
تعداد نشریات | 8 |
تعداد شمارهها | 427 |
تعداد مقالات | 5,562 |
تعداد مشاهده مقاله | 6,723,936 |
تعداد دریافت فایل اصل مقاله | 5,683,757 |
Geometry of Ricci solitons admitting a new geometric vector field | ||
AUT Journal of Mathematics and Computing | ||
مقاله 8، دوره 6، شماره 4، دی 2025، صفحه 361-370 اصل مقاله (441.68 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2024.23142.1234 | ||
نویسندگان | ||
Farzaneh Shamkhali؛ Ghodratallah Fasihi Ramandi* ؛ Shahroud Azami | ||
Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran | ||
چکیده | ||
In the present paper, we introduce a new geometric vector field (it will be called semi-Killing field) on semi-Riemannaian manifolds. A complete classification of semi-Killing vector fields on 3-dimensional Walker manifolds will be derived. Then, we study Ricci solitons admitting this new vector field (called semi-Killing vector field) as their potential. In Riemannain setting, we prove that Ricci solitons with semi-Killing potential vector field are Einstein. Our results show that such Lorentzian solitons have constant scalar curvature. Finally, application of this new structure in theoretical physics has been investigated. | ||
کلیدواژهها | ||
Warped product؛ Geometric vector field؛ Riemannian geometry | ||
آمار تعداد مشاهده مقاله: 290 تعداد دریافت فایل اصل مقاله: 16 |