| تعداد نشریات | 8 |
| تعداد شمارهها | 432 |
| تعداد مقالات | 5,608 |
| تعداد مشاهده مقاله | 7,298,656 |
| تعداد دریافت فایل اصل مقاله | 6,125,597 |
Weighted composition, Stević-Sharma, Volterra integral and integral type operators between Dirichlet-Zygmund spaces | ||
| AUT Journal of Mathematics and Computing | ||
| مقاله 6، دوره 6، شماره 4، 2025، صفحه 341-351 اصل مقاله (421.65 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2024.22491.1161 | ||
| نویسندگان | ||
| Sepideh Nasresfahani* 1؛ Alireza Parvizi2 | ||
| 1Department of pure mathematics, Faculty of mathematics and statistics, University of Isfahan, Isfahan, Iran | ||
| 2Department of Architecture, Sepehr Daneshe Moaser Institute of Higher Education, Isfahan, Iran | ||
| چکیده | ||
| In this paper, we study the boundedness and compactness of weighted composition operators between Dirichlet-Zygmund spaces. We also briefly investigate boundedness and compactness of the Stevi'c-Sharma, Volterra-integral and integral-type operators between Dirichlet-Zygmund spaces. | ||
| کلیدواژهها | ||
| Weighted composition operator؛ Dirichlet-Zygmund spaces؛ Boundedness؛ Compactness | ||
| مراجع | ||
|
[1] E. Abbasi, S. Nasresfahani, and K. Khalilpour, Stevi´c-sharma type operator from Besov space into Zygmund space, J. Adv. Math. Model, 11 (2021), pp. 573–584.
[2] S. Acharyya and T. Ferguson, Sums of weighted differentiation composition operators, Complex Anal. Oper. Theory, 13 (2019), pp. 1465–1479. [3] O. Blasco, Composition operators fronm weak to strong vector-valued Hardy spaces, Complex Anal. Oper. Theory, 14 (2020), pp. Paper No. 81, 11.
[4] J. Bonet, P. Domanski, and M. Lindstr ´ om¨ , Weakly compact composition operators on analytic vectorvalued function spaces, Ann. Acad. Sci. Fenn. Math., 26 (2001), pp. 233–248.
[5] F. Colonna and M. Tjani, Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions, J. Math. Anal. Appl., 434 (2016), pp. 93–124.
[6] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
[7] J. Laitila, Weakly compact composition operators on vector-valued BMOA, J. Math. Anal. Appl., 308 (2005), pp. 730–745.
[8] J. Laitila, H.-O. Tylli, and M. Wang, Composition operators from weak to strong spaces of vector-valued analytic functions, J. Operator Theory, 62 (2009), pp. 281–295.
[9] S. Li and S. Stevic´, Volterra-type operators on Zygmund spaces, J. Inequal. Appl., (2007), pp. Article ID 32124, 10.
[10] J. Liu, S. Ponnusamy, and H. Xie, Complex symmetric weighted composition-differentiation operators, Linear Multilinear Algebra, 71 (2023), pp. 737–755.
[11] S. Nasresfahani and E. Abbasi, Product-type operators on weak vector valued α-Besov spaces, Turkish J. Math., 46 (2022), pp. 1210–1223.
[12] S. Nasresfahani, M. Hassanlou, and E. Abbasi, Carleson measure and composition operators on vector valued weighted besov type spaces, J. Adv. Math. Model, 12 (2022), pp. 1–12.
[13] C. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschr¨ankter mittlerer Oszillation, Comment. Math. Helv., 52 (1977), pp. 591–602.
[14] J. H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
[15] S. Stevic´, On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. Math. Anal. Appl., 354 (2009), pp. 426–434.
[16] S. Stevic, A. K. Sharma, and A. Bhat ´ , Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 217 (2011), pp. 8115–8125.
[17] e. Cu˘ ckovi ˘ c and R. Zhao ´ , Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, Illinois J. Math., 51 (2007), pp. 479–498.
[18] S. Wang, M. Wang, and X. Guo, Differences of Stevi´c-Sharma operators, Banach J. Math. Anal., 14 (2020), pp. 1019–1054.
[19] , Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions, Taiwanese J. Math., 24 (2020), pp. 355–376. [20] H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull., 52 (2009), pp. 613–626.
[21] H. Xie, J. Liu, and S. Ponnusamy, Volterra-type operators on the minimal M¨obius-invariant space, Canad. Math. Bull., 66 (2023), pp. 509–524.
[22] K. Zhu, Operator theory in function spaces, vol. 138 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, second ed., 2007.
[23] X. Zhu, Weighted composition operators from Dirichlet-Zygmund spaces into Zygmund-type spaces and Blochtype spaces, J. Funct. Spaces, (2022), pp. Article ID 9332406, 8. | ||
|
آمار تعداد مشاهده مقاله: 309 تعداد دریافت فایل اصل مقاله: 80 |
||