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ABSTRACT: In the present paper, we introduce a new geometric vector field
(it will be called semi-Killing field) on’semi-Riemannaian manifolds. A complete
classification of semi-Killing vector fields on 3-dimensional Walker manifolds will
be derived. Then, we study Riéci selitons admitting this new vector field (called
semi-Killing vector field) as their potential. In\Riemannain setting, we prove that
Ricci solitons with semi-Killing potential vector field are Einstein. Our results show
that such Lorentzian solitons have constant, scalar curvature. Finally, application
of this new structure in theoretical physics has been. investigated.
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1. Introduction

Ricci solitons are the natural generalization of Einstein metrics. %A (semi-)Riemannian manifold (M, g) is said to
be a Ricci soliton if there exists a vector field X € X (M) and a real'sealar A, such that

1

where Lx and Ric denote the Lie derivative in the direction of X, and the Ricci tensor,respectively.
It is called shrinking when A > 0, steady when A = 0, and expanding when A\ < 0.If X = V f the equation can

also be written as
Ric + Hessf = Ag,

and is called a gradient (Ricci) soliton. See [1, 4, 5, 7] for background on Ricci solitons and/their connegtion to the
Ricci flow. Ricci solitons on closed Riemannian manifolds are gradient and steady or expanding Ricci solitons on
close Riemannain manifolds are trivial [12]. Also, every non-compact shrinking soliton is a'gradient soliton [11].
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During the last two decades, the geometry of Ricci solitons has been the focus of attention of many researchers.
There are two aspects of the study of Ricci solitons, one looking at the influence on the topology by Ricci soliton
(see e.g. [6, 10]) and the other looking at its influence on its geometry (see e.g. [3, 8, 9]). In this paper we are
interested in the geometry of Ricci solitons arise frome a new geometric vector fields (called semi-Killing field) on
semi-Riemannain manifolds.

This paper is organized as follows: In Section 2, we define a new geometric vector field called semi-Killing vector
field and find such fields in the framework of Lorentzian Walker manifolds. Then, in Section 3 we consider Ricci
solitons with semi-Killing potential vector fields. As simplest example, we try to examine this new structure on
gradient jsurface solitons. But all we obtain is only trivial solitons. In the next Section, we prove our main theorem
that shows'why wesecould not construct any non-trivial example of surface Riemannain solitons. Finally, physical
application of‘this structure is considered.

2. A new geometric vector field

The investigation of/geometric vector fields on manifolds provide us some good information about the geometry of
underlying manifolds. The study of affine vector fields on a manifold M with linear connection V gives information
on the affine transformation group of«(M, V). Similarly, studying of Killing vector fields on a Riemannian manifold
tells us about the isometrysgroup.of the.manifold. Also, the geometry of harmonic, conformal and projective vector
fields has been considered in (semi-)Riemannain manifolds and has led to many useful results. In this section, we
define a new geometric vector field ‘on'(semi-)Riemannain manifold and consider its geometry in the next sections.

Definition 2.1. A vector field X in asemi-Riemannian manifold (M, g) is said to be a semi-Killing vector field,
if Lxg = 20X’ ® X® for some constante where, X is dual 1-form of X.

Clearly, the zero vector field X = 0 is a semi-Killing vector field and every Killing vector field X is semi-Killing
with @ = 0. Also, we can construct a non-trivial semi=Killing vector field. Let M = (a,b) C R be an open interval
and consider g = ds?. Suppose that X is.a nowhere zero semi-Killing vector field on M with some non-zero a. If
X’ = h(s)ds, then the condition Lxg = 2aX’ ® X leadws to the following ordinary differential equation

—21/(s) = 2ah?(s),

and solving this equation gives h(s) = for some constant .

as

Theorem 2.2. Let X be a non-zero semi-Killing vector field on a closed (compact without boundary) Riemannain
manifold (M, g). Then X is a Killing vector field.

Proof. It is well-known that for any vector field X in a Riemannian manifold we have
trg(Lxg) = 2div(X).
Now, let X satisfies Lxg = 20X’ ® X”, and taking the following egitality into account
try (20X’ ® X") = 2a| X3
we obtain
div(X) = o X 2.

But by the divergence theorem we can write

/ div(X)dV, =0,
M
which is to say
a/ | X[2dV, = 0.
M
Since X is non-zero, hence a = 0. (Il

The above theorem shows that the set of semi-Killing vector fields on closed manifolds coincides with the_set of all
Killing vector fields. Hence, existence of semi-Killing vector fields not only depends on the geometry of sinderlying
manifold but also requires some topological constraints on the manifold.

Homogeneous spaces are among the nicest examples of Riemannian manifolds. In the following, we show that
there is no non-trivial left-invariant semi-Killing vector field on a homogeneous manifold M with left-invariant
metric g. Let X be a non-zero semi-Killing left invariant vector field on a homogeneous manifold (M, g). Then, by
tracing both sides of Lxg = 2aX” ® X*, we obtain div(X) = a|X|2. Since div(X) = 0 and |X|? # 0, we must have
a=0.
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Theorem 2.3. Left-invariant semi-Killing vector fields on homogeneous spaces are Killing vector fields.

For knowing the local generality (up to diffeomorphism) of the set of pair (g, X) satisfying Lxg = 2aX’ @ X°,

where X is a non-vanishing, choose flow box’ coordinates, in which X = The equation for the unknown

o ozxl’
g = gijdx’dx’ then becomes a first order, determined system that has a unique local solutions when one specifies

aij(xQ, A gij((),acz, oz’

1
Thus, the local solutions appear to depend on —n(n + 1) arbitrary of n — 1 variables. However, we must bear in
mind thatflow boxicoordinate for X depend on n function of n — 1 variables. Taking this flexibility in mind, we

1
find that the solutions pairs (g, X) up to diffeomorphism depends on in(n — 1) functions of n — 1 variables. Since

1
the general metricdn n dimensions up to diffeomorphism depends on §n(n + 1) functions of n variables. It follows

that we always ¢an find solution pairs locally.

2.1. Semi-Killingwectorfields on Walker 3-manifolds

Let (M3,g) be a three-diménsional Lorentzian Walker manifold (for more detaﬂs on Walker manifolds see [13]).
There exists a system offlocal ceordinates {t, z,y} for which the vector ﬁeld 7 spans the parallel null distribution
D; and the metric g takes the following form:

0 0 1
g=|0 ¢ 0 ; (1)
L 0 f(tay)

where ¢ = £1 and f(¢,x,y) is a real Smooth function. Using the Koszul’s formula, one can find [2]

0 1. 0 0 1.0
Va%*t_ iftay v%?_ifwﬁ’

0 1. 0
Va%@ (fft"i'fy)at *fxax *ft*,

in which V denotes the Levi-Civita connection of g. The above€quations indicate that the vector ﬁeld is parallel
(VE =0) if and only if f(t,2,y) = f(z,y). In this case, (M?, g),is called a strictly Walker manifold.

Setting X = Ag; o ; + By, 8 -+ Cuy a . A straightforward computation’shows that

2Ct EBt + C’L’ At &7 fCt + Cy
Lxg= eBy + C, 2eB, Ay + fCr +eB,y . (2)
A+ fC+Cy  Ap+ fCr+eB,  X(f)+2(A, #£C,)

By definition of X”, we compute
Cc? eBC C(A+CY)

X o X = eBC (eB)? eB(A+Cf){. (3)
C(A+Cf) eB(A+Cf) (A+Cf)P?

Assume that X = A% + B Caay,

Lxg=2aX"® X" if and only if the following system of partial differential equations holds:

then routine computations show that X is a semi-Killing vector field with

Cy —aC? =0,

(eBy + Cy) —2aeBC =0,

(A + fCi+Cy) —2aC(A+Cf) =0,
eB, — a(eB)? =0,

(Az + fCyp +eBy) —2aBe(A+ Cf) =0,
X(f)+2(4,+ fCy) —2a(A+Cf)? =
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Case 1: Let C # 0, then first equation of (4) yields

1
¢= a(z,y) — at’ (5)

wheré a(z,y) is a smooth function. Replacing C' in the second equation of the system (4), we compute

20 5 zt(®y)

B, — = 6
Camy —at” = alwy) —at’ ©
which asserts that
_ tas(z,y) +b(z,y) )
e(a(z,y) —at)? '

in which b(x,y) is a smooth function. If B = 0, then we have

az (7, y) = b(x,y) =0, (8)
1
hence, a(z,y) = a(y)iand, C = m. Now, we can write

(A4 + fC+C,) — 2aC(A+ fC) =0,
X(f) +2(A, + fC,) —2a(A+ fC)? = 0.

The second equation of (9) shows that A(t,z,y)= A(t,y). Since C; — 2aC? # 0, from the first equation of (9), we

obtain
200AC — At - C’l/

f - Ct = 20&02
But the left side of above equation is a function on x,y, while the right hand side is a function of ¢,y. So, there is
a smooth function p on y such that

(10)

o 2CKAC—At—Cy *®
f= G 2aC2 1(y),
which leads us to the following equation
2 =1
A, — «Q _ op ) (11)

Solving this equation, we obtain

Therefore, in this case we have

et D el 1
=y - 270 O

and A, B,C and f have to satisfy the third equation of (9).
On the other hand, the fourth equation of (4), when B # 0 gives

)

1
— S 1
B d(t,y) — aex’ (12)

where d(t,y) is a smooth function. Comparing this equality with (7) yields

az(z,y) = —€a,
b(z,y) = ea(x,y), (13)
d(t,y) = —at + m(y),

for some smooth function m(y). Also, we have a(z,y) = n(y) — acx for smooth function n(y) Now, the*third
equation of (4) gives
2a af —n/(y)
A= ,
n(y) — eax — at (n(y) — eax — at)?
364
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which shows
A= (n(y) — caz — at)*[p(y) — tn'(y) + at f],

for some smooth function p(y). Hence, we have

A = (n(y) — eax — at)*[p(y) — tn/(y) + at f],

¢= n(y) — eaz — at’

In this case, A, B,C'and f must satisfy the fifth and sixth equations in (4).
Case 2: If C' =0, then

EBt = 0,
At - 0,
eB, — a(eB)? =0, (14)

(Az +eBy) —2acAB =0,
X(f)+24, —2a0A? =0.
If B =0, then A = A(y) and/A mustsatisfy
Ay = aA?,
1

B—oay
If B # 0, then A = A(z,y) and B'= B(z,y) and from the third equation of (14), for some smooth function p(y)
we have

since we want X to be non-zero, so for somesonstant 3, we have A(y) =

- 1
p(y)— asx’

Taking this equality into account in the fourth equation of (14), we obtain

20 4 ep'(y)
A ot A

which asserts
A= (p(y) — asz)?[ep ()2 + a()

where ¢(y) is a smooth function. Hence, we have

A= (p(y) — aex)®[ep' (¥)a + q(y)],
py) — azx

In this case, A and f must satisfy the fourth equation of (14).

3. Gradient Ricci soliton on surfaces

In this section, we study the gradient Ricci solitons with semi-Killing vector field as their potential on Riemannain
surfaces. If (M?,g,X,)) is a soliton on a Riemannian surface M?, then X is a conformalsvector field. This is

1
simply because in two dimensions the Ricci tensor can be written in terms of scalar curvature as Ric = §Rg. If

(g, Vf, ) is a gradient soliton then J(Vf) is a Killing vector field where, J : TM — T M is the compléx structure.
Also, it has been proven that a surface with a Killing vector field is locally warped productu[5].«In particular, a
gradient soliton on a surface is locally warped product. Hence, we need to summary some geometric/quantities on
warped product manifolds.
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3.1. Geometry of warped product manifolds

In'this subsection, we consider a metric on the product manifold M™*! =1 x N of the form
g =ds*+ f*(s)gn.

where s igfthe standard coordinate on an open interval I C R, gy is a given metric on the manifold N, and f(s) > 0
is theawarping function, which scales distances along the N —factors in the product.

In the/rest of this section, we determine geometric quantities of (M, g) in terms of f(s) and geometric quantities
of gn. Smooth'vector fields of N, will be denoted by X,Y, Z, ..., and every smooth vector field on I can be denoted

0 0
by ,u(s)%, for g€ C2(I). For the sake of simplicity, we will denote s by ;.

Theorem 3.1. Let V deonted the Levi-Civita connection of gn. The Levi-Civita connection of (M, g) denoted by
V satisfies the following relations.

V.05 =0, (15)
s v _ '3

Vo, X = GO, (16)
VY = VyY — J}((;))g(x, Y)0s. (17)

Proof. Straightforward computations«ising Koszula’s formula show the above relations. We prove the equation
(16). We have

29(?)(63,85) 0s9(X, 0s) + X g(9s, 05) =059(X;05) —|—g([X, 63]788) +g([8S,X],6s) - g([&s,as],X) =0,

and

QQ(WXasay) - 8sg(X7Y) +X9(K as) y Yg(Xa as) +g([Xa as]aY) - g([@S,Y],X) +g([Y7 X]aas)

= 0. (X, V) =25 g (X,
Hence, we obtain Vg, X = J;/((j)) X. (]

In the rest of this section, the curvature and Ricci curvature tensors of geand gy are denoted respectively by
R, Ric, R, Ric.

Theorem 3.2. Reimannain curvature tensor of (M, g) denoted by &R satisfies the following relations.

1)

R(0,, X)(00) = L2 x (18)
R0, () =L g v, (19)
ROEY)(2) = RV + (LD, 2)Y - o(v,2) 8. (21)
Proof. Straightforward computations demonstrate the above equations. For instance we compute the equality
(18).
R(0.X)(0:) = Vo, Vs — Vi Vo,0: — Vio, x108
e S5 f) f'(s)
~ Vo X T G X e e
_ f8)f7(s) — (f'(s))? f(8) 2y _ I7(s)
O L O .
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The sectional curvature of (M, g) satisfies the following relation

e D)
BTN

for every unite vector field X € X (N).
Let/ {E;}"_, be an orthonormal basis of (N, gy) with reciprocal basis {E*}?*_,, then {0, f~2(s)E;}?, is an
orthonormal basis for (M, g) with {9,, f~2(s)E*}™_, as its reciprocal basis.

Theorem 3.3. Ricci curvature tensor of (M,g) denoted by Ric satisfies the following relations.

o o)

Ric(0s, 0s) = s) (22)
Ric(ds, X) = 0, (23)
Ric(X, V) = Rie(x, V) — (L& 4 (o - )L 2p0x ) (24)

f(s)
Proof. Directly from the definition of the Ricci tensor, we can

n

ﬁ(a& 0s) = g(ﬁ(@s, 83)(83), 0s) + Z g(ﬁ(@s, fﬁZ(S)Ei)(f72(5)Ei)v 83)

In this setting for any function # of the radial coordinate’s, the Hessian of # with respect to g is given by
V20 = 0" (s)ds” + f(s)f'(5)0'(8)gn

3.2. Constructing 2-dimensional steady soliton

Next, we aim to construct a complete, steady, rotationally symmétric gradient soliton metric on R? with a semi-
Killing vector field. Such a metric will be a warped product Ix ;8 and it is to natural to assume that Ric+V?26 = 0,
and Lygg = 2V?20 = 2adf @ df = 2a(6')%ds?. Then, f and 6 have'to satisfy

fe/l . f/l — O
1o =0,
0" —a(0)* =0,
19— £ =0,
So, we must have f' =0 or #’ = 0. If = 0, then # = ¢ for a real constant ¢, and f = as?+ bs + c where a,b,c € R.

Considering the case f’ = 0, then by suitable translation and time dilation in s we get/f(s) ='s, (which giving the
flat metric) and we have a(6')? = 6" = 0. Therefore, § = ¢ for a real constant c.

Theorem 3.4. The complete, steady, rotationally symmetric gradient soliton metrics on R? withd{semi-Killing
potential vector field are the flat metrics.

3.3. Constructing 2-dimensional non-steady soliton

Now, we wish to construct a complete, expanding, rotationally symmetric gradient soliton metric on R? with_sémi-
Killing vector field. As mentioned above, such a metric will be a warped product I x ¢ S* and it is natural t6 assume
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that Ric + V20 = A\g (A # 0), and Lyvgg = 2V20 = 2adf @ df = 2a(0")?ds®. Then, f and 6 have to satisfy

" fl/
9" —\= L
A 7
10 = A2 = 11",
16" =0,

0" — (0 =0.
The third equation shows that 8’ =0 or f' = 0. Let us assume 6’ = 0, then we have [’/ + \f = 0. So,
o for\ = g% where,a > 0 we have f(s) = c; cosas + ¢ sinas, for constant ¢y, o,
e for A = —a?, where a > 0 we have f(s) = c¢; coshas + ¢y sinh as, for constant ¢y, co.
If f/ =0, then the second"équation becomes —\f2 = 0, which is impossible.

Theorem 3.5. Thére is no non=trivial complete, non-steady, rotationally symmetric gradient soliton metric on R?
with semi-Killing potential vector field.

4. Ricci soliton with semi-Killing vector fields

In the previous section, wefshowed“that there is no non-trivial complete, rotationally symmetric gradient soliton
metric on R? with semi-Killing potentialsvector field. In this section, we show that this result can be generalized
for all Riemannian manifolds. In facty"if (M™,g, X, A) be a Ricci soliton with potential semi-Killing field, then X
has to be a Killing vector field and(M, g)weduces to be an Einstein manifold.

Let (M, g, X,)\) be a Riemannain Ricci soliten with £xg = 2aX” ® X”. Then, we have

Ric= —20X" ® X° 4+ Ag.

By computation traces of two sides of theiabove equationy we find R = —2a|X|? + n), so by addition suitable
expression to each side of the equation, we obtain
. 1 n—2
Ric — iRg +( 5 g = a(| X3¢ — 2X" @ X").

1
As FEinstein tensor Ric — iRg is divergence free, so the right hand side of above equation must be divergence free.

Lemma 4.1. Let X be a non-zero vector field on a Riemanniandnanifold (M, g). If divergence of symmetric tensor
T :=|X|?g — 2X° ® X" vanishes, then div(X) = 0.

Proof. Let {e;}? , is an orthonormal base on M and denote itsyreciprocal base\by {e‘}? ;. So, we can write

4
div(X* @ X°)(Y) = > (Ve, X’ ® X°)(e',Y)
zl
=Y (Ve X))@ X"+ X" ® (V. X"))(,Y)

= Z (Ve X") ()X (V) + X*(e)(Ve, X7)(Y)

= div(X")(X,Y) + (VxX°)(Y),
= div(X°)(X,Y) + (Vx X,Y).
Also,
div(|X[29)(Y) = d(|X2)(Y) = Y (X, X) = 2(Vy X, X).
The above computations show that div(T") = 0, if and only if for all vector field Y, we have
div(X°)(X,Y) + (VxX,Y) — (Vy X, X) = 0.

Setting Y = X, we obtain
div(X°)(X,X) =0 = div(X) =0,

as required. O
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Now, we can prove the following Theorem.
Theorem 4.2. Riemannain Ricci solitons (M™, g, X, \) with Lxg = 20 X" ® X°, are Einstein manifold.

Proof. Since (M™, g, X, \) is a Ricci soliton, we have
Ric + 20X’ ® X” = Ag.

If X is identically zero, then we have nothing to prove. Let X be a non-zero vector field, so Lemma 4.1 indicates
that div(X)'= 0. On the other hand, we have

Lxg=2aX"® X"
Tracing both side of the above formula gives
div(X) = a| X%,
consequently, a/= 0, and we have completed the proof. O

The above theorem shews that there is no not-trivial Riemannian Ricci soliton with semi-Killing potential vector
fields. Hence, we have to look for such structure in Lorentzian or other semi-Riemannain settings.

Theorem 4.3. If (M™ g, X,\)"5 a Lorentz Ricci soliton with Lxg = 20X° @ X, then M has constant scalar
curvature R.

Proof. By arguments similar 40 those,used in_the proof of previous Lemma and Theorem 4.2 we deduce that in
Lorentzain case always div(X) = 0. Now, takingtrace of both sides of the following equation

1
Ric + §£Xg = Ay,

gives R = nA. ([l

The above theorem shows that in Lorentzian setting, type‘ef soliton (to be shrinking, steady or expanding) is
directly related to the sign of scalar curvature.

5. Application to physics

In this section, let (M*, g, X, \) is a Lorentz Ricci soliton whichywe regard it as a space-time manifold. Then, the
Ricci soliton equation

1
Ric + §£Xg = A\g;

become a generalization of Einstein field equation. In fact, tracing the both side of the above equation yields
R + div(X) = 4\. The above equation can be rewritten as

1 1
Ric — §Rg +M\g = §(div(X)g - Lxg).

In general theory of relativity, the scalar curvature R is related to distribution of mass infpoints of space-time, so
regardless of A which can be interpreted as cosmological constant, we may deduce that‘div(X)\is related to notion

1
of matter in space-time and §(diV(X )g — Lxg) is the momentum-energy tensor of this matter. Therefore, a Ricci

soliton is a geometric structure which capable of describing matter and gravity, simultaneously:

However, the Ricci flow can be a framework for geometrization of matter in general relativity, it gives no more
information about g as a potential for gravity and X as a potential for matter. Hence, it [is natural to posing any
other relation on X and g. If X be a Killing vector field, then the Ricci soliton equations coincides to Einstein
equation in vacuum, and X gives the symmetries of this space-time. In this paper, we suggest.X to.satisfy. the
equation Lxg = 2aX” ® X’ for a non-zero constant «. Under this assumption, the Ricci soliton £quation as a
generalization of Einstein field equation, becomes

2
Ric — %Rg + g = a(%g - X"®X").
This equation shows that symmetric 2-tensor T = | X|?g — X > ® X° must be divergence free. Applying this'fact, a
similar argument with Theorem 4.2 shows that X has to be a light-like vector field.
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As we mentioned before, such structure in Riemannain settings lead to X = 0, and the structure reduces to
Einstein manifold. But, as soon as we consider this structure in Lorentzian setting, we derive new field equation,
with an internal relation between X and g. So, in our theory, X can be in related to the notion of dark matter in
general relativity. Because, when in small scales we consider Riemannain geometry, we do not contact to any dark
matter or dark energy, but in large scales and the framework of Lorentzian manifold this notion to be appeared.
These intérpretations are logical facts which bear out form our theory, but physical experiments can only verify
how close this theory is to reality.
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