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1. Introduction

Penalized regression stands as a potent technique for modeling high-dimensional data, harmonizing traditional re-
gression with penalty terms that foster sparsity or endorse other attributes in the estimated coefficients. This amal-
gamation facilitates efficient variable selection and simultaneous parameter estimation, even when multicollinearity
is prevalent.

SCAD regression, introduced by [4], has numerous advantages. It stimulates sparsity in the estimated coef-
ficients via a penalty mechanism that pushes many coefficients to zero. This feature enables automatic variable
selection by discarding insignificant predictors, thereby yielding more concise models. Moreover, SCAD regression
adeptly manages multicollinearity, similar to other penalized techniques. Notably, SCAD regression demonstrates
asymptotic oracle properties, ensuring consistent estimation of the true model, even in instances where the number
of predictors surpasses the sample size.

The literature encompassing SCAD regression is rich in significant references. Fan and Li [4] inaugurated the
SCAD penalty, underscoring its non-concave penalized likelihood and oracle characteristics. Fan and Peng [5]
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extended SCAD regression to accommodate an extensive array of predictors, establishing the variable selection
consistency under specific conditions. Zhang et al. [17] delved into the theoretical aspects of SCAD regression,
highlighting the consistency of unbiased variable selection and estimation. Additionally, [9] and [10] concentrated on
variable selection in high-dimensional data utilizing penalty methods, presenting theoretical findings and practical
guidelines for model estimation.

Regression models featuring multivariate responses (multi-responses) confer a multidimensional facet to statis-
tical modeling. Managing multi-response scenarios presents the core challenge. One approach initially disregards
the multi-response nature, treating responses as separate univariate regressions. However, this approach elimi-
nates the correlations among multi-response elements. Breiman and Friedman [2] outlined a strategy to address
multi-response predicaments via individual regressions. For penalized models, [3] explored diverse variable selec-
tion methods for multi-response challenges in their Ph.D. thesis. Variyath and Brobbey [15] further extended
this investigation and included selection criteria along with examples involving more than two dimensions for the
problem.

Recently, [11] worked on statistical inference about multi-response regression models via providing confidence
intervals. [13] applied joint models for multi-response longitudinal data in Bayesian literature. Additionally, [8]
proposed multivariate form of Bridge regression and demonstrated the better performance of their selection criterion
for high-dimensional data. While the extensive examination of SCAD regression pertains primarily to univariate
response data, its application to multivariate response regression remains a subject of ongoing research.

This paper introduces, for the first time, a specialized objective function for SCAD regression tailored to multi-
response problems. We also propose four novel information criteria based on generalized information criterion
definitions to facilitate the selection of tuning parameters. Through a simulation study, we assess the consistency of
the models chosen by these four criteria. Additionally, we evaluate the performance of SCAD regression for multi-
response scenarios using both simulated and real datasets. Section 2 reviews the essential prerequisites. Section 3
presents the objective function of SCAD regression for multi-response problems and the new information criteria.
Finally, Section 4 provides numerical analyses that demonstrate our findings and results.

2. Basic Concepts

This section reviews the basic definitions required to obtain the paper’s main results.

2.1. Multi-response Penalized Regression
The multi-responses regression model is defined as follows:

Yoxk = XnXpoXK + EnXKa (1)
where Y = [Y1|Ya| -+ | Yk] is the observation matrix of the multi-response with K elements, X is the feature
observation and B = [81 |82] - -+ | Bk]| is the matrix of regression coefficients. E = [Ey |Es|--- | Ek] is the matrix

of noise. For j = 1,...,K, we have Y; = (y1j,---,Yns)’s B; = (Bijy---,Bpj) and E; = (€15,...,65;) are the jth
columns of Y, B and F, respectively.
The general form of the objective function in penalized models is considered as:

Q\, B)=4B)+p(A|Bl), (2)

where £(.) and p (.) are the negative log-likelihood and penalty functions, respectively. Additionally, A is the tuning
parameter of the penalized model. There are several penalty functions, such as bridge, proposed by [6], LASSO,
proposed by [14], and SCAD penalty function, proposed by [4]. After identifying the objective function, providing
a method to select the optimum A is the next step. Cross-validation and information criteria are tools for obtaining
A via this approach.

2.2. Information Criteria

Information criteria can be used to select penalized or non-penalized models. For example, the well-known AIC
has both non-penalized [1] and penalized [18] forms for model selection. All information criteria mostly have two
parts: a function of likelihood and a penalty part. For models with multi-response, [15] proposed their criteria,

GCV and BIC, as:
1 D

n(1-n-ldf)”

BIC(\) = log (f) + (logrf")> df, (4)
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where D is the deviance of the model obtained from the null model (a model without features), and dfy is the
number of features in the model. We use the GCV and BIC in Section 4 for comparison study. We propose a type
of information criterion to select A, based on the studies of [18] and [7], in Section 3.

3. Multi-response SCAD Regression

In this section, we propose the objective function of SCAD regression, which is suitable for multi-response models,
and then we specify the information criteria, proposed by [16], [18], and [7] for the provided SCAD regression.

3.1. Objective Function of Multi-SCAD

Tt is required to clarify objective function (2) in this situation. The objective function has two parts. ¢(B) and a
penalty function. We should determine these parts for a problem with multivariate normal noise and the SCAD
penalty function. For multi-response models with normal noise, we have

I T
3 (Y(h) - B{Xh) n-1 (Y(h) - B{Xh) ,

UB) =
h

where Y(") and X}, are the hth row and columns of Y and X respectively. On the other hand, [4] proposed the
following SCAD penalty function:

AlB| 1Bl < A
Pex(B;a) = § — (6% — 2aX|8] + X2) /2(a —1)] A < [B] < aX
(a+1)A%/2 18] > a\

Also, they suggested a = 3.7 as an optimum value for . We consider the SCAD penalty for choosing any
element of B (B;;,i=1,...,pand j =1,...,K) as:

AlBij 1Bigl <A
Pe)\(ﬂij) =< — ( 12] — 74)\|Bw| + /\2) /54 A< |52J| < 3.7A (5)
2.35)\2 ‘,@Z]| > 3.7\

Finally, we can consider the objective function for multi-response SCAD regression as follows:

n P K
Q(Bx, A) = % > (Y(h) - BATXh)T ! (Y(h) - BATXh> +) ) Pex(Biy) (6)
h=1

i=1 j=1

Note that based on the structure of our penalty function (5), we specialized the SCAD penalty for every single
element of B matrix (8;;,i = 1,...,p & j =1,..., K) and in the objective function (6), we have a double summation
on (5) to obtain the penalty of B. Indeed, we can consider a SCAD structure for each j3;;. Hence, it is reasonable
to follow what the providers of univariate SCAD did for a.

The penalized estimation of B is called B, and is obtained by minimizing objective function (6). The next step
is to present the methods for selecting A. In this paper, we use cross-validation and information criteria to obtain
A. We propose the following information criterion which is applicable to multi-response SCAD regression.

3.2. GIC Types for Tunning Parameter Selection

Choosing the optimum tuning parameter \ is one of the main goals of penalized models. Based on the general
format of the generalized information criterion GIC, pioneered by [18], we introduce the multivariate generalized
information criterion (MGIC) as:

kndf/\
Kn'’

MGIC()\) = G(Y, By) + (7)
where Y is the observation matrix of multi-response, B, is the estimator of B for a fixed A and G (Y, B \) measures
the fitness of the model. [18] divided the GIC family into two types: AIC-type and BIC-type. When k,, — oo

(n — o0) and % — 0, we have the BIC-type, and if k, — 2, we have AIC-type criteria.
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If we have a residual matrix ey, , =Y — X By, then we can consider log (det(S., )) instead of G as a tool that
measures the fitness of the model. S, is the estimation for the covariance matrix of ej.
Now, we consider k,, = log(n), which leads to multivariate BIC-type of (7) (called MBIC) as:

log(n)d fx .

MBIC; (A) = log (det(Se,)) + — 7=~

If we set k, = ¥/n, we can define another type of MBIC as:

V/ndf

MBICy(\) = log (det(Se,)) + Kn

which satisfies the conditions of the BIC-type. If we define

n

T g1
E e/\iSeA e
i=1

where e; is the ith row of e). This type of G considers the correlation among the columns of e). G* is defined based
on the Mahalanobis norm of e) columns. We use this definition to include the correlation among the columns of ey .
Additionally, det(S., ) considers the correlation in another way. Indeed, we define G* to have another interpretation
of the correlation in the structure of the G function.

Based on the proposed form of AIC-type by [18] and G*, we define multivariate AIC-type of (7) (MAIC) as
follows:

G*(Y,By) =

S|

2G*(Y, B))df
Kn '

Also, [7] proposed a new form of AIC-type for GIC called AGIC. Using the form of AGIC, we remove G* in
the penalty part of the criteria and define the multivariate form of AGIC (MAGIC) as:

MAIC()) = log(G* (Y, By)) +

2d [
Kn~

K
MAGIC(\) = 1og(iK > oeh)+
=1

_ The A value that minimizes each criterion is called the tuning parameter selected by the criterion. Moreover,
B), obtained by the selected )\ is the penalized estimation of B presented by the criterion.

4. Numerical Experiments

We study the performance of the proposed criteria, for the MGIC family including MAIC, MAGIC, MBICy, and
MBICs, via simulation experiments and analysis of real dataset. First, we check the consistency of the selected
model based on the proposed criteria. Then, we compare the performance of the MGIC family with BIC, GCV,
(see (3) and (4)) and CV method.

4.1. Simulation Study

We consider model (1) with objective function (6) in the simulation study. We generate data for bivariate response
cases. We have the following structure to generate data:

Y = XB+E, .
X ~N,(0,7), T=[(p)],,  E~Na(0,3),

1 05
05 1

o T o T o
Additionally, B; = (3,3,3,3,370@75)“) By = (4, 4,4,4,4,4,4,4,4,4,O(HOM) _and O is a vector with

zero elements. If at least one of the feature parameters becomes nonzero, it is considered a relevant feature. Note
the number of relevant features is 10.

where X = [ } and B = [B; | Bs].

4.1.1. Consistency

To show the consistency of the estimator, we verify whether the M SE tends to zero. We compute a sequence of
MSFEs as follows:
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K p
1

MSE(B),) :;;Z:Bk] Bi)% i=1,....m,
:]:

where ); is selected A and BA,’C ;s the estimate of f3i; obtained from a sample with a size of i. We want to check

whether lim,, ,.o MSFE (B )\n) = 0 or not. For this purpose, we consider the following definition of the limit of a
sequence:

)

Ve>0 3¢ eN suchthat Vk> ¢, ‘MSE(BM) <e

where / is the convergence point. We use this structure to verify the consistency of the MGIC family. We consider
« = 0.25,0.5,0.75 and p = 40, and we generate the simulated data with a size of n = 10000. Note that if £ = n,
we conclude that the sequence has not converged over n observations.
For a bivariate form of multi-SCAD regression, we calculate the M SE sequence of By, obtained by four criteria.
We use the average of the M SFE sequences over 25 iterations.

MAIC MAGIC

— p=0.25
— p=05

\ p=0.75
N

T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

MSE of Estimator

MSE of Estimator
0.00 0.02 0.04 0.06 0.08
1
0.00 002 0.04 0.06

MBIC1 MBIC2

MSE of Estimator
MSE of Estimator
1

Lo
0.00 0.02 0.04 0.06

0.00 0.02 0.04 0.06

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

n n

Figure 1: The average sequences of M SE for different criteria and values of p. The vertical dashed lines show the convergence points
of each curve.

Figure 1 shows the average curves for the M SE sequences for different values of p, and the proposed criteria.
The vertical dashed lines show the convergence points of each curve. All the sequences converged before n. Moreover,
the sequence converged faster when p, = 0.25 for all criteria. The reason for this faster converging is that feature
matrix X has no collinearity. As is well-known, penalization has several aims, such as removing collinearity and
selecting features. In the absence of collinearity, it is reasonable that a penalized model performs better.

4.1.2. Comparison Study

The performance of the MGIC family was studied from the viewpoint of consistency. We want to compare their
performance to GCV, BIC, and CV. We consider the bivariate form of model (8) and p, = 0.25,0.5 and 0.75 and
generate data with sample sizes n = 200,400, p = 40, 120, and 1000 iterations. We consider a test dataset with the
size of nies = 100 for each situation.

Figure 2 includes box plots of the number of the selected features for different values of p,. The increase in n
leads to the selection of fewer features. Increasing n leads to the removal of irrelevant features by the MGIC family
due to their consistency. This approach is compatible with Parsimony’s principle. Also, the MAIC criteria select
the minimum number of features for each situation. For all MGIC variants, the main boxes are strictly around 10.
Additionally, there is a significant decrease in the number of selected features where p, increases. CV selects the
greatest number of features.

In what follows, we analyze the performance of the studied criteria based on the error in the test datasets.
Instead of the usual form of MSE in the regression model, we consider M SE);g using the Mahalanobis distance,
which is more suitable for multi-SCAD objective function (6). The MSEy is calculated as:

n

1
MSEyy =~ rs-1
M n;e .
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Figure 2: Box plot of the selected features for p = 40,120 and n = 200,400 and different values of p .

where e; is the ith row of ey (the residual matrix of the model), and S,, is the sample covariance matrix of ey.
Note that the lower M SFEj;g concludes better performance.

Table 1: Means of MSEnrg,, ., for selected models by various training datasets over 1000 iterations. Bold values demonstrate the
minimum of MSEyrg,. ., for each situation.

Px n p ‘ MAGIC MAIC MBIC, MBIC, CV GCV BIC
0.25 200 40 1.11 1.09 1.15 1.14 1.42 1.22 1.17
120 1.15 1.11 1.17 1.17 1.45 1.33 1.23

400 40 1.12 1.12 1.20 1.21 1.50 1.25 1.27

120 1.15 1.12 1.19 1.22 1.47 1.42 1.24

0.50 200 40 1.20 1.11 1.22 1.25 1.40 1.28 1.11
120 1.17 1.12 1.19 1.23 1.35 1.19 1.14

400 40 1.07 1.05 1.14 1.14 1.35 1.10 1.09

120 1.14 1.10 1.17 1.18 1.41 1.24 1.10

0.75 200 40 1.22 1.19 1.25 1.31 1.44 1.27 1.19
120 1.24 1.20 1.27 1.31 1.45 1.37 1.24

400 40 1.10 1.21 1.23 1.29 1.31 1.31 1.10

120 1.12 1.12 1.25 1.22 1.33 1.15 1.12

Table 1 shows the average values of the MSE,q, ., for all possible situations over 1000 iterations. In most
cases, the MAIC has the minimum M SFE);g. However, increasing n improves the performance of the methods, and
increasing p has no meaningful effect on the behavior of the methods. MAIC generally performs best from both
viewpoints (the number of selected features and M SE);g). This approach involves removing irrelevant features
and keeping relevant ones. On the other hand, it has the minimum M SFE);g compared to the other methods.

4.2. Real Data Analysis
We study the performance of the MGIC family and others as variable selection methods on the residential building
dataset!'. The dataset includes 102 features and a bivariate response. The construction costs and sale prices make
the bivariate response corresponding to single-family residential apartments in Tehran, Iran. The details about the
features can be found in [12].

Figure 3 shows the relationship between construction costs (Y1) and sale prices (Yz2). As it is shown in Figure 3
and according to the results of Pearson’s correlation test, the hypothesis of correlation between Y7 and Y5 is not
rejected.

Thttps://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set
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Figure 3: The values of construction cost versus sale prices.

Table 2: Summarized model selection results for the residential building dataset. Bold values show the minimum MSEr g, ., -

Values MAGIC MAIC MBIC; MBIC, v GCV BIC
P 11 12 11 12 15 15 14
MSEwm,,., 22.11 16.21 22.11 22.11 23.34 22.89 19.83

Table 2 shows the results of applying the MGIC family and other criteria. p* indicates the number of selected
features. Like the simulation study, MAIC has the minimum M SFE);y, whereas it selects 12 features more than
MAGIC and MBIC;. However, they have greater M SEj;y than MAIC.

Conclusion

Multivariate responses present challenges in regression problems, as the potential correlations among the elements
of the response variables cannot be disregarded. This paper proposes utilizing the Mahalanobis norm instead of the
conventional Lo norm in the objective function to address these correlations. Another challenge lies in selecting the
tuning parameter within penalized models. To this end, we introduce a specialized generalized information criterion
(GIC) format tailored for selecting these parameters. Although a closed-form solution for estimating the coefficient
vector in SCAD regression remains elusive, our study verifies the consistency of the estimated coefficients generated
by these criteria through comprehensive simulation studies. Additionally, the performance of SCAD regression
with multi-response problems is demonstrated using both simulated and real datasets. The results show that the
Mahalanobis norm effectively accounts for correlations among response variables, and the proposed GIC format
reliably selects tuning parameters for penalized models. These findings support the potential of our approach to
improve the accuracy and interpretability of multivariate regression models. For future research, it would be valuable
to provide a structure to select consistent models in the concept of non-concave penalty functions. Additionally,
providing a new version of multi-SCAD for models with non-Gaussian noise can be considered as a new subject.
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