
AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 6(4) (2025) 361-370

https://doi.org/10.22060/AJMC.2024.23142.1234

Original Article

Geometry of Ricci solitons admitting a new geometric vector field
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ABSTRACT: In the present paper, we introduce a new geometric vector field
(it will be called semi-Killing field) on semi-Riemannaian manifolds. A complete
classification of semi-Killing vector fields on 3-dimensional Walker manifolds will
be derived. Then, we study Ricci solitons admitting this new vector field (called
semi-Killing vector field) as their potential. In Riemannain setting, we prove that
Ricci solitons with semi-Killing potential vector field are Einstein. Our results show
that such Lorentzian solitons have constant scalar curvature. Finally, application
of this new structure in theoretical physics has been investigated.
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1. Introduction

Ricci solitons are the natural generalization of Einstein metrics. A (semi-)Riemannian manifold (M, g) is said to
be a Ricci soliton if there exists a vector field X ∈ X (M) and a real scalar λ, such that

1

2
LXg +Ric = λg,

where LX and Ric denote the Lie derivative in the direction of X, and the Ricci tensor, respectively.
It is called shrinking when λ > 0, steady when λ = 0, and expanding when λ < 0. If X = ∇f the equation can

also be written as
Ric + Hessf = λg,

and is called a gradient (Ricci) soliton. See [1, 4, 5, 7] for background on Ricci solitons and their connection to the
Ricci flow. Ricci solitons on closed Riemannian manifolds are gradient and steady or expanding Ricci solitons on
close Riemannain manifolds are trivial [12]. Also, every non-compact shrinking soliton is a gradient soliton [11].
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During the last two decades, the geometry of Ricci solitons has been the focus of attention of many researchers.
There are two aspects of the study of Ricci solitons, one looking at the influence on the topology by Ricci soliton
(see e.g. [6, 10]) and the other looking at its influence on its geometry (see e.g. [3, 8, 9]). In this paper we are
interested in the geometry of Ricci solitons arise frome a new geometric vector fields (called semi-Killing field) on
semi-Riemannain manifolds.

This paper is organized as follows: In Section 2, we define a new geometric vector field called semi-Killing vector
field and find such fields in the framework of Lorentzian Walker manifolds. Then, in Section 3 we consider Ricci
solitons with semi-Killing potential vector fields. As simplest example, we try to examine this new structure on
gradient surface solitons. But all we obtain is only trivial solitons. In the next Section, we prove our main theorem
that shows why we could not construct any non-trivial example of surface Riemannain solitons. Finally, physical
application of this structure is considered.

2. A new geometric vector field

The investigation of geometric vector fields on manifolds provide us some good information about the geometry of
underlying manifolds. The study of affine vector fields on a manifold M with linear connection ∇ gives information
on the affine transformation group of (M,∇). Similarly, studying of Killing vector fields on a Riemannian manifold
tells us about the isometry group of the manifold. Also, the geometry of harmonic, conformal and projective vector
fields has been considered in (semi-)Riemannain manifolds and has led to many useful results. In this section, we
define a new geometric vector field on (semi-)Riemannain manifold and consider its geometry in the next sections.

Definition 2.1. A vector field X in a semi-Riemannian manifold (M, g) is said to be a semi-Killing vector field,
if LXg = 2αX♭ ⊗X♭ for some constant α where, X♭ is dual 1-form of X.

Clearly, the zero vector field X = 0 is a semi-Killing vector field and every Killing vector field X is semi-Killing
with α = 0. Also, we can construct a non-trivial semi-Killing vector field. Let M = (a, b) ⊂ R be an open interval
and consider g = ds2. Suppose that X is a nowhere zero semi-Killing vector field on M with some non-zero α. If
X♭ = h(s)ds, then the condition LXg = 2αX♭ ⊗X♭ lead us to the following ordinary differential equation

−2h′(s) = 2αh2(s),

and solving this equation gives h(s) =
1

αs+ β
for some constant β.

Theorem 2.2. Let X be a non-zero semi-Killing vector field on a closed (compact without boundary) Riemannain
manifold (M, g). Then X is a Killing vector field.

Proof. It is well-known that for any vector field X in a Riemannian manifold we have

trg(LXg) = 2div(X).

Now, let X satisfies LXg = 2αX♭ ⊗X♭, and taking the following equality into account

trg
(
2αX♭ ⊗X♭

)
= 2α|X|2g,

we obtain
div(X) = α|X|2g.

But by the divergence theorem we can write ∫
M

div(X)dVg = 0,

which is to say

α

∫
M

|X|2gdVg = 0.

Since X is non-zero, hence α = 0. □

The above theorem shows that the set of semi-Killing vector fields on closed manifolds coincides with the set of all
Killing vector fields. Hence, existence of semi-Killing vector fields not only depends on the geometry of underlying
manifold but also requires some topological constraints on the manifold.

Homogeneous spaces are among the nicest examples of Riemannian manifolds. In the following, we show that
there is no non-trivial left-invariant semi-Killing vector field on a homogeneous manifold M with left-invariant
metric g. Let X be a non-zero semi-Killing left invariant vector field on a homogeneous manifold (M, g). Then, by
tracing both sides of LXg = 2αX♭ ⊗X♭, we obtain div(X) = α|X|2g. Since div(X) = 0 and |X|2g ̸= 0, we must have
α = 0.
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Theorem 2.3. Left-invariant semi-Killing vector fields on homogeneous spaces are Killing vector fields.

For knowing the local generality (up to diffeomorphism) of the set of pair (g,X) satisfying LXg = 2αX♭ ⊗X♭,

where X is a non-vanishing, choose ’flow box’ coordinates, in which X =
∂

∂x1
. The equation for the unknown

g = gijdx
idxj then becomes a first order, determined system that has a unique local solutions when one specifies

aij(x
2, . . . , xn) = gij(0, x

2, . . . , xn).

Thus, the local solutions appear to depend on
1

2
n(n + 1) arbitrary of n − 1 variables. However, we must bear in

mind that flow box coordinate for X depend on n function of n − 1 variables. Taking this flexibility in mind, we

find that the solutions pairs (g,X) up to diffeomorphism depends on
1

2
n(n− 1) functions of n− 1 variables. Since

the general metric in n dimensions up to diffeomorphism depends on
1

2
n(n+ 1) functions of n variables. It follows

that we always can find solution pairs locally.

2.1. Semi-Killing vector fields on Walker 3-manifolds

Let (M3, g) be a three-dimensional Lorentzian Walker manifold (for more details on Walker manifolds see [13]).
There exists a system of local coordinates {t, x, y} for which the vector field ∂

∂t spans the parallel null distribution
D1 and the metric g takes the following form:

g =

0 0 1
0 ε 0
1 0 f(t, x, y)

 , (1)

where ε = ±1 and f(t, x, y) is a real smooth function. Using the Koszul’s formula, one can find [2]

∇ ∂
∂y

∂

∂t
= −1

2
ft

∂

∂t
, ∇ ∂

∂x

∂

∂y
=

1

2
fx

∂

∂t
,

∇ ∂
∂y

∂

∂y
=

1

2
(fft + fy)

∂

∂t
− 1

2ε
fx

∂

∂x
− 1

2
ft

∂

∂y
,

in which ∇ denotes the Levi-Civita connection of g. The above equations indicate that the vector field ∂
∂t is parallel

(∇ ∂
∂t = 0) if and only if f(t, x, y) ≡ f(x, y). In this case, (M3, g) is called a strictly Walker manifold.

Setting X = A ∂
∂t +B ∂

∂x + C ∂
∂Y . A straightforward computation shows that

LXg =

 2Ct εBt + Cx At + fCt + Cy

εBt + Cx 2εBx Ax + fCx + εBy

At + fCt + Cy Ax + fCx + εBy X(f) + 2(Ay + fCy)

 . (2)

By definition of X♭, we compute

X♭ ⊗X♭ =

 C2 εBC C(A+ Cf)
εBC (εB)2 εB(A+ Cf)

C(A+ Cf) εB(A+ Cf) (A+ Cf)2

 . (3)

Assume that X = A ∂
∂t + B ∂

∂x + C ∂
∂y , then routine computations show that X is a semi-Killing vector field with

LXg = 2αX♭ ⊗X♭ if and only if the following system of partial differential equations holds:

Ct − αC2 = 0,

(εBt + Cx)− 2αεBC = 0,

(At + fCt + Cy)− 2αC(A+ Cf) = 0,

εBx − α(εB)2 = 0,

(Ax + fCx + εBy)− 2αBε(A+ Cf) = 0,

X(f) + 2(Ay + fCy)− 2α(A+ Cf)2 = 0.

(4)
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Case 1: Let C ̸= 0, then first equation of (4) yields

C =
1

a(x, y)− αt
, (5)

where a(x, y) is a smooth function. Replacing C in the second equation of the system (4), we compute

Bt −
2α

a(x, y)− αt
B =

1
εax(x, y)

a(x, y)− αt
, (6)

which asserts that

B =
tax(x, y) + b(x, y)

ε(a(x, y)− αt)2
, (7)

in which b(x, y) is a smooth function. If B = 0, then we have

ax(x, y) = b(x, y) = 0, (8)

hence, a(x, y) = a(y) and, C =
1

a(y)− αt
. Now, we can write


(At + fCt + Cy)− 2αC(A+ fC) = 0,

Ax = 0,

X(f) + 2(Ay + fCy)− 2α(A+ fC)2 = 0.

(9)

The second equation of (9) shows that A(t, x, y) = A(t, y). Since Ct − 2αC2 ̸= 0, from the first equation of (9), we
obtain

f =
2αAC −At − Cy

Ct − 2αC2
. (10)

But the left side of above equation is a function on x, y, while the right hand side is a function of t, y. So, there is
a smooth function µ on y such that

f =
2αAC −At − Cy

Ct − 2αC2
= µ(y),

which leads us to the following equation

At −
2α

a(y)− αt
A =

α(µ− 1)(
a(y)− αt

)2 . (11)

Solving this equation, we obtain

A =
αt(µ(y)− 1)

(a(y)− αt)2
,

Therefore, in this case we have

A =
αt(µ(y)− 1)

(a(y)− αt)2
, B = 0, C =

1

a(x, y)− αt
,

and A,B,C and f have to satisfy the third equation of (9).
On the other hand, the fourth equation of (4), when B ̸= 0 gives

B =
1

d(t, y)− αεx
, (12)

where d(t, y) is a smooth function. Comparing this equality with (7) yields
ax(x, y) = −εα,

b(x, y) = εa(x, y),

d(t, y) = −αt+m(y),

(13)

for some smooth function m(y). Also, we have a(x, y) = n(y) − αεx for smooth function n(y) Now, the third
equation of (4) gives

At −
2α

n(y)− εαx− αt
A =

αf − n′(y)

(n(y)− εαx− αt)2
,
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which shows
A = (n(y)− εαx− αt)2

[
p(y)− tn′(y) + αtf

]
,

for some smooth function p(y). Hence, we have

A = (n(y)− εαx− αt)2
[
p(y)− tn′(y) + αtf

]
,

B =
1

m(y)− α(t)− αεx
,

C =
1

n(y)− εαx− αt
.

In this case, A,B,C and f must satisfy the fifth and sixth equations in (4).
Case 2: If C = 0, then 

εBt = 0,

At = 0,

εBx − α(εB)2 = 0,

(Ax + εBy)− 2αεAB = 0,

X(f) + 2Ay − 2αA2 = 0.

(14)

If B = 0, then A = A(y) and A must satisfy
Ay = αA2,

since we want X to be non-zero, so for some constant β, we have A(y) =
1

β − αy
.

If B ̸= 0, then A = A(x, y) and B = B(x, y) and from the third equation of (14), for some smooth function p(y)
we have

B =
1

p(y)− αεx
.

Taking this equality into account in the fourth equation of (14), we obtain

Ax − 2αε

p(y)− αεx
A =

εp′(y)

(p(y)− αεx)2
,

which asserts
A = (p(y)− αεx)2

[
εp′(y)x+ q(y)

]
,

where q(y) is a smooth function. Hence, we have

A = (p(y)− αεx)2
[
εp′(y)x+ q(y)

]
,

B =
1

p(y)− αεx
, C = 0.

In this case, A and f must satisfy the fourth equation of (14).

3. Gradient Ricci soliton on surfaces

In this section, we study the gradient Ricci solitons with semi-Killing vector field as their potential on Riemannain
surfaces. If (M2, g,X, λ) is a soliton on a Riemannian surface M2, then X is a conformal vector field. This is

simply because in two dimensions the Ricci tensor can be written in terms of scalar curvature as Ric =
1

2
Rg. If

(g,∇f, λ) is a gradient soliton then J(∇f) is a Killing vector field where, J : TM → TM is the complex structure.
Also, it has been proven that a surface with a Killing vector field is locally warped product [5]. In particular, a
gradient soliton on a surface is locally warped product. Hence, we need to summary some geometric quantities on
warped product manifolds.
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3.1. Geometry of warped product manifolds

In this subsection, we consider a metric on the product manifold Mn+1 = I×Nn of the form

g = ds2 + f2(s)gN ,

where s is the standard coordinate on an open interval I ⊂ R, gN is a given metric on the manifold N , and f(s) > 0
is the warping function, which scales distances along the N−factors in the product.

In the rest of this section, we determine geometric quantities of (M, g) in terms of f(s) and geometric quantities
of gN . Smooth vector fields of N , will be denoted by X,Y, Z, . . . , and every smooth vector field on I can be denoted

by µ(s)
∂

∂s
, for µ ∈ C∞(I). For the sake of simplicity, we will denote

∂

∂s
by ∂s.

Theorem 3.1. Let ∇ deonted the Levi-Civita connection of gN . The Levi-Civita connection of (M, g) denoted by
∇ satisfies the following relations.

∇∂s∂s = 0, (15)

∇∂s
X =

f ′(s)

f(s)
X, (16)

∇XY = ∇XY − f ′(s)

f(s)
g(X,Y )∂s. (17)

Proof. Straightforward computations using Koszula’s formula show the above relations. We prove the equation
(16). We have

2g(∇X∂s, ∂s) = ∂sg(X, ∂s) +Xg(∂s, ∂s)− ∂sg(X, ∂s) + g([X, ∂s], ∂s) + g([∂s, X], ∂s)− g([∂s, ∂s], X) = 0,

and

2g(∇X∂s, Y ) = ∂sg(X,Y ) +Xg(Y, ∂s)− Y g(X, ∂s) + g([X, ∂s], Y )− g([∂s, Y ], X) + g([Y,X], ∂s)

= ∂s(f
2(s))gN (X,Y ) = 2

f ′(s)

f(s)
g(X,Y ),

Hence, we obtain ∇∂sX =
f ′(s)

f(s)
X. □

In the rest of this section, the curvature and Ricci curvature tensors of g and gN are denoted respectively by
R,Ric, R,Ric.

Theorem 3.2. Reimannain curvature tensor of (M, g) denoted by R satisfies the following relations.

R(∂s, X)(∂s) =
f ′′(s)

f(s)
X, (18)

R(∂s, X)(Y ) = −f ′′(s)

f(s)
g(X,Y )∂s, (19)

R(X,Y )(∂s) = 0, (20)

R(X,Y )(Z) = R(X,Y )(Z) + (
f ′(s)

f(s)
)2
(
g(X,Z)Y − g(Y, Z)X

)
. (21)

Proof. Straightforward computations demonstrate the above equations. For instance we compute the equality
(18).

R(∂,X)(∂s) = ∇∂s∇X∂s −∇X∇∂s∂s −∇[∂s,X]∂s

= ∇∂s

f ′(s)

f(s)
X = ∂s(

f ′(s)

f(s)
)X +

f ′(s)

f(s)
∇∂s

X

=
f(s)f ′′(s)− (f ′(s))2

f2(s)
X + (

f ′(s)

f(s)
)2X =

f ′′(s)

f(s)
X. □
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The sectional curvature of (M, g) satisfies the following relation

K(X,
∂

∂s
) = −f ′′(s)

f(s)
,

for every unite vector field X ∈ X (N).
Let {Ei}ni=1 be an orthonormal basis of (N, gN ) with reciprocal basis {Ei}ni=1, then {∂s, f−2(s)Ei}ni=1 is an

orthonormal basis for (M, g) with {∂s, f−2(s)Ei}ni=1 as its reciprocal basis.

Theorem 3.3. Ricci curvature tensor of (M, g) denoted by Ric satisfies the following relations.

Ric(∂s, ∂s) = −n
f ′′(s)

f(s)
, (22)

Ric(∂s, X) = 0, (23)

Ric(X,Y ) = Ric(X,Y )− [
f ′′(s)

f(s)
+ (n− 1)(

f ′(s)

f(s)
)2]g(X,Y ). (24)

Proof. Directly from the definition of the Ricci tensor, we can

Ric(∂s, ∂s) = g
(
R(∂s, ∂s)(∂s

)
, ∂s) +

n∑
i=1

g
(
R(∂s, f

−2(s)Ei)(f
−2(s)Ei), ∂s

)
=

n∑
i=1

f−4(s)g
(
R(∂s, Ei)(E

i), ∂s
)

=

n∑
i=1

−f ′′(s)

f(s)
gN (Ei, E

i)

= −n
f ′′(s)

f(s)
. □

In this setting for any function θ of the radial coordinate s, the Hessian of θ with respect to g is given by

∇2θ = θ′′(s)ds2 + f(s)f ′(s)θ′(s)gN

3.2. Constructing 2-dimensional steady soliton

Next, we aim to construct a complete, steady, rotationally symmetric gradient soliton metric on R2 with a semi-
Killing vector field. Such a metric will be a warped product I×f S

1 and it is to natural to assume that Ric+∇2θ = 0,
and L∇θg = 2∇2θ = 2αdθ ⊗ dθ = 2α(θ′)2ds2. Then, f and θ have to satisfy

fθ′′ − f ′′ = 0,

ff ′θ′ = 0,

θ′′ − α(θ′)2 = 0,

f(f ′θ′ − f ′′) = 0.

So, we must have f ′ = 0 or θ′ = 0. If θ′ = 0, then θ = c for a real constant c, and f = as2+ bs+ c where a, b, c ∈ R.
Considering the case f ′ = 0, then by suitable translation and time dilation in s we get f(s) = s, (which giving the
flat metric) and we have α(θ′)2 = θ′′ = 0. Therefore, θ = c for a real constant c.

Theorem 3.4. The complete, steady, rotationally symmetric gradient soliton metrics on R2 with semi-Killing
potential vector field are the flat metrics.

3.3. Constructing 2-dimensional non-steady soliton

Now, we wish to construct a complete, expanding, rotationally symmetric gradient soliton metric on R2 with semi-
Killing vector field. As mentioned above, such a metric will be a warped product I×f S

1 and it is natural to assume
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that Ric +∇2θ = λg (λ ̸= 0), and L∇θg = 2∇2θ = 2αdθ ⊗ dθ = 2α(θ′)2ds2. Then, f and θ have to satisfy

θ′′ − λ =
f ′′

f
,

ff ′θ′ − λf2 = ff ′′,

ff ′θ′ = 0,

θ′′ − α(θ′)2 = 0.

The third equation shows that θ′ = 0 or f ′ = 0. Let us assume θ′ = 0, then we have f ′′ + λf = 0. So,

• for λ = a2, where a > 0 we have f(s) = c1 cos as+ c2 sin as, for constant c1, c2,

• for λ = −a2, where a > 0 we have f(s) = c1 cosh as+ c2 sinh as, for constant c1, c2.

If f ′ = 0, then the second equation becomes −λf2 = 0, which is impossible.

Theorem 3.5. There is no non-trivial complete, non-steady, rotationally symmetric gradient soliton metric on R2

with semi-Killing potential vector field.

4. Ricci soliton with semi-Killing vector fields

In the previous section, we showed that there is no non-trivial complete, rotationally symmetric gradient soliton
metric on R2 with semi-Killing potential vector field. In this section, we show that this result can be generalized
for all Riemannian manifolds. In fact, if (Mn, g,X, λ) be a Ricci soliton with potential semi-Killing field, then X
has to be a Killing vector field and (M, g) reduces to be an Einstein manifold.

Let (M, g,X, λ) be a Riemannain Ricci soliton with LXg = 2αX♭ ⊗X♭. Then, we have

Ric = −2αX♭ ⊗X♭ + λg.

By computation traces of two sides of the above equation, we find R = −2α|X|2 + nλ, so by addition suitable
expression to each side of the equation, we obtain

Ric− 1

2
Rg + (

n− 2

2
)λg = α(|X|2g − 2X♭ ⊗X♭).

As Einstein tensor Ric− 1

2
Rg is divergence free, so the right hand side of above equation must be divergence free.

Lemma 4.1. Let X be a non-zero vector field on a Riemannian manifold (M, g). If divergence of symmetric tensor
T := |X|2g − 2X♭ ⊗X♭ vanishes, then div(X) = 0.

Proof. Let {ei}ni=1 is an orthonormal base on M and denote its reciprocal base by {ei}ni=1. So, we can write

div(X♭ ⊗X♭)(Y ) =

4∑
i=1

(∇eiX
♭ ⊗X♭)(ei, Y )

=

4∑
i=1

(
(∇eiX

♭)⊗X♭ +X♭ ⊗ (∇eiX
♭)
)
(ei, Y )

=

4∑
i=1

(
(∇eiX

♭)(ei)X♭(Y ) +X♭(ei)(∇eiX
♭)(Y )

= div(X♭)⟨X,Y ⟩+ (∇XX♭)(Y ),

= div(X♭)⟨X,Y ⟩+ ⟨∇XX,Y ⟩.

Also,

div(|X|2g)(Y ) = d(|X|2)(Y ) = Y ⟨X,X⟩ = 2⟨∇Y X,X⟩.

The above computations show that div(T ) = 0, if and only if for all vector field Y , we have

div(X♭)⟨X,Y ⟩+ ⟨∇XX,Y ⟩ − ⟨∇Y X,X⟩ = 0.

Setting Y = X, we obtain
div(X♭)⟨X,X⟩ = 0 =⇒ div(X) = 0,

as required. □
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Now, we can prove the following Theorem.

Theorem 4.2. Riemannain Ricci solitons (Mn, g,X, λ) with LXg = 2αX♭ ⊗X♭, are Einstein manifold.

Proof. Since (Mn, g,X, λ) is a Ricci soliton, we have

Ric + 2αX♭ ⊗X♭ = λg.

If X is identically zero, then we have nothing to prove. Let X be a non-zero vector field, so Lemma 4.1 indicates
that div(X) = 0. On the other hand, we have

LXg = 2αX♭ ⊗X♭.

Tracing both side of the above formula gives

div(X) = α|X|2,

consequently, α = 0, and we have completed the proof. □

The above theorem shows that there is no not-trivial Riemannian Ricci soliton with semi-Killing potential vector
fields. Hence, we have to look for such structure in Lorentzian or other semi-Riemannain settings.

Theorem 4.3. If (Mn, g,X, λ) is a Lorentz Ricci soliton with LXg = 2αX♭ ⊗ X♭, then M has constant scalar
curvature R.

Proof. By arguments similar to those used in the proof of previous Lemma and Theorem 4.2 we deduce that in
Lorentzain case always div(X) = 0. Now, taking trace of both sides of the following equation

Ric +
1

2
LXg = λg,

gives R = nλ. □

The above theorem shows that in Lorentzian setting, type of soliton (to be shrinking, steady or expanding) is
directly related to the sign of scalar curvature.

5. Application to physics

In this section, let (M4, g,X, λ) is a Lorentz Ricci soliton which we regard it as a space-time manifold. Then, the
Ricci soliton equation

Ric +
1

2
LXg = λg,

become a generalization of Einstein field equation. In fact, tracing the both side of the above equation yields
R+ div(X) = 4λ. The above equation can be rewritten as

Ric− 1

2
Rg + λg =

1

2
(div(X)g − LXg).

In general theory of relativity, the scalar curvature R is related to distribution of mass in points of space-time, so
regardless of λ which can be interpreted as cosmological constant, we may deduce that div(X) is related to notion

of matter in space-time and
1

2
(div(X)g − LXg) is the momentum-energy tensor of this matter. Therefore, a Ricci

soliton is a geometric structure which capable of describing matter and gravity, simultaneously.
However, the Ricci flow can be a framework for geometrization of matter in general relativity, it gives no more

information about g as a potential for gravity and X as a potential for matter. Hence, it is natural to posing any
other relation on X and g. If X be a Killing vector field, then the Ricci soliton equations coincides to Einstein
equation in vacuum, and X gives the symmetries of this space-time. In this paper, we suggest X to satisfy the
equation LXg = 2αX♭ ⊗ X♭ for a non-zero constant α. Under this assumption, the Ricci soliton equation as a
generalization of Einstein field equation, becomes

Ric− 1

2
Rg + λg = α(

|X|2

2
g −X♭ ⊗X♭).

This equation shows that symmetric 2-tensor T = |X|2g −X♭ ⊗X♭ must be divergence free. Applying this fact, a
similar argument with Theorem 4.2 shows that X has to be a light-like vector field.
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As we mentioned before, such structure in Riemannain settings lead to X = 0, and the structure reduces to
Einstein manifold. But, as soon as we consider this structure in Lorentzian setting, we derive new field equation,
with an internal relation between X and g. So, in our theory, X can be in related to the notion of dark matter in
general relativity. Because, when in small scales we consider Riemannain geometry, we do not contact to any dark
matter or dark energy, but in large scales and the framework of Lorentzian manifold this notion to be appeared.
These interpretations are logical facts which bear out form our theory, but physical experiments can only verify
how close this theory is to reality.
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