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1. Introduction

Let S = S(D) be the class of all holomorphic self-maps of the unit disk D of the complex plane C and H(D) the
space of all holomorphic functions on D. For ψ ∈ S and u ∈ H(D), the weighted composition operator, induced by
ψ and u is given by

Wu,ψ(f) := u · f ◦ ψ, f ∈ H(D).

We can regard this operator as a generalization for a multiplication operator Mu and a composition operator Cψ
induced by ψ, whereMuf = u ·f and Cψf = f ◦ψ. An extensive study concerning the theory of (weighted) composi-
tion operators has been established during the past four decades on various settings. We refer to standard references
[6, 14, 22] and [10] for various aspects about the theory of composition operators acting on holomorphic function
spaces, especially the problems of relating operator-theoretic properties of Cψ to function theoretic properties of ψ.
The differentiation operator D is defined by Df = f ′, for f ∈ H(D). Note that D is typically unbounded on many
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familiar spaces of holomorphic functions. The differential operator plays an important role in various fields such as
dynamical system theory and operator theory.

For ψ ∈ S, u1, u2 ∈ H(D), the following sum of operators, has been introduced by Stević et al. [16] and is called
as Stević-Sharma operator

Tu1,u2,ψ(f) =Wu1,ψ(f) +Wu2,ψD(f) = u1 · f ◦ ψ + u2 · f ′ ◦ ψ. (1)

One of the reasons why this operator is of some importance, is that all products of multiplication, composition
and differentiation operators can be obtained from the operator Tu1,u2,ψ by choosing appropriate u1, u2. For recent
studies about the Stević-Sharma operator on various holomorphic function spaces, we refer to [1, 2, 19, 18] and
references therein.

For any analytic function ξ ∈ H(D), the Volterra integral operator Vξ, may be defined as follows

Vξ(f) =

∫ z

0

f(w)ξ′(w)dw, f ∈ H(D).

Moreover, the integral type operator Iξ is defined by

Iξ(f) =

∫ z

0

f ′(w)ξ(w)dw, f ∈ H(D).

The importance of these two operators comes from the fact that

Vξ(f) + Iξ(f) =Mξf − f(0)ξ(0),

where Mξf(z) = ξ(z)f(z) is the multiplication operator. In [13], Pommerenke introduced and studied the Volterra
integral operator Vξ on Hardy spaces. After that many researchers considered Volterra integral and Integral type
operators on analytic function spaces. See for example [9, 15, 21].
There are very few investigates about the weighted composition operator, Stević-Sharma, Volterra integral and
integral type operators in the setting of spaces of weak vector valued holomorphic functions. The main concern of
the present paper is to discuss the boundedness and compactness of these operators on weak vector valued (scalar
valued) Dirichlet-Zygmund spaces. To this end, we first recall our function spaces to work on. We denote by
H∞(D), the space of all analytic functions with the norm ∥f∥∞ = supz∈D |f(z)|.
Let dA be the area measure on D normalized to have the total mass 1. For 1 ≤ p < ∞ and α > −1, the weighted
Bergman space Ap,α(D) is the space of all holomorphic functions f on D for which the norm

∥f∥Ap,α :=

{∫
D
|f(z)|pdAα(z)

} 1
p

is finite, where (1 − |z|2)αdA(z) = dAα(z). The analytic Dirichlet space Bp,α(D), is the space of all functions
f ∈ H(D), for which

∥f∥pBp,α(D) =

∫
D
|f ′(z)|p(1− |z|2)αdA(z) + |f(0)| <∞.

The analytic function f ∈ H(D), is considered to be in Dirichlet-Zygmund space Zp,p−1(D), if the following norm

∥f∥pZp,p−1(D) = ∥f ′∥pBp,p−1
+ |f(0)| = ∥f ′′∥pAp,p−1

+ |f ′(0)|+ |f(0)|

is finite. To the best of our knowledge, [23], is the only work to study Dirichlet-Zygmund spaces, where X. Zhu
considered the boundedness and compactness of weighted composition operators from Dirichlet-Zygmund spaces
into Zygmund type and Bloch type spaces.

Let X be a complex Banach space. The corresponding weak version vector-valued Dirichlet-Zygmund space
wZp,p−1(X) consists of the analytic functions f : D → X for which x∗ ◦ f ∈ Zp,p−1(D) for every x∗ ∈ X∗, equipted
with the following norm

∥f∥wZp,p−1(X) = sup
x∗∈BX∗

∥x∗ ◦ f∥Zp,p−1(D) <∞.

Here and in the sequel, X∗ is the dual space of X and BX∗ = {x∗ ∈ X∗ : ∥x∗∥X∗ ≤ 1} is the closed unit ball
of X∗. In fact, such weak version spaces wE(X) can be introduced under more general conditions on any Banach
spaces E consisting of holomorphic functions, see [3, 4, 7, 8, 12] and references therein.

In this paper, our aim is to characterize the boundedness and compactness of the weighted composition, Stević-
Sharma, Volterra-integral and Integral type operator between weak vector valued (scalar valued) Dirichlet-Zygmund
spaces.
Throughout this paper, constants are denoted by C, they are positive and not necessary the same as each occurrence.
Also we use A ⪯ B if there exists a constant C > 0, such that A ≤ CB.
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2. Boundedness

The following key lemma, which gives us a characterization on Dirichlet-Zygmund spaces, will help us to prove our
main results.

Lemma 2.1. Let 1 < p <∞. Then

(i) for any f ∈ Bp,p−1(D),

|f(z)| ⪯ ∥f∥Bp,p−1
.

(ii) for any f ∈ Zp,p−1(D),

|f(z)| ⪯ ∥f∥Zp,p−1
, |f ′(z)|(1− |z|2)1/p ⪯ ∥f∥Zp,p−1

Proof. We refere part (i) to [11] and part (ii) to [23]. □

Cuckovic and Zhao in [17], characterized the boundedness of operator Wu,ψ between weighted Bergman spaces, in
terms of an integral operator, as follows.

Lemma 2.2. Let −1 < α, β <∞, ψ be an analytic self map on D and u ∈ H(D). If 0 < p <∞, then the weighted
composition operator Wu,ψ : Ap,α(D) → Ap,β is bounded if and only if

sup
a∈D

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)2+α|u(w)|pdAβ(w) <∞.

Now we provide a characterization for the boundedness of operator Wu,ψ between Dirichlet-Zygmund spaces.

Theorem 2.3. Let 1 < p <∞, ψ be an analytic self map on D and u ∈ H(D). Then the following statements are
equivalent:
(a) Wu,ψ is bounded on wZp,p−1(X).
(b) Wu,ψ is bounded on Zp,p−1(D).
(c) u, uψ ∈ Zp,p−1 and

sup
a∈D

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)p+1|u(w)ψ′2(w)|pdAp−1(w) <∞.

Proof. (a)⇒(b). For any analytic function f ∈ Zp,p−1(D) and ν ∈ X with ∥ν|| = 1, define h : D → X, such that
h(z) = νf(z), for any z ∈ D. Then

(ν∗ ◦ h)′(z) = lim
w→z

ν∗(νf(w))− ν∗(νf(z))

w − z
= lim
w→z

f(w)ν∗(ν)− f(z)ν∗(ν)

w − z

= ν∗(ν)f ′(z).

Hence (ν∗ ◦ h)′′(z) = (nu∗νf ′(z))′ = ν∗(ν)f ′′(z) and we obtain

||h||pwZp,p−1(X) = sup
||ν∗||X∗≤1

(∫
D
|(ν∗ ◦ h)′′(z)|pdAp−1(z) + |(ν∗ ◦ h)′(0)|+ |(ν∗ ◦ h)(0)|

)
= sup

||ν∗||X∗≤1

(∫
D
|ν∗(ν)f ′′(z)|pdAp−1(z) + |ν∗(ν)f ′(0)|+ |ν∗(ν)f(0)|

)
=

∫
D
|f ′′(z)|pdAp−1(z) + |f ′(0)|+ |f(0)| = ∥f∥pZp,p−1(D). (2)

In a similar way, we get

∥Wu,ψh∥pwZp,p−1(X) = sup
∥ν∗∥X∗≤1

(∫
D
|(ν∗(uCψh))′′(z)|pdAp−1(z) +

∣∣ν∗(uCψh))′(0)∣∣+ ∣∣(ν∗(uCψh))(0)∣∣)
= sup

∥ν∗∥X∗≤1

(∫
D
|(ν∗uCψ(νf))′′(z)|pdAp−1(z) +

∣∣ν∗uCψ(νf))′(0)∣∣+ ∣∣(ν∗uCψ(νf))(0)∣∣)
= sup

∥ν∗∥X∗≤1

(∫
D
|ν∗(ν)(uCψf)′′(z)|pdAp−1(z) +

∣∣ν∗(ν)(uCψf)′(0)∣∣+ ∣∣ν∗(ν)(uCψf)(0)∣∣)
=

∫
D
|(uCψf)′′(z)|pdAp−1(z) + |(uCψf)′(0)|+ |(uCψ)(0)| = ∥Wu,ψf∥pZp,p−1(D). (3)
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Notice that, in the details of equations (2) and (3), equality happens becouse all the functions get their suprimum
at the same point. By applying equations (2) and (3) it’s easy to see that, the boundedness of Wu,ψ on wZp,p−1(X)
gives us the boundedness of Wu,ψ on Zp,p−1(D).
(b)⇒(a). For any h ∈ wZp,p−1 and v∗ ∈ X∗, according to the definition of wZp,p−1, we have that v∗ ◦ h ∈ Zp,p−1.
But we have supposed that Wu,ψ is bounded on Zp,p−1, hence

∥Wu,ψ(h)∥wZp,p−1 = sup
∥v∗∥X∗≤1

∥v∗ ◦Wu,ψh∥Zp,p−1 = sup
∥v∗∥X∗≤1

∥Wu,ψ(v
∗ ◦ h)∥Zp,p−1

≤ sup
∥v∗∥X∗≤1

∥v∗ ◦ h∥Zp,p−1
= ∥h∥wZp,p−1

,

which gives us the desired result.
(b)⇒(c). Let Wu,ψ is bounded on Zp,p−1, then ∥Wu,ψ(f)∥Zp,p−1 ⪯ ∥f∥Zp,p−1 , for all f ∈ Zp,p−1. Now for any

f ∈ Ap,p−1, assume that h(z) =
∫ z
0
f(w)dw and g(z) =

∫ z
o
h(w)dw, then we have that g′(z) = h(z) ∈ Bp,p−1,

g′(0) = g(0) = 0. So g′′(z) = f(z) ∈ Ap,p−1 and g(z) ∈ Zp,p−1. On the other hand

(u.g(ψ(z)))′′ = u′′(z)g(ψ(z)) + 2u′(z)ψ′(z)g′(ψ(z))

+ u(z)ψ′′(z)g′(ψ(z)) + u(z)ψ′2(z)g′′(ψ(z)).

Applying the boundedness of Wu,ψ on Zp,p−1, for functions f1(z) = 1 and f2(z) = Id, give us

∥u′′ψ + ψ′′u+ 2ψ′u′∥Ap,p−1 = ∥(uψ)′′∥Ap,p−1 ≤ ∥Wu,ψ(f2)∥Zp,p−1 <∞, (4)

||u′′||Ap,p−1 = ∥Wu,ψ(f1)∥Zp,p−1 <∞. (5)

Then by the boundedness of ψ on D and the equations (4) and (5), we obtain ∥ψ′′u+ 2u′ψ′∥Ap,p−1
<∞. But

∥Wuψ′2,ψ(f)∥Ap,p−1 = ∥Wuψ′2,ψ(g
′′)∥Ap,p−1 = ∥uψ′2g′′ ◦ ψ∥Ap,p−1

= ∥(ug ◦ ψ)′′ − (uψ′′ + 2u′ψ′)g′ ◦ ψ − u′′g ◦ ψ∥Ap,p−1

≤ ∥Wu,ψ(g)∥Zp,p−1 + ∥g′∥∞∥uψ′′ + 2u′ψ′∥Ap,p−1 + ∥g∥∞∥u′′∥Ap,p−1 .

By applying Lemma 2.1 and the boundedness of Wu,ψ on Zp,p−1, we get that

∥Wuψ′2,ψ(f)∥Ap,p−1
⪯ (∥uψ′′ + 2u′ψ′∥Ap,p−1

+ ∥u∥Zp,p−1
+ 1)∥g∥Zp,p−1

⪯ ∥g∥Zp,p−1
= ∥g′′∥Ap,p−1

= ∥f∥Ap,p−1
.

Which implies the boundedness of operator Wuψ′2,ψ : Ap,p−1(D) → Ap,p−1(D). Then equations (4) and (5) along
with Lemma 2.2, give us the desired result.
(c)⇒(b). With the assumptions in (c) and Lemma 2.2, we get that u, u.ψ ∈ Zp,p−1(D) and operator Wuψ′2,ψ is
bounded between weighted Bergman spaces Ap,p−1(D). Also

∥uψ′′ + 2u′ψ′∥Ap,p−1 ≤ ∥(u.ψ)′′∥Ap,p−1 + ∥u′′ψ∥Ap,p−1 <∞, (6)

and since for any g ∈ Zp,p−1(D), g′′ ∈ Ap,p−1(D), we have that

∥uψ′2g′′∥Ap,p−1
≤ ∥g′′∥Ap,p−1

.

Therefore,

∥(ug ◦ ψ)′′∥Ap,p−1 ≤ ∥u′′∥Ap,p−1∥g∥∞ + ∥uψ′′ + 2u′ψ′∥Ap,p−1∥g′∥∞ + |g′′∥Ap,p−1

≤ ∥g∥Zp,p−1 . (7)

On the other hand, by applying Lemma 2.1, we have that

|(ug ◦ ψ)(0)| ⪯ ∥u(0)|∥g∥Zp,p−1
,

|(ug ◦ ψ)′(0)| ⪯
(
|u′(0)|+ (uψ′)(0)

(1− |ψ(0)|
1
p

)
∥g∥Zp,p−1 . (8)

Hence, (7) and (8), give us the boundedness of operator Wu,ψ between Dirichlet-Zygmund spaces Zp,p−1(D), which
completes the proof. □
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By applying Lemma 2.2 and Theorem 2.3, we get the following corollary.

Corollary 2.4. Let 1 < p < ∞, ψ be an analytic self-map on D and u ∈ H(D). Then Wu,ψ is bounded on
Zp,p−1(D) if and only if Wuψ′2,ψ is bounded on Ap,p−1(D) and u, (uψ) ∈ Zp,p−1(D).

Lemma 2.5. Let 1 < p < ∞, ψ be an analytic self-map on D and u ∈ H(D). Then Wu,ψ is bounded from
Zp,p−1(D)

(
Bp,p−1(D) or Ap,p−1(D)

)
into Ap,p−1(D), if and only if u ∈ Ap,p−1(D).

Proof. The proof is easy by using lemma 2.1, so we skip the details. □

Definition of norm in Dirichlet-Zygmund spaces, gives us that for any g ∈ Zp,p−1(D), u ∈ H(D) and u ∈ S,

∥ug ◦ ψ∥Zp,p−1(D) = ∥u′′g ◦ ψ + (2u′ψ′ + uψ′′)g′ + uψ′2g′′∥Ap,p−1(D) +M,

for a constant M . Hence, for studing operator Wu,ψ on Dirichlet Zygmund spaces, we may deal with the three
operators Mu′′Cψ, M2u′ϕ′+uψ′′CψD and Muψ′2CψD

2. As an interesting result, by using the details in the proof of
Theorems 2.3 and Lemma 2.5, the following Corollary obtains.

Corollary 2.6. Let 1 < p <∞ ψ ∈ S and u ∈ H(D). Then Wu,ψ : Zp,p−1(D) → Zp,p−1(D) is bounded if and only
if, all the three following operators are bounded

Wu′′,ψ : Zp,p−1(D) → Ap,p−1(D),
W(2u′ψ′+uψ′′),ψ : Bp,p−1(D) → Ap,p−1(D),
Wuψ′2,ψ : Ap,p−1(D) → Ap,p−1(D).

In [20] Lemma 5, the authors provide another characterization for Bergman spaces which asserts that for any
α > −1 and p > 0, there exists C > 0 such that∫

D
|f(z)|pdAα(z) ≤ C[|f(0)|p +

∫
D
|g(z)|pdAα(z)], (9)

|f(0)|p +
∫
D
|g(z)|pdAα(z) ≤ C

∫
D
|f(z)|pdAα(z) (10)

for all analytic functions f in D, where g(z) = (1 − |z|2)f ′(z) for z ∈ D. Hence f ∈ Ap,α(D) if and only if
f ′ ∈ Ap,α+1(D). This characterization will help us in the proof of the next Theorem, which gives us a characterization
for the boundedness of Stević-Sharma operator Tu1,u2,ψ, between some Dirichlet-Zygmund spaces.

Theorem 2.7. Let 1 < p < ∞, u1 ∈ Zp,p−1(D), u2 ∈ H(D) and ψ ∈ S. Then the following statements are
equivalent:

(a) Tu1,u2,ψ : wZp,3p−1(X) → wZp,3p−1(X) is bounded.

(b) Tu1,u2,ψ : Zp,3p−1(D) → Zp,3p−1(D) is bounded.

(c) u2, (u2ψ) ∈ Zp,3p−1(D) and

sup
a∈D

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)3p+1|u1(w)ψ′2(w)|pdA3p−1(w) <∞, (11)

sup
a∈D

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)4p+1|u2(w)ψ′2(w)|pdA3p−1(w) <∞. (12)

Proof. (a) ⇒ (b). Let Tu1,u2,ψ : wZp,3p−1(X) → wZp,3p−1(X) be bounded. Then similar to the proof of part (a)
to (b) of Theorem 2.3, for any f ∈ Zp,3p−1 and ν ∈ X with ∥ν∥ = 1, if we define h = νf(z) for any z ∈ D, we get
that ∥h∥pwZp,3p−1

= ∥f∥Zp,3p−1 and also ∥Tu1,u2,ψh∥
p
wZp,3p−1

= ∥Tu1,u2,ψf∥Zp,3p−1 which gives us the desired result.

(b)⇒(a). It is similar to the proof of part (b)⇒(a) of Theorem 2.3, just we have operator Tu1,u2,ψ instead of
Wu,ψ, so we skip the details.
(b) ⇒ (c). Let u1 ∈ Zp,p−1(D) ⊂ Ap,p−1(D). But according to [20] we know that f ∈ Ap,α if and only if
f (n) ∈ Ap,α+np, therefore

||u1ψ||Zp,3p−1
= ||(u1ψ)′′||Ap,3p−1

+ |u1(0)ψ(0)|+ |(u1ψ)′(0)|
≤ ||(u1ψ)′||Ap,2p−1

+ C

≤ ||u1ψ||Ap,p−1(D) + C

≤ ||ψ||∞||u1||Ap,p−1(D) + C <∞. (13)
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Since Tu1,u2,ψ is bounded on Zp,3p−1(D), by setting f = z, we obtain

||u1Cψf + u2CψDf ||Zp,3p−1(D) = ||u1ψ + u2||Zp,3p−1(D) <∞. (14)

Then the triangle inequality, (14) and (13) yield that u2 ∈ Zp,3p−1(D). In addition, by applying ||(u1ψ)′′||Ap,3p−1(D) <
∞ and u′′1 ∈ Ap,p−1(D) ⊂ Ap,3p−1(D), similar to the details of (4), we get that

||u1ψ′′ + 2u′1ψ
′||Ap,3p−1

<∞. (15)

On the other hand, for any f ∈ Ap,3p−1(D) such that f(0) = 0, by putting h(z) =
∫ z
0
f(w)dw and g(z) =

∫ z
0
h(w)dw,

we have that g′′(z) = f(z) ∈ Ap,3p−1(D) and g(0) = g′(0) = 0. Hence by applying Lemma 2.1 and (15), we obtain

∥u1ψ′2f ◦ ψ(z)∥Ap,3p−1(D) = ∥u1ψ′2g′′ ◦ ψ(z)∥Ap,3p−1(D)

≤ ∥(u1g ◦ ψ)′′∥Ap,3p−1 + ∥(u1ψ′′ + 2u′1ψ
′)g′ ◦ ψ∥Ap,3p−1

+ ∥u′′1g ◦ ψ∥Ap,3p−1

≤ ∥u1g ◦ ψ∥Ap,p−1
+ ∥g′∥∞∥u1ψ′′ + 2u′1ψ

′∥Ap,3p−1
+ ∥g∥∞∥u′′1∥Ap,3p−1

≤ ∥g∥∞∥u1∥Ap,p−1
+ ∥g′∥∞∥u1ψ′′ + 2u′1ψ

′∥Ap,3p−1
+ ∥g∥∞∥u′′1∥Ap,3p−1

⪯ ∥g∥Zp,3p−1
⪯ ∥g′′∥Ap,3p−1

= ∥f∥Ap,3p−1
. (16)

Thus, lemma 2.2, gives us

sup
a∈D

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)3p+1|u1(w)ψ′2(w)|pdA3p−1(w) <∞. (17)

Also by (16), (13), u1 ∈ Zp,p−1 and Theorem 2.3 we have the boundedness of Wu1,ψ : Zp,3p−1(D) → Zp,3p−1(D).
Now with the triangle inequality, for any f ∈ Zp,3p−1(D),

∥Wu2,ψDf∥Zp,3p−1(D) ≤ ∥Tu1,u2,ψ(f)∥Zp,3p−1(D) + ∥Wu1,ψ(f)∥Zp,3p−1(D)

⪯ ∥f∥Zp,3p−1(D).

On the other hand, Wu2,ψD : Zp,3p−1 → Zp,3p−1 is bounded if and only if Wu2,ψ : Zp,4p−1 → Zp,3p−1 is bounded.
Therefore, applying theorem 2.3 and lemma 2.2 complete the proof.

(c)⇒(b). Assume that (c) holds. Since the boundedness of Wu2,ψ : Zp,4p−1(D) → Zp,3p−1 is equivalent to the
boundedness of Wu2,ψD between Dirichlet-Zygmund spaces Zp,3p−1, Then theorem 2.3 and lemma 2.2, along with
the assumption u1 ∈ Zp,p−1 ⊂ Zp,3p−1 and equation (13), give us the boundedness of Wu2,ψD and Wu1,ψ between
Zp,3p−1(D. Therefore by using the triangle inequality, Tu1,u2,ψ =Wu1,ψ +Wu2,ψD is bounded on Zp,3p−1(D). □

We can easily check that MuDCψ = T0,uψ′,ψ. Therefore, applying theorem 2.7, gives us the following corollary.

Corollary 2.8. Let 1 < p < ∞, u ∈ H(D) and ψ ∈ S. Then MuDCψ is bounded on Zp,3p−1(D), if and only if
uψ′, (uψ′ψ) ∈ Zp,3p−1(D) and

sup
a∈D

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)4p+1|u(w)ψ′3(w)|pdA3p−1(w) <∞.

Theorem 2.9. Let 1 < p <∞ and ξ ∈ H(D). Then for any f ∈ Zp,p−1(D), the following statements are equivalent

(a) The Volterra-integral operator Vξ(f) =
∫ z
0
f(w)ξ′(w)dw is bounded on Dirichlet-Zygmund spaces.

(b) ξ ∈ Zp,p−1(D).

(c) The integral-type operator Iξ(f) =
∫ z
0
f ′(w)ξ(w)dw is bounded on Dirichlet-Zygmund spaces.

Proof. (a) ⇒(b). Suppose that operatpr Vξ is bounded on Zp,p−1(D), then for f = 1, we get that

|ξ(0)|+ ∥ξ∥Zp,p−1
≤ ∥Vξf∥Zp,p−1

≤ ∥Vξ∥ <∞. (18)

Therefore, ξ ∈ Zp,p−1(D).
(b)⇒(c). Let ξ ∈ Zp,p−1(D). Then ξ ∈ Bp,p−1(D) and by applying lemma 2.1, ∥ξ∥∞ ≤ ∥ξ∥Zp,p−1

< ∞. Then for
any h ∈ Zp,p−1(D),

∥Iξ(h)∥Zp,p−1
= ∥h′′ξ∥Ap,p−1

+ ∥h′ξ′∥Ap,p−1

≤ ∥h∥Zp,p−1
∥ξ∥∞ + ∥h′∥∞∥ξ′∥Ap,p−1

≤ ∥h∥Zp,p−1
∥ξ∥Zp,p−1

+ ∥h∥Zp,p−1
∥ξ∥Bp,p−1

⪯ ∥h∥Zp,p−1
.
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(c)⇒(b). By putting function f(z) = z, and using the boundedness property of opertors Iξ on Zp,p−1(D), we
get the disired result.
(b)⇒(a). Let ξ ∈ Zp,p−1(D) ⊂ Bp,p−1(D).Then for any h ∈ Zp,p−1(D), using Lemma 2.1, give us

∥Vξ(h)∥Zp,p−1 = ∥h′ξ′∥Ap,p−1 + ∥hξ′′∥Ap,p−1

≤ ∥h′∥∞∥ξ′∥Ap,p−1 + ∥h∥∞∥ξ′′∥Ap,p−1

≤ ∥h′∥Bp,p−1∥ξ∥Bp,p−1 + ∥h∥∞∥ξ∥Zp,p−1

≤ ∥h∥Zp,p−1∥ξ∥Bp,p−1 + ∥h∥Zp,p−1∥ξ∥Zp,p−1

⪯ ∥h∥Zp,p−1 ,

which completes the proof. □

3. Compactness

In this section we aim to consider the compactness of weighted composition and Stevi’c sharma operatros, we
also briefly investigate the compactness of Voltera integral and integral type operators between Dirichtet Zygmund
spaces.

Lemma 3.1. Let 1 < p < ∞, ψ be an analytic self map on D and u ∈ H(D). Suppose that Wu,ψ is a bounded
weighted composition operator on Ap,p−1, (Bp,p−1orZp,p−1). Then Wu,ψ is compact on Ap,p−1, (Bp,p−1

orZp,p−1 ) if and only if for any bounded sequence {fn}∞0 in Ap,p−1, (Bp,p−1, orZp,p−1) such that {fn}∞0 → 0
uniformly on compact subsets on D as n → ∞, we have ∥Wu,ψ(fn)∥Ap,p−1 → 0, (∥Wu,ψ(fn)∥Bp,p−1 → 0, or
∥Wu,ψ∥Zp,p−1

→ 0 ).

Proof. The proof is similar to Proposition 3.11 [6] or Lemma 2.1 [5], so we skip the details. □

Note that, if X be a reflexive Banach space, then Montel’s theorem is valid for H(D, X) endowded with compact-
open(co) topology. Hence in this case, Lemma 3.1 is valid for wZp,p−1(X).
The following Lemma from [17], gives us a characterization for compactness of operator Wu,ψ Between weighted
Bergman spaces and will help us to get our desired results.

Lemma 3.2. Let ψ be an analytic self map on D and u ∈ H(D). If 0 < p < ∞ and −1 < α, β, then the weighted
composition operator Wu,ψ : Ap,α(D) → Ap,β(D) is compact if and only if

lim sup
|a|→1−

∫
D
(

(1− |a|)2

|1− aψ(w)|2
)2+α|u(w)|pdAβ(w) = 0.

Theorem 3.3. Let 1 < p, X is a reflexive Banach space and operator Wu,ψ : wZp,p−1(X) → wZp,p−1(X) is
bounded. Then the following statements are equivalent:

(a) Wu,ψ : wZp,p−1(X) → wZp,p−1(X) is weakly compact.

(b) Wu,ψ : Zp,p−1(D) → Zp,p−1(D) is compact.

(c) u, u.ψ ∈ Zp,p−1(D) and

lim sup
|a|→1−

∫
D
(

(1− |a|)2

|1− aψ(w)|2
)p+1|u(w)ψ′2(w)|pdAp−1(w) = 0.

Proof. (a) ⇒ (b). Assume that Wu,ψ : wZp,p−1(X) → wZp,p−1(X) is bounded, then by using Theorem 2.3,
we get the boundedness of Wu,ψ : Zp,p−1(D) → Zp,p−1(D). Now let the bounded sequence (fn)

∞
n=1 ⊂ Zp,p−1

converges uniformly to zero on compact subsets of D, and ν ∈ X with ∥ν∥ = 1, define the sequence (hn)
∞
n=1

such that hn := νfn(z) for any z ∈ D. Then similar to the proof of part (a)⇒(b) of Theorem 2.3 we get that
∥hn∥pwZp,p−1

= ∥fn∥pZp,p−1
< ∞, so (hn) ⊂ wZp,p−1 is a bounded sequence which converges uniformly to zero on

compact subsets of D. Then by using Lemma 3.1, we get that ∥Wu,ψhn∥wZp,p−1
converges to zero as n→ ∞. Also,

similar to equation (3) of Theorem 2.3, we have that ∥Wu,ψfn∥pZp,p−1
= ∥Wu,ψhn∥pwZp,p−1

. Therefore ∥Wu,ψfn∥Zp,p−1

converges to zero as n→ ∞. Therefore, Lemma 3.1 completes the proof.
(b)⇒(a). Let (hn)

∞
n=1 ⊂ wZp,p−1 be a bounded sequence which converges uniformly to zero on compact subsets

of D. Then (hn) is bounded and converges pointwise to zero. Hence for v∗ ∈ X∗ such that ∥v∗∥X∗ ≤ 1, if we consider
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sequence (v∗ ◦ hn) ⊂ Zp,p−1 we have that (v∗ ◦ hn) is bounded and converges pointwise to zero. Then by applying
Corollary 1.3 of [6], we get that (v∗ ◦ hn) converges weakly to zero. But we assumed that Wu,ψ : Zp,p−1(D) →
Zp,p−1(D) is compact, and hence it is completely continuous. Therefore, ∥Wu,ψ(v

∗◦hn)∥Zp,p−1
→ ∥Wu,ψ(0)∥Zp,p−1

=
0. On the other hand, ∥Wu,ψhn∥wZp,p−1

= sup∥w∗∥X∗≤1 ∥Wu,ψ(w
∗◦hn)∥Zp,p−1

= ∥Wu,ψ(v
∗◦hn)∥Zp,p−1

, for v∗ ∈ X∗.
Therefore ∥Wu,ψhn∥wZp,p−1

→ 0 and applying Lemma 3.1, gives us the desired result.
(b)⇒ (c). Since we supposed that Wu,ψ is bounded on Zp,p−1, then Theorem 2.3 gives us u, u.ψ ∈ Zp,p−1. Now

let w, z ∈ D and ξψ(w)(z) =
ψ(w)−z
1−ψ(w)z

∈ Aut(D). Also suppose that (an) ⊂ D be a sequence with limn→∞ |ψ(an)| = 1,

then define the test function

Bn,w(z) :=
(
ξψ(an)(z)

)2(
1− |ψ(an)|2

) 1

1− ψ(an)z
.

Since ∥ξψ(an)∥∞ <∞, so
(
Bn,w

)
∈ Zp,p−1 converges uniformly to zero on compact subsets of D, as n→ ∞. On the

other hand, Bn,w(ψ(an)) = 0 and B′
n,w(ψ(an)) = 2ξ′ψ(an)(ψ(an))ξψ(an)(ψ(an)) = 0 also B′′

n,w(ψ(an)) =
2

(1−|ψ(an)|2)2 .

Therefore, we get that

∥Wu,ψ(Bn,w)∥Zp,p−1
≥ ∥

(
u(w)Bn,w(ψ(an))

)′′∥Ap,p−1

= ∥u′′(w)Bn,w(ψ(an)) + (2u′ψ′ + uψ′′)(w)B′
n,w(ψ(an)) + uψ′2(w)B′′

n,w(ψ(an))∥Ap,p−1

= ∥uψ′2(w)B′′
n,w(ψ(an))∥Ap,p−1 =

∫
D
|u(w)ψ′2(w)|p

∣∣ 2

(1− |ψ(an)|2)2
∣∣pdAp−1(w)

But we assumed that Wu,ψ is compact on Zp,p−1. Then by applying Lemma 3.1, we get the desired result.

(c) ⇒ (b). Let ψ, u.ψ ∈ Zp,p−1. Then ∥u′′∥∞ ⪯ ∥u′′∥Ap,p−1
≤ ∥u∥Zp,p−1

< ∞ and by Lemma 2.1, we have that
∥2u′ψ′ + uψ′′∥∞ ≤ ∥uψ∥∞ + ∥u′′ψ∥∞ ⪯ ∥uψ∥Zp,p−1

+ ∥u∥Zp,p−q
< ∞. Now let {fn}∞n=0 ⊂ Zp,p−1(D) ⊂ Bp,p−1 ⊂

Ap,p−1 be a sequence such that fn converges to zero uniformly, on compact subsets of D. Then, whenever |ψ(z)| > s
for s ∈ (0, 1), since |u(w)ψ′2(w)| ≠ 0 and so 1 ⪯ |u(w)ψ′2(w)|, then we get that

lim sup
|ψ(w)|→1

∫
D
(

1

|1− |ψ(w)|2
)p+1dAp−1(w) ⪯ lim sup

|ψ(w)|→1

∫
D
(

1

|1− |ψ(w)|2
)p+1|u(w)ψ′2(w)|pdAp−1(w).

Hence in this case, our assumption in (c) along with Lemma 3.2, give us the compactness of operator Cψ : Ap,p−1 →
Ap,p−1 and so by applying Lemma 3.1, we have ∥fn ◦ ψ∥Ap,p−1

→ 0.
On the other hand, if |ψ(z)| ≤ s, since fn → 0 uniformly on {|w| ≤ t} there exists N ∈ N such that for all n ≥ N ,
we have that |fn(w)| ≤ ϵ for an arbitrary ϵ > 0. Therefore, by assuming |ψ(z)| ≤ s, we get ∥fn∥∞ → 0. But
H∞ ⊂ Ap,p−1 hence, ∥fn ◦ ψ∥Ap,p−1 ≤ ∥fn∥∞ → 0. So in the both cases we obtain ∥fn ◦ ψ∥Ap,p−1 → 0. With
a similar argument, since we have supposed that {fn} ∈ Ap,p−1 and then {f ′n} ∈ Bp,p−1 ⊂ Ap,p−1, we get that
∥f ′n ◦ ψ∥Ap,p−1

→ 0.
Also we have supposed that {fn}∞n=0 ⊂ Zp,p−1(D) ⊂ Bp,p−1 ⊂ Ap,p−1 converges to zero uniformly, on compact
subsets of D. Therefore fn converges poinwise on D and hence |fn ◦ ψ(0)| → 0. With a similar argument we see
that |(fn ◦ ψ)′(0)| → 0. Indeed, by using Lemma 3.2 and our assumptions, Wuψ′2,ψ : Ap,p−1(D) 7−→ Ap,p−1(D) is
compact. So Lemma 3.1, gives us

An := ∥uψ′2f ′′n ◦ ψ∥Ap,p−1(D) −→ 0, as n→ ∞.

Hence, we obtain

∥Wu,ψ(fn)∥Zp,p−1(D) = ∥(u.fn ◦ ψ)′′∥Ap,p−1
+ |(u.fn ◦ ψ)′(0)|+ |u.fn ◦ ψ(0)|

≤ ∥uψ′2f ′′n ◦ ψ∥Ap,p−1D) + ∥u′′fn ◦ ψ∥Ap,p−1
+ ∥(2u′ψ′ + uψ′′)f ′n ◦ ψ∥Ap,p−1

+ |(fn ◦ ψ)′(0)|+ |fn ◦ ψ(0)|

≤
(
An + ∥u′′∥∞∥fn ◦ ψ∥Ap,p−1

+ ∥2u′ψ′ + uψ′′∥∞∥f ′n ◦ ψ∥Ap,p−1
+ |(fn ◦ ψ)′(0)|+ |fn ◦ ψ(0)|

)
→ 0,

as n→ ∞. Therefore, Lemma 3.1 completes the proof. □

As a result of Theorems 2.3, 3.3 and Lemma 3.2, we have the following corollary.

Corollary 3.4. Let 1 < p <∞, ψ be an analytic self map on D and u ∈ H(D). ThenWu,ψ is bounded on Zp,p−1(D)
if and only if Wuψ′2,ψ is bounded on Ap,p−1(D) and u, (uψ) ∈ Zp,p−1(D).
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Moreover, by aplying Theorem 2.3, Lemma 2.1, Corollary 2.6 and the details of the proof of Theorem 3.3, we get
the following result.

Corollary 3.5. Let 1 < p < ∞, ψ ∈ S, u ∈ H(D) and Wu,ψ : Zp,p−1(D) → Zp,p−1(D) is bounded. Then
Wu,ψ : Zp,p−1(D) → Zp,p−1(D) is compact if and only if all the three following operators are compact

Wu′′,ψ : Zp,p−1(D) → Ap,p−1(D),
W2u′ψ′+uψ′′,ψ : Bp,p−1(D) → Ap,p−1(D),
Wuψ′2,ψ : Ap,p−1(D) → Ap,p−1(D).

Theorem 3.6. Let 1 < p < ∞, X be a reflexive Banach space, u1 ∈ Zp,p−1(D), u2 ∈ H(D), ψ ∈ S and Tu1,u2,ψ :
Zp,3p−1(D) → Zp,3p−1(D) is bounded. Then the following statements are equivalent:

(a) Tu1,u2,ψ : wZp,3p−1(X) → wZp,3p−1(X) is weakly compact.

(b) Tu1,u2,ψ : Zp,3p−1(D) → Zp,3p−1(D) is compact.

(c) u2, (u2ψ) ∈ Zp,3p−1(D) and

lim sup
|a|→1−

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)3p+1|u1(w)ψ′2(w)|pdA3p−1(w) = 0,

lim sup
|a|→1−

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)4p+1|u2(w)ψ′2(w)|pdA3p−1(w) = 0.

Proof. (a) ⇔ (b). It is similar to the proof of Theorem 3.3.

(b) ⇒ (c). Let Tu1,u2,ψ : Zp,3p−1(D) → Zp,3p−1(D) is bounded, then according to Theorem 2.7,

u1ψ, u2, (u2ψ) ∈ Zp,3p−1(D), u′′1 ∈ Ap,3p−1(D), u1ψ′′ + 2u′1ψ
′ ∈ Ap,3p−1. (19)

Now let w, z ∈ D and ξψ(w)(z) =
ψ(w)−z
1−ψ(w)z

∈ Aut(D). Also suppose that an ⊂ D be a sequence with limn→∞ |ψ(an)| =
1, then define the test function

Bn,w(z) :=
(
ξψ(an)(z)

)3(
1− |ψ(an)|2

) 1

1− ψ(an)z

Since ∥ξψ(an)∥∞ <∞, so Bn,w ∈ Zp,3p−1 converges uniformly to zero on compact subsets of D, as n→ ∞. On the

other hand, Bn,w(ψ(an)) = 0, B′
n,w(ψ(an)) = 0, B′′

n,w(ψ(an)) = 0 and B′′′
n,w(ψ(an)) =

6
(1−|ψ(an)|2)3 . Therefore, by

Lemma 3.1, we get that ∥Tu,ψ(Bn,w)∥Zp,3p−1
→ 0. Also

∥Tu1,u2,ψ(Bn,w)∥Zp,3p−1
≥ ∥

(
u1(w)Bn,w(ψ(an) + u2(w)B

′
n,w(ψ(an))

)′′∥Ap,3p−1

= ∥u2ψ′2(an)B
′′′
n,w(ψ(an))∥Ap,3p−1

=

∫
D
|u2(an)ψ′2(an)|p

∣∣ 2

(1− |ψ(an)|2)3
∣∣pdA3p−1(an).

Then applying Lemma 3.2 and the fact that 0 < |1− |ψ(z)|2| < 1, give us

lim sup
|a|→1−

∫
D
(

(1− |a|2)
|1− aψ(w)|2

)4p+1|u2(w)ψ′2(w)|pdA3p−1(w) = 0. (20)

Therefore, by (19), (20) and Theorem 3.3, we get the compactness of Wu2,ψ : Zp,4p−1(D) → Zp,3p−1(D), which
is equivalent to compactness of Wu2,ψD : Zp,3p−1(D) → Zp,3p−1(D). Now suppose that {fn} ⊂ Zp,3p−1(D) be
bounded a sequence converges to zero on compact subsets of D. Since we also assumed that Tu1,u2,ψ is compact on
Zp,3p−1(D), hence by using the triangle inequality,

∥Wu1,ψfn∥Zp,3p−1(D) ≤ ∥Tu1,u2,ψfn∥Zp,3p−1(D) + ∥Wu2,ψfn∥Zp,4p−1(D), (21)

so by using Lemma 3.1, we obtain the compactness of Wu1,ψ : Zp,3p−1 → Zp,3p−1. Then Theorem 3.3 completes
the proof.
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(c)⇒(b). Assume that (c) holds. Then by applying Theorem 2.3, Theorem 3.3 and (13), we have the compactness
of two operators

Wu2,ψ : Zp,4p−1(D) → Zp,3p−1,

Wu1,ψ : Zp,3p−1(D) → Zp,3p−1.

But the compactness of Wu2,ψ : Zp,4p−1(D) → Zp,3p−1 is equivalent to the compactness of operator Wu2,ψD :
Zp,3p−1 → Zp,3p−1. Therefore by using the triangle inequality and lemma 3.1, Tu1,u2,ψ = Wu1,ψ + Wu2,ψD is
compact on Zp,3p−1(D). □

Theorem 3.7. Let 1 < p <∞ and ξ ∈ H(D). Then for any f ∈ Zp,p−1(D),

(a) Vξ(f) =
∫ z
0
f(w)ξ′(w)dw is bounded on Dirichlet-Zugmund spaces if and only if it is compact.

(b) Iξ(f) =
∫ z
0
f ′(w)ξ(w)dw is bounded on Dirichlet-Zugmund spaces if and only if it is compact.

Proof. The proof is clear by applying theorem 2.9, and lemma 3.1, so we skip it. □
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