are presented in [13], [16], [17]. A 
proposed CNN and MobileNet model with UNet, as the basic 
model for image segmentation, is also proposed in [18], [19], 
and [20].

To study the rice leaf disease problem a number of 
different datasets have been prepared by the researches with 
different classes of diseases. The rice_leaf_diseases database 
in UCI repository with 120 images and three classes of 
False Smut, Brown Spot, Bacterial Blight and with equal 
distribution of 40 samples from each class is used in many 
previous works including [4], [5], [10], [18], [21]-[23]. It 
should be noted that the dataset under study contains a limited 
number of images and disease classes. In previous research, 
the riceleafs database from Kaggle was utilized, which 
consisted of 3355 images and four classes including Leaf 
blast, Hispa, Healthy leaves, and Brown Spot, as referenced 
in [3] and [13]. Another database mentioned in [15] consisted 
of 1426 images and nine classes, namely Sheath Blight, 
Brown Spot, Stemborer, Brown Plant Hopper (BPH), Hispa, 
False Smut, Neck Blast, Bacterial Leaf Blight (BLB), and 
Others. Additionally, [24] referred to a database available 
on the Mendeley site, which comprised 5932 images and 
four classes: Brown Spot, Leaf Blast, Tungro, and Bacterial 
Blight. In [25], accurate identification of rice leaf diseases 
with crowded backgrounds was discussed using the residual 
attention mechanism. A network called RiceDRA-Net was 
designed using a re-attention mechanism and convolution 
blocks and dense blocks, and a final accuracy of 99.60% was 
achieved. In [26], the classification of rice leaf diseases was 
performed based on the design of a model called ICAI-V4, 
which consists of Coordinate Attention, Inception-iv, and 
Reduction-iv modules, and the accuracy reached 95.57%. All 
datasets used in these studies are openly available.

As seen from previous studies, many works have been 
proposed for the detection of rice leaf disease which are 
based on different datasets. Most of the recent studies have 
utilized transfer learning since the datasets accumulated 
for this problem do not have many images. Several well-
known architectures such as VGG, ResNet, Inception, and 
MobileNet have been investigated for this purpose. The exact 
use of which architecture depends on the application (whether 
a light detection or precise result is needed) and on the type 
of images in the dataset. In addition, most previous works 
relied on the accuracy of detection, while for multi-class 

classifications the F1-score is more reliable for evaluation. 
On the other hand, using weights of one network trained on 
a dataset and transferring them to test another dataset has not 
been conducted in any of the previous works.    

This paper presents several automated methods based 
on a transfer learning approach for classifying rice leaf 
diseases using two datasets: Mendeley’s Rice Leaf Disease 
[24] and Rahman et al. [17] datasets. On the first dataset, 
two techniques are employed in applying transfer learning. 
The initial approach involves utilizing a pre-trained CNN 
model, whereas the second approach involves fixing lower 
layers of the pre-trained model. Subsequently, the weights of 
the final layers of the pre-trained network are adjusted, and a 
suitable classifier is incorporated into the model. As a result, 
a total of seven models are put forward. To achieve this, three 
well-known pre-trained networks - VGG16, InceptionV3, 
and Resnet152v2 - are utilized with varying numbers of 
final layers for fine-tuning in order to produce these seven 
models. Finally, the weights of the best model among these 
seven proposed models are used to train a second dataset on 
rice leaves, which has more disease classes and fewer images. 
This transition of weights from a trained network to test 
another dataset does not exist in previous studies, to the best 
of our knowledge. 

The remainder of this article includes the following 
sections: Section 2 outlines the dataset, transfer learning 
basics, and the proposed networks. Section 3 presents the 
simulation results of the proposed models. Lastly, Section 4 
covers conclusions and future works.

2- Proposed Networks
2- 1- The dataset

The dataset used in this research includes 5932 images 
from the Mendeley public. Rice leaf disease images were 
classified into four classes: bacterial blight, blast, brown 
spot, and tungro (Fig. 1). Each class consists of 1584, 1440, 
1600, and 1308 images, respectively, which all classes have 
an almost uniform distribution [24]. These images were 
collected with the background of the field. The second public 
dataset is from the Resized_Original_Data folder used in 
[17], which contains 1426 images grouped into nine classes: 
pseudosmooth, brown plant hopper, bacterial leaf blight, 
neck blast, stemborer, hyspa, rot or pod burn, brown spot, 
and the last category is called others, which includes healthy 
leaves and stems, healthy yellow seeds, and dead leaves and 
stems (Fig. 2).

These classes have been collected from different stages 
of the disease. Utilizing images with authentic backgrounds 
and training the networks with them yields more realistic 
results compared to images where backgrounds have been 
eliminated, leaving only the patient leaf image.

2- 2- Basics of transfer learning
Convolutional Neural Networks require large amounts 

of data and resources during the training process. For 
instance, the ImageNet dataset consists of 14,197,122 images 
categorized into various subcategories, which prove to be 
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beneficial for supervised machine learning tasks like object 
localization, image classification, and object recognition. 
The Scale-Invariant Feature Transform (SIFT) utilized in 
computer vision aids in identifying local features within 
an image. The ImageNet dataset encompasses 1,000 image 
classes with SIFT features trained over a period of two to 
three weeks using multiple GPUs. In transfer learning, 
initial network layers are responsible for edge extraction, 
while middle layers focus on shape extraction. Only the 
final layers are retrained to capture clearer elements of the 
images. Additional layers can be incorporated into the CNN 
model based on specific objectives. Three strategies exist for 
employing pre-trained networks in transfer learning:

1. Training the complete model using a dataset.
2. Keeping the majority of the network frozen, only the 

final layers being retrained.
3. Fixing the base CNN weights and incorporating a new 

classifier.
The techniques outlined in this paper are established 

from strategies two and three, as our dataset contains over 
1000 images per category and differs from the ImageNet 
dataset (even though it includes images of plants and trees). 
Consequently, both strategies two and three have been 
evaluated. The initial model proposed is built on strategy three 
and is accompanied by an appropriate classifier for the initial 

dataset. The subsequent six models proposed are constructed 
on strategy two and are paired with suitable classifiers for the 
initial dataset.

2- 3- VGG16, InceptionV3 and Resnet152v2 pre-trained 
networks

Three pre-training networks were utilized in this research: 
VGG16 from Oxford, InceptionV3 from Google, and 
Resnet152v2 from Microsoft. These models were chosen as 
they are well-known models and previous studies have also 
used them as in [1], [2], [10], [16], and [17] and reached 
promising results. The weights for all three networks were 
established through training on the ImageNet dataset. An 
analysis comparing these three networks is presented in the 
study [27].

2- 4- The proposed models
VGG16 network was initially employed in the proposed 

approach, employing strategy 3. In this instance, the 
convolutional base of the network utilized ImageNet 
weights, while the last fully connected layer was eliminated. 
Subsequently, we designed our classifier at the network end, 
following the structure depicted in Figure 3. Additionally, 
image sizes were modified to 224x224x3 and the following 
layers were incorporated: 

1. Utilizing a dense layer consisting of 2048 neurons, 
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Fig. 1. Four classes of rice leaf diseases in the Mendeley dataset, 
a) bacterial blight, b) blast, c) brown spot, d) tungro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Four classes of rice leaf diseases in the Mendeley dataset, a) bacterial blight, b) blast, c) 
brown spot, d) tungro.

     
a b c d e 

    

 

f g h i  
Fig. 2. Nine classes of rice leaf diseases in Rahman et al dataset, a) bacterial leaf blight, b) brown plant hopper, c) 
brown spot, d) false smut, e) healthy (others), f) hispa, g) neck blast, h) sheath blight rot, i) stemborer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Nine classes of rice leaf diseases in Rahman et al dataset, a) bacterial leaf blight, b) brown plant hopper, 
c) brown spot, d) false smut, e) healthy (others), f) hispa, g) neck blast, h) sheath blight rot, i) stemborer.
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employing the Relu activation function, and having feature 
dimensions of 7x7x512 (equivalent to the final output shape 
of the base model VGG16 post removal of the fully connected 
layer). Subsequently, a dropout operation is executed with a 
regularization value of 0.5 to face the over-fitting problem.

2. Implementing a dense layer comprising 512 neurons, 
maintaining the same feature dimensions and activation 
function, along with a dropout operation set the same as the 
previous step.

3. Incorporating a dense layer with 128 neurons, keeping 
the feature dimensions and activation function consistent, and 
applying a dropout operation with the same specified value.

4. Establishing a dense layer with four neurons (as there 
are four classes for classification) and utilizing the Softmax 
activation function for the classification process.

This model is specifically tailored for VGG16 architecture 
and is not compatible with InceptionV3 and Resnet152v2 
architectures due to its design being optimized for VGG16’s 
dimensions.

In the second approach, fine-tuning was implemented on 
VGG16, InceptionV3, and Resnet152v2 networks. Initially, 
network weights from the ImageNet dataset were utilized 
for the base CNN of all three networks, excluding the last k 
layers, and the classifier was eliminated. Image dimensions 
were adjusted to 224x224x3. The optimal value of k, 
representing the number of layers for fine-tuning the model, 
was determined through experimentation. Subsequently, all 
layers of networks were frozen, except the last six layers of 

Resnet152v2, the last 12 layers of InceptionV3, and the last 
two layers of the VGG16 network. These specific layers were 
retrained. A classifier was then constructed using the Global 
Average Pooling (GAP) technique, resulting in the final 
model configuration (Fig. 4):
•  A dense layer with 512 neurons, a Relu activation function, 

and droupout with a value of 0.3
• The same three layers are repeated once more
• A last dense layer with four neurons and a Softmax 

activation function
In the third approach, the selection of the optimal method 

for the second dataset was based on outcomes obtained from 
previous strategies. The preferred approach was determined 
by considering the results achieved on the first dataset of 
rice. To accomplish this, weights of the proposed model for 
the second strategy were derived from VGG16 network, 
excluding the last layer. Subsequently, a dense layer with nine 
neurons (representing the number of categories in the second 
dataset) and a Softmax activation function were added after 
removing the last layer, as illustrated in Figure 5. This model 
was then trained and evaluated for the second dataset using 
two specific methods:
• Using 10 fold cross validation
• Without using k fold cross validation

In addition, the weights of VGG16 network were used 
once again with fine-tuning the last three layers, and a two-
dimensional UpSample layer was used before the final 
classifier in this approach.

 

 

Fig. 3. First proposed strategy with VGG16 and the classifier. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. First proposed strategy with VGG16 and the classifier.

 

  

Fig. 4. Second proposed strategy with fine-tuning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Second proposed strategy with fine-tuning. 
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3- Simulation Results and Comparison
To implement the proposed models, Python version 

3.7.13, Keras version 2.8.0, Google CoLab environment, and 
its free GPU, Tesla k80, have been used to execute the codes. 
Both datasets (Mendeley and Rahman et al.) were divided 
into 80%-20% for training and test/validation respectively, 
which equals 4743 images for training and 1189 for model 
validation/testing for the first dataset.

3- 1- Initializations and evaluation metrics
The initial model presented in Figure 3 underwent the 

normalization of images and was trained using a batch size 
of 64. Loss values were computed using the cross-entropy 
function, and the model was optimized using the RMSprop 
function with a learning rate of 0.0001 over 30 epochs. Moving 
on to the second model in Figure 4, data normalization was 
applied, and training was conducted with 32 batches over 30 
epochs. Adam optimizer was utilized with an initial learning 
rate of 0.001, along with a cross-entropy loss function. 
Feedback mechanisms were employed to adjust the learning 
rate during training. In cases where accuracy did not improve 
for three consecutive validation rounds, the learning rate was 
decreased by a factor of 0.4 to facilitate a slower network 
learning process.

For the third proposed model in Fig. 5, both methods 
of the third strategy were used with 10-fold and without 
using k-fold with the same parameters. The categorical_
crossentropy cost function was used together with Adam’s 
optimizer function with an initial learning rate of 0.001. If 
the accuracy of validation data did not improve for three 
consecutive rounds, the learning rate would be decreased 
by 0.4. The training was conducted with 32 batches over 30 
epochs for the method without k-fold. For the 10-fold method, 
the value of random state was five, shuffle=true and it was 
executed in 100 rounds. The reason for using 100 rounds of 
execution was to set similar conditions with the base paper 
for comparison. For VGG16 with fine-tuning the last three 

layers, the SGD optimizer function was used with an initial 
learning rate of 0.01, the image input size was 256x256, and 
the batch size was set to 16. The model was trained in 100 
rounds with early stopping and patience with a value of 20, 
which means if the validation error is not reduced after 20 
consecutive rounds, execution is stopped. Other parameters 
are the same as before.

In order to assess the effectiveness of the suggested 
networks, analyses were conducted on various metrics 
including accuracy, precision, recall, F1-score, and loss 
function as outlined in (1)-(4) correspondingly.

Accuracy=(TP+TN)/(TP+FP+FN+TN)                         (1) 

Precision=TP/(TP+FP)                                                  (2) 

Recall=TP/(TP+FN)                                                       (3) 

F1-score=2*(Precision*Recall)/(Precision+Recall)      (4) 

 

 (1)Accuracy=(TP+TN)/(TP+FP+FN+TN)                         (1) 

Precision=TP/(TP+FP)                                                  (2) 

Recall=TP/(TP+FN)                                                       (3) 

F1-score=2*(Precision*Recall)/(Precision+Recall)      (4) 

 

 (2)

Accuracy=(TP+TN)/(TP+FP+FN+TN)                         (1) 

Precision=TP/(TP+FP)                                                  (2) 

Recall=TP/(TP+FN)                                                       (3) 

F1-score=2*(Precision*Recall)/(Precision+Recall)      (4) 

 

 (3)

Accuracy=(TP+TN)/(TP+FP+FN+TN)                         (1) 

Precision=TP/(TP+FP)                                                  (2) 

Recall=TP/(TP+FN)                                                       (3) 

F1-score=2*(Precision*Recall)/(Precision+Recall)      (4) 

 

 (4)

such that TP, TN, FP, and FN are computed as:
• True Positive (TP): where the sample is positive (a leaf 

is affected by the desired disease class) and the pattern is 
accurately identified.

• True Negative (TN): indicates that the sample is negative 
(a leaf has a disease other than the desired disease class) 
and the pattern is correctly identified.

• False Positive (FP): where the sample is positive, but 
its pattern is not diagnosed correctly, resulting in the 
identification of an incorrect disease class.

• False Negative (FN): such that the sample is negative, 
but the pattern is not diagnosed correctly, leading to the 
identification of an incorrect disease class.

 

 

 

 

Fig. 5. Third proposed strategy with transfer learning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Third proposed strategy with transfer learning. 
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Furthermore, the confusion matrix, ROC curve, and AUC 
diagram are used for evaluation according to the following 
definitions: 
• Confusion matrix: shows the number of true instances 

of a specific class against the number of predicted class 
instances, such that values on the main diagonal are true 
values (classified correctly).

• ROC (Receiver Operating Characteristic) curve: shows the 
performance of a classification model at all classification 
thresholds and is created by plotting True Positive Rate 
(TPR), in terms of False Positive Rate (FPR).

• Area Under ROC Curve (AUC): the area under ROC 
graph is used as a measure to evaluate the performance 
of a classifier. The numerical value of AUC is a number 
between zero and one.  
Finally, heat map and Grad-CAM (Gradient-weighted 

Class Activation Mapping) techniques are used to interpret 
the outputs or predictions of a proposed model. These 
techniques actually highlight regions of the input image 
where the model pays close attention during the classification 
process. In today’s research, interpretation of neural models 
is one of the most important challenges of diagnosis methods 
since it gives the experts an assurance that their proposed 
model is well able to make diagnoses and recognize correct 
points in the images. 

In heat maps, the coldest color (blue) shows parts that have 
no effect on producing predictions. Parts that have the most 
influence on producing predictions are colored in yellow or 

red. The Grad-CAM technique is itself a CNN and an image is 
given as input to a CNN network. Extracted feature maps from 
the last convolution layer are passed through a fully connected 
layer and the winning neuron of Softmax is determined. More 
details on this technique are provided in [28].

3- 2- Results of experiments
Results of precision, recall, and F1-score criteria for the 

seven proposed models are given in Tables 1, 2, 3, 4. The 
support column represents an overall count of occurrences 
identified for a specific class type. These tables clearly 
indicate that the values exceed 98%. Results for the four 
models, as depicted in Table 4, remain consistent:
• VGG16 with two-layer fine-tuning
• InceptionV3 with 12-layer fine-tuning
• Resnet152v2 with five- and six-layer fine-tuning 

Results of accuracy, sensitivity, and F1-score for the 
second proposed model without K-fold in the third strategy 
are given in Table 5. As can be seen, the F1-score for this 
table has an average value of 0.96. As seen from Table 6, for 
the VGG16 model with the last three reset layers, the F1-
score has an average value of about 0.98.

Figures 6, 7, and 8 show accuracy and loss charts for 
training and validation data of the seven proposed models 
separately. Figure 6.a illustrates that the VGG16 model with 
two-layer fine-tuning achieves higher accuracy values in both 
training and validation phases compared to the same model 
with one-layer fine-tuning and the model without fine-tuning.

Table 1. Mrasures for VGG16 Without Fine-tune
TABLE 1. MEASURES FOR VGG16 WITHOUT FINE-TUNE 

 

support f1-score recall precision Classes 

314 0.99 1.00 0.99 Bacterial blight 

293 0.99 0.99 1.00 Blast 

320 1.00 1.00 1.00 Brown spot 

262 1.00 1.00 1.00 Tungro 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Mrasures for VGG16 With One-layer Fine-tune
TABLE 2. MEASURES FOR VGG16 WITH ONE-LAYER FINE-TUNE 

support f1-score recall precision Classes 

314 1.00 1.00 0.99 Bacterial blight 

293 0.99 0.99 1.00 Blast 

320 1.00 1.00 1.00 Brown spot 

262 1.00 1.00 1.00 Tungro 
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Table 3. Mrasures for InceptionV3 With 11-layer Fine-tune.

 

TABLE 3. MEASURE FOR INCEPTIONV3 WITH 11-LAYER FINE-TUNE 

 

support f1-score recall precision Classes 

313 0.99 1.00 0.99 Bacterial blight 

294 0.99 0.98 0.99 Blast 

320 0.99 0.99 0.99 Brown spot 

262 1.00 1.00 1.00 Tungro 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. VGG16 With Two-layer, InceptionV3 With 12-Layer, and Resnet152V2 With five and six-laye Fine-tune.

 

TABLE 4. VGG16 WITH TWO-LAYERS, INCEPTIONV3 WITH 12-LAYERS, AND RESNET152V2 WITH FIVE AND SIX-
LAYERS FINE-TUNING 

support f1-score recall precision Classes 

317 1.00 1.00 1.00 Bacterial blight 

290 1.00 1.00 1.00 Blast 

320 1.00 1.00 1.00 Brown spot 

262 1.00 1.00 1.00 Tungro 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Criteria results for the third proposed model without K-fold cross-validation
TABLE 5. CRITERIA RESULTS FOR THE THIRD PROPOSED MODEL WITHOUT K-FOLD CROSS-VALIDATION 

 

support f1-score recall precision Classes 

28 0.96 0.96 0.96 Bacterial Leaf Blight (BLB) 

17 0.87 0.82 0.93 Brown Plant Hopper (BPH) 

23 1.00 1.00 1.00 Brown Spot 

19 1.00 1.00 1.00 False Smut 

47 0.94 0.94 0.94 Others 

14 0.90 0.93 0.87 Hispa 

57 0.99 .100 0.98 Neck Blast 

46 0.91 0.89 0.93 Sheath Blight and/or Sheath Rot 

39 0.97 1.00 0.95 Stemborer 
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Table 6. Criteria results for the third proposed model by rearranging last three layers with VGG16
TABLE 6. CRITERIA RESULTS FOR THE THIRD PROPOSED MODEL BY REARRANGING LAST THREE LAYERS WITH VGG 16 

 

support f1-score recall precision Classes 

31 0.95 0.90 1.00 Bacterial Leaf Blight (BLB) 

16 0.90 0.88 0.93 Brown Plant Hopper (BPH) 

23 1000 1.00 1.00 Brown Spot 

18 0.97 1.00 95.0 False Smut 

47 1.00 1.00 1.00 Others 

14 0.90 0.93 0.87 Hispa 

58 1.00 1.00 1.00 Neck Blast 

42 0.98 1.00 95 Sheath Blight and/or Sheath Rot 

41 1.00 1.00 1.00 Stemborer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

 

b 

Fig. 6. Diagrams of a) accuracy, and b) loss for VGG16 without fine-tune, and one-layer 
and two-layer fine-tuning. 

 

 

 

 

 

 

 

 

 

Fig. 6. Diagrams of a) accuracy, and b) loss for VGG16 without fine-tune, and one-layer and 
two-layer fine-tuning.
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Additionally, the error chart in Figure 6.b demonstrates that 
the VGG16 model with two-layer fine-tuning has the lowest 
error rate for both training and validation phases. Moving on 
to Figure 7. a, it can be observed that the InceptionV3 model 
with 12-layer fine-tuning exhibits higher accuracy values for 
both training and validation phases compared to the results of 
the same model with 11-layer fine-tuning. Furthermore, the 
error rate of the InceptionV3 model with 12-layer fine-tuning 
is lower (Fig. 7.b).

In Fig. 8.a, accuracy values for the Resnet152v2 model 
in training and validation phases with six-layer fine-tuning 
fluctuate less than that of the same model with five-layer 
fine-tuning. In Fig. 9 accuracy and error diagrams for the 
third proposed model are presented and on the second dataset. 
As can be seen, the accuracy of this graph for validation data 
is above 96% and its error is less than 0.2. 

Fig. 10 also shows the accuracy and loss of the third 

model on the second dataset with three-layer of fine tuning. 
As shown in this figure, the accuracy of this model is 97.93% 
and the error is 0.1259 for the second dataset, which is 1.38% 
different from the accuracy of our previous method without 
K-fold. This is due to the second dataset which has fewer 
images compared to ImageNet. In addition, smaller batch 
sizes and the use of a different SGD optimizer are other 
reasons for the low accuracy of this model.

Program execution time in this method is 377.1392 
seconds, equivalent to approximately 6.2857 minutes. The 
size of this model is 58.2 MB and the accuracy convergence 
score in this model is 0.97.

The confusion matrices for all seven models are displayed 
in Figure 11. It is evident from this figure that VGG16, without 
fine-tuning, misclassified four bacterial blight samples as 
blast samples (Figure 11.a). Additionally, it achieved an 
accuracy of 99.66% and an error rate of 0.0764% as stated 

 

a 

 

b 

Fig. 7. Diagrams of a) accuracy, b) loss for InceptionV3 with 11- and 12-layer fine-tuning. 

 

 

 

 

 

 

 

 

Fig. 7. Diagrams of a) accuracy, b) loss for InceptionV3 with 11- and 12-layer fine-tuning.
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in Table 9.
Figure 12 shows confusion matrices for the third proposed 

model. It can be seen from this figure that without k-fold for 
the second dataset, 13 cases are misdiagnosed. In Fig. 12.b, 
the model has been evaluated for the second dataset and, as 
in its base paper, using the last three-layer fine-tuning method 
with VGG16, all data have been used for testing. It can be seen 
that this model misdiagnosed six cases. The model presented 
in Fig. 12.c with 10-fold diagnosed correctly all cases.

In Fig. 13 and Fig. 14 ROC curves are displayed for 
the first and second datasets, respectively. As seen, these 

diagrams for all categories are close to one and AUC value 
for all of them has been calculated, which is equal to the area 
under the ROC curve.

Finally, heat map and Grad-CAM results are presented 
in this section, to represent the last displayable layer of 
the proposed models. As seen from Table 7, for the second 
dataset, in the first column on the right, the main image and 
in the next column the heat map corresponding to that image 
are displayed. Yellow or light areas are the diagnostic area of 
that layer, and in the next column, using Grad CAM, those 
areas tending to red in the original image are shown. In the 
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Fig. 8. a) Accuracy, b) loss for Resnet152v2 with five- and six-layer fine tuning. 
 

 

 

 

 

 

 

 

Fig. 8. a) Accuracy, b) loss for Resnet152v2 with five- and six-layer fine-tuning.
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next column, the name of the category to which this leaf 
really belongs, and in the last column name of the category 
recognized by our model is written.

As seen from Table 7, the fifth row is an example of 
model misdiagnosis. The same information of heat map and 
Grad-CAM methods is shown in Table 8 for the first dataset. 

Table 9 presents a comparison of our proposed models in 
this paper with other studies. According to this table, VGG-
16 without fine-tuning and with one-layer fine-tuning has 
incorrectly classified four and three samples, respectively, 
of bacterial blight (Fig. 11.a and Fig.11.b) and reached an 

accuracy of 99.66% and 99.71%, respectively. Parameters 
in Table 9 were acquired through the summary function 
in the Tensorflow library. Accuracy, loss, parameters, and 
simulation times for [1], [2], [16], and [24] are also displayed 
in Table 9 for comparison purposes.

In [24], the same dataset was utilized as in this study, 
resulting in higher accuracy. Moreover, the shortest training 
time among the suggested models belongs to VGG16 
without fine-tuning, which lasts around one minute. This is 
approximately six seconds less than that documented in [24].

The Inceptionv3 model with 11-layer fine-tuning has 

 
a 

 

b 

Fig. 9. Diagrams of a) accuracy, and b) loss for VGG16 without k-fold on Rahman et 
al dataset. 

 

 

 

 

 

 

 

 

Fig. 9. Diagrams of a) accuracy, and b) loss for VGG16 without k-fold on Rahman et al dataset.
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incorrectly classified eight samples (Fig. 11.c) and reached 
an accuracy of 99.22% and an error of 0.0333%. The rest 
of the models, including VGG16 with two-layer fine-tuning, 
InceptionV3 with 12-layer fine-tuning, and Resnet152v2 
with five and six-layer fine-tuning have all reached 100% 
accuracy and have identified all samples correctly.

In Table 10, results obtained from the three proposed 
models for the second dataset are given along with results of 

[17] that are available for the second dataset. As can be seen, 
among the three proposed methods, VGG16 using 10_Fold 
from the first to second dataset has higher average accuracy 
than other proposed methods (according to Fig. 9 and Fig. 10). 
Alternatively, the number of misdiagnosed cases of the VGG16 
method with fine-tuning last three layers is less (according to 
Fig. 12). In general, we have reached a higher accuracy than 
[17] and have had more cases of correct diagnosis. 

 

a 

 

b 

 

Fig. 10. Diagrams of a) accuracy, and b) loss for VGG16 with three-layer fine tuning on Rahman et al dataset. 

 

 

 

 

 

 

Fig. 10. a) Diagrams of a) accuracy, and b) loss for VGG16 with three-layer fine tuning on Rah-
man et al dataset.
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a b 

  

c d 

 

Fig. 11. Confusion matrices for a) VGG16 without fine-tuning, b) VGG16 with one-layer fine-tuning, c) InceptionV3 with 11-layer 
fine-tuning, d) VGG16 with two-layer, InceptionV3 with 12-layers and Resnet152v2 with five- and six-layers fine-tuning. 

 

 

 

 

 

 

 

 

Fig. 11. Confusion matrices for a) VGG16 without fine-tuning, b) VGG16 with one-layer fine-tuning, c) Incep-
tionV3 with 11-layer fine-tuning, d) VGG16 with two-layer, InceptionV3 with 12-layers and Resnet152v2 with 

five- and six-layers fine-tuning.

4- Conclusion and Directions for Further Study
In this study, we investigated the effectiveness of seven 

CNN models based on pre-trained architectures for classifying 
rice leaf diseases. From the suggested models, four of them:

• VGG16 with two-layer fine-tuning
• InceptionV3 with 12-layer fine-tuning 
• Resnet152v2 with five and six-layer fine-tuning 
from the second strategy reached 100% accuracy and F1-

score. In contrast, VGG16 achieved an accuracy of 99.66% 
and an F1-score of 99.5% without fine-tuning. By adding a 
single layer of fine-tuning, accuracy is improved to 99.71% 
and F1-score increased to 99.75%. InceptionV3 achieved an 
accuracy of 99.22% and an F1-score of 99.25% with 11 layers 
of fine-tuning. Consequently, out of all the aforementioned 
models, VGG16 with two layers of fine-tuning demonstrated 
the best performance and for fine-tuning, boasting a perfect 
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a b 

 

c 

Fig. 12. Confusion matrices for a) VGG16 without K_Fold, b) three-layer fine-tuning, and c) with 10_Fold on Rahman et al dataset 
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Fig. 12. Confusion matrices for a) VGG16 without K_Fold, b) three-layer fine-tuning, and c) with 10_Fold on Rahman et al dataset 
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Fig. 12. Confusion matrices for a) VGG16 without K_Fold, b) three-layer fine-tuning, and c) with 10_Fold on Rahman et al dataset 

 

 

 

 

 

 

 

Fig. 12. Confusion matrices for a) VGG16 without K_Fold, b) three-layer fine-tuning, and c) with 10_Fold on 
Rahman et al dataset.( Continued)
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Fig. 12. Confusion matrices for a) VGG16 without K_Fold, b) three-layer fine-tuning, and c) with 10_Fold on Rahman et al dataset 

 

 

 

 

 

 

 

Fig. 12. Confusion matrices for a) VGG16 without K_Fold, b) three-layer fine-tuning, and c) with 10_Fold on 
Rahman et al dataset.

 

Fig. 13. ROC curve for the second approach. VGG16 model with last two layers of fine 
tuning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. ROC curve for the second approach. VGG16 model with last two layers of fine tuning.
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Fig. 14. ROC plot and AUC value 
 

 

 

 

 

 

 

 

Fig. 14. ROC plot and AUC value

Table 7. Thermal map and Grad-CAM results for images from different categories of dataset Rahman et al.
Table 7. Thermal map and Grad-CAM results for images from different categories of dataset Rahman et al 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class detected Real Class Grad Cam Heat map Original image 

Bacterial leaf blight Bacterial leaf blight 
   

Brown Plant 
Hopper Brown Plant Hopper 

   

brown spot brown spot 
   

False Smut False Smut 
 

   
Sheath Blight 

and/or Sheath Rot 

 
 

Others    

Hispa Hispa 
   

Neck Blast Neck Blast 
   

Sheath Blight 
and/or Sheath Rot Sheath Blight and/or Sheath Rot 

   
 

Stemborer 
 

Stemborer    
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Table 8. Thermal map and Grad-CAM results for images from different categories of the first dataset.Table 8. Thermal map and Grad-CAM results for images from different categories of the first dataset 

Original image Heat map Grad CAM Real Class Class detected 

   
Bacterial leaf blight Bacterial leaf blight 

   

 
blast 

 
blast 

   

brown spot brown spot 

   

 
Tungro 

 
Tungro 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Table 9. Comparison of accuracy, loss, number of trainable and non-trainable parameters, and total num-
ber of parameters for all seven proposed models with other methods.

Table 9. Comparison of accuracy, loss, number of trainable and non-trainable parameters, and total number of 

parameters for all seven proposed models with other methods 

model 
Accuracy 

(%) 
loss 

Trainable 

parameters 

Non-trainable 

parameters 

Total 

parameters 

Training Time 

(second) 

VGG16 without fine-tune 99.66 0.0318 37,782,852 14,714,688 52,497,540 63.3226 

VGG16 fine tune(1) 99.71 0.0053 527,364 14,714,688 15,242,052 893.2215 

VGG16 fine tune(2) 100.00 2.0229 e-05 2,887,172 12,354,880 15,242,052 952.0729 

InceptionV3 fine tune(12) 100.00 0.0003 1,707,524 21,409,056 23,116,580 821.3197 

InceptionV3 fine tune(11) 99.22 0.0333 1,314,308 21,802,272 23,116,580 802.7838 

Resnet152v2 fine tune(6) 100.00 0.0005 2,369,540 57,275,904 59,645,444 2873.9854 

Resnet152v2 fine tune(5) 100.00 0.0009 2,368,516 57,276,928 59,645,444 2746.6022 

ResNet50 

(SVM using deep features) [24] 
98.38 - - - - 69.04307 

Reattention mechanism and 

convolution blocks and Dense 

blocks [25] 

99.60 - - - - - 

Coordinate Attention, 

Inception-iv and Reduction-iv 

modules [26]  

95.57 - - - - - 
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Table 10. Comparison of accuracy, loss.Table 10. Comparison of accuracy, loss. 

Model Mean Accuracy Standard Deviation 

VGG16 with three-layer fine-tuning, without k-fold  97.93% [Accuracy] 0.1259 [loss] 

Without k-fold  96.55% [Accuracy] 0.1353 [loss] 

Accuracy with 10-fold  98.57% (4.29%-/+) 

Accuracy of [17] with VGG16  97.12% (2.23%-/+) 

 

 

 

 

 

 

 

 

accuracy and F1-score, as well as a smaller number of layers.
After mentioning the best model, another dataset was 

chosen with more classes (nine classes) to test that model. 
This model based on VGG16 using 10-fold from the first to 
second dataset has the highest average accuracy.

For future studies, we plan to evaluate the enhanced model 
presented in this paper using a broader dataset encompassing 
various types of leaves. This model can further be applied to 
larger datasets containing a wider range of classes to improve 
disease detection capabilities.
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