
تعداد نشریات | 8 |
تعداد شمارهها | 414 |
تعداد مقالات | 5,478 |
تعداد مشاهده مقاله | 6,010,419 |
تعداد دریافت فایل اصل مقاله | 5,299,924 |
Beyond Signal Processing: A Model-Based Luenberger Observer Approach for Accurate Bearing Fault Diagnosis | ||
AUT Journal of Electrical Engineering | ||
دوره 57، شماره 1، 2025، صفحه 163-184 اصل مقاله (2.54 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/eej.2024.23380.5610 | ||
نویسندگان | ||
Shoresh Shokoohi* ؛ Jamal Moshtagh | ||
Department of Electrical Engineering, University of Kurdistan, Sanandaj, Iran | ||
چکیده | ||
Traditionally, diagnosis of bearing faults involves analyzing the frequency spectra of monitored signals, like vibration and stator current, using various signal processing techniques. However, signal-based methods for fault diagnosis often produce false alarms due to changes in load and voltage imbalances in the motor's input. Furthermore, these methods have limited performance in detecting faults at early stages and readjusting based on speed, load, and voltage levels. To overcome these challenges, this paper proposes a model-based approach for bearing fault diagnosis utilizing the Luenberger observer. The suggested model-based method compares the real behavior of the system with the estimated behavior of its nominal model, eliminating non-fault-related factors that have similar effects on both the system and its mathematical model. The efficiency of the suggested model-based bearing fault diagnosis method is validated by comparing simulation and experimental results obtained from the proposed model-based method with a recent signal-based method. The proposed method introduces a novel application of the Luenberger observer for fault detection in induction motors, offering a simple and efficient approach to diagnosing bearing faults. It uniquely distinguishes mechanical faults without direct electrical signal correlation and incorporates a systematic noise cancellation technique, enhancing robustness and accuracy under varying loads. | ||
کلیدواژهها | ||
Bearing Fault Diagnosis؛ Luenberger Observer؛ Induction Motor؛ Current Residue | ||
مراجع | ||
[1] S. Nazari, S. Shokoohi, J. Moshtagh, A Current Noise Cancellation Method Based on Integration of Stator Synchronized Currents for Bearing Fault Diagnosis, IEEE Transactions on Instrumentation and Measurement, (2023) 1-1.
[2] V.C. Leite, J.G.B. da Silva, G.F.C. Veloso, L.E.B. da Silva, G. Lambert-Torres, E.L. Bonaldi, L.E.d.L. de Oliveira, Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current, IEEE Transactions on Industrial Electronics, 62(3) (2014) 1855-1865.
[3] F. Dalvand, S. Dalvand, F. Sharafi, M. Pecht, Current noise cancellation for bearing fault diagnosis using time shifting, IEEE Transactions on Industrial Electronics, 64(10) (2017) 8138-8147.
[4] F. Dalvand, M. Kang, S. Dalvand, M. Pecht, Detection of Generalized-Roughness and Single-Point Bearing Faults Using Linear Prediction-Based Current Noise Cancellation, IEEE Transactions on Industrial Electronics, 65(12) (2018) 9728-9738.
[5] M. Pineda-Sanchez, R. Puche-Panadero, M. Riera-Guasp, J. Perez-Cruz, J. Roger-Folch, J. Pons-Llinares, V. Climente-Alarcon, J.A. Antonino-Daviu, Application of the Teager–Kaiser energy operator to the fault diagnosis of induction motors, IEEE Transactions on energy conversion, 28(4) (2013) 1036-1044.
[6] L.A.E. Noussaiba, F. Abdelaziz, ANN-based Fault Diagnosis of Induction Motor under Stator Inter-Turn Short-Circuits and Unbalanced Supply Voltage, ISA transactions, (2023).
[7] J.M. Ramírez-Sanz, J.-A. Maestro-Prieto, Á. Arnaiz-González, A. Bustillo, Semi-supervised learning for industrial fault detection and diagnosis: A systemic review, ISA transactions, (2023).
[8] P.F. Albrecht, J.C. Appiarius, R.M. McCoy, E.L. Owen, D.K. Sharma, Assessment of the Reliability of Motors in Utility Applications - Updated, IEEE Transactions on Energy Conversion, EC-1(1) (1986) 39-46.
[9] Report of Large Motor Reliability Survey of Industrial and Commercial Installations, Part I, IEEE Transactions on Industry Applications, IA-21(4) (1985) 853-864.
[10] F. Dalvand, A. Kalantar, M.S. Safizadeh, A Novel Bearing Condition Monitoring Method in Induction Motors Based on Instantaneous Frequency of Motor Voltage, IEEE Transactions on Industrial Electronics, 63(1) (2016) 364-376.
[11] R.A. Collacott, Vibration Monitoring and Diagnosis: Techniques for cost-effective plant maintenance, G. Godwin, 1979.
[12] S. Zhang, B. Wang, M. Kanemaru, C. Lin, D. Liu, M. Miyoshi, K.H. Teo, T.G. Habetler, Model-based analysis and quantification of bearing faults in induction machines, IEEE Transactions on Industry Applications, 56(3) (2020) 2158-2170.
[13] R.R. Schoen, T.G. Habetler, F. Kamran, R. Bartfield, Motor bearing damage detection using stator current monitoring, IEEE transactions on industry applications, 31(6) (1995) 1274-1279.
[14] B. Yazici, G.B. Kliman, W.J. Premerlani, R.A. Koegl, G.B. Robinson, A. Abdel-Malek, An adaptive, on-line, statistical method for bearing fault detection using stator current, in: IAS'97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, IEEE, 1997, pp. 213-220.
[15] F. Dalvand, A. Kalantar, S. Shokoohi, H. Bevrani, Time-domain bearing condition monitoring in induction motors using instantaneous frequency of motor voltage, in: 2014 Smart Grid Conference (SGC), 2014, pp. 1-7.
[16] K. Xu, X. Song, A Current Noise Cancellation Method Based on Fractional Linear Prediction for Bearing Fault Detection, Sensors, 24(1) (2023) 52.
[17] A. Kalantar, M.S. Safizadeh, F. Dalvand, Time Synchronization and Integration of Bearing Fault Impacts upon Stator Currents, Electric Power Components and Systems, 51(19) (2023) 2284-2292.
[18] P.P. Harihara, K. Kyusung, A.G. Parlos, Signal-based versus model-based fault diagnosis-a trade-off in complexity and performance, in: 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003., 2003, pp. 277-282.
[19] S.S.S.R.S. Duvvuri, Model-Based Bearing Fault Detection in Induction Motors Under Speed Varying Conditions, in: 2018 8th IEEE India International Conference on Power Electronics (IICPE), 2018, pp. 1-6.
[20] B. Trajin, J. Regnier, J. Faucher, Comparison between stator current and estimated mechanical speed for the detection of bearing wear in asynchronous drives, IEEE Transactions on Industrial Electronics, 56(11) (2009) 4700-4709.
[21] L. Yi, T. Sun, W. Yu, X. Xu, G. Zhang, G. Jiang, Induction motor fault detection by a new sliding mode observer based on backstepping, Journal of Ambient Intelligence and Humanized Computing, 14(9) (2023) 12061-12074.
[22] G. Postal, J. Gyselinck, F. Belie, M. Kinnaert, Model-based interturn short-circuit fault detection and isolation in 3-phase PMSMs with flux-linkage estimation, in: 12th International Conference on Power Electronics, Machines and Drives (PEMD 2023), IET, 2023, pp. 315-322.
[23] M. Romdhane, M. Naoui, A. Mansouri, PMSM Inter-Turn Short Circuit Fault Detection Using the Fuzzy-Extended Kalman Filter in Electric Vehicles, Electronics, 12(18) (2023) 3758.
[24] M. Zhong, T. Xue, S.X. Ding, A survey on model-based fault diagnosis for linear discrete time-varying systems, Neurocomputing, 306 (2018) 51-60.
[25] A. Rahimi, K.D. Kumar, H. Alighanbari, Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter, Acta Astronautica, 134 (2017) 159-169.
[26] H. Jiang, G. Liu, J. Li, T. Zhang, C. Wang, K. Ren, Model based fault diagnosis for drillstring washout using iterated unscented Kalman filter, Journal of Petroleum Science and Engineering, 180 (2019) 246-256.
[27] Y. Gao, X. Liu, J. Xiang, FEM Simulation-Based Generative Adversarial Networks to Detect Bearing Faults, IEEE Transactions on Industrial Informatics, 16(7) (2020) 4961-4971.
[28] Q. Han, Z. Ding, X. Xu, T. Wang, F. Chu, Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits, Mechanical Systems and Signal Processing, 131 (2019) 554-575.
[29] M. Ojaghi, M. Sabouri, J. Faiz, Analytic model for induction motors under localized bearing faults, IEEE Transactions on energy conversion, 33(2) (2017) 617-626.
[30] P.C. Krause, O. Wasynczuk, S.D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, Wiley Online Library, 2002.
[31] I. Jlassi, J.O. Estima, S.K. El Khil, N.M. Bellaaj, A.J.M. Cardoso, Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems, IEEE Transactions on Power Electronics, 30(5) (2014) 2689-2702.
[32] I. Jlassi, J.O. Estima, S.K. El Khil, N.M. Bellaaj, A.J.M. Cardoso, A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives, IEEE Transactions on Industry Applications, 53(3) (2016) 2894-2905.
[33] A. Mahmoudi, I. Jlassi, A.J.M. Cardoso, K. Yahia, M. Sahraoui, Inter-Turn Short-Circuit Faults Diagnosis in Synchronous Reluctance Machines, Using the Luenberger State Observer and Current's Second-Order Harmonic, IEEE Transactions on Industrial Electronics, 69(8) (2021) 8420-8429.
[34] D. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control, 16(6) (1971) 596-602.
[35] C.M. Bishop, N.M. Nasrabadi, Pattern recognition and machine learning, Springer, 2006. | ||
آمار تعداد مشاهده مقاله: 254 تعداد دریافت فایل اصل مقاله: 285 |