| تعداد نشریات | 8 |
| تعداد شمارهها | 432 |
| تعداد مقالات | 5,613 |
| تعداد مشاهده مقاله | 7,334,268 |
| تعداد دریافت فایل اصل مقاله | 6,141,030 |
Geometry of Ricci solitons admitting a new geometric vector field | ||
| AUT Journal of Mathematics and Computing | ||
| مقاله 8، دوره 6، شماره 4، 2025، صفحه 361-370 اصل مقاله (385 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2024.23142.1234 | ||
| نویسندگان | ||
| Farzaneh Shamkhali؛ Ghodratallah Fasihi Ramandi* ؛ Shahroud Azami | ||
| Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran | ||
| چکیده | ||
| In the present paper, we introduce a new geometric vector field (it will be called semi-Killing field) on semi-Riemannaian manifolds. A complete classification of semi-Killing vector fields on 3-dimensional Walker manifolds will be derived. Then, we study Ricci solitons admitting this new vector field (called semi-Killing vector field) as their potential. In Riemannain setting, we prove that Ricci solitons with semi-Killing potential vector field are Einstein. Our results show that such Lorentzian solitons have constant scalar curvature. Finally, application of this new structure in theoretical physics has been investigated. | ||
| کلیدواژهها | ||
| Warped product؛ Geometric vector field؛ Riemannian geometry | ||
| مراجع | ||
|
[1] H.-D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B, 27 (2006), pp. 121–142.
[2] M. Chaichi, E. Garc´ıa-R´ıo, and M. E. Vazquez-Abal ´ , Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A, 38 (2005), pp. 841–850.
[3] B.-Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19 (2014), pp. 13–21.
[4] B. Chow and D. Knopf, The Ricci flow: an introduction, vol. 110 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
[5] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, vol. 77 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006.
[6] A. Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. Amer. Math. Soc., 134 (2006), pp. 3645–3648.
[7] A. Derdzinski ´ , Ricci solitons, Wiad. Mat., 48 (2012), pp. 1–32.
[8] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55(103) (2012), pp. 41–50.
[9] S. Deshmukh, H. Alodan, and H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl., 16 (2011), pp. 48–55.
[10] M. Fernandez-L ´ opez and E. Garc ´ ´ıa-R´ıo, A remark on compact Ricci solitons, Math. Ann., 340 (2008), pp. 893–896.
[11] A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math., 645 (2010), pp. 125–153.
[12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. arXiv.
[13] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford Ser. (2), 1 (1950), pp. 69–79. | ||
|
آمار تعداد مشاهده مقاله: 383 تعداد دریافت فایل اصل مقاله: 214 |
||