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ABSTRACT: The early and accurate detection of plant diseases is vital for ensuring food security and 
enhancing agricultural productivity. Tomato plants, being one of the most widely cultivated crops, are 
particularly susceptible to several prevalent leaf conditions. These conditions can lead to significant 
crop losses and adversely affect both yield and quality, posing a substantial challenge to farmers and 
the agricultural industry. To identify tomato leaf conditions, traditional methods such as Machine 
Learning and modern approaches like various Deep Learning architectures have been developed and 
studied by researchers. This paper presents a novel approach for the detection of ten classes of tomato 
leaf conditions, encompassing both healthy and diseased leaves. The proposed method leverages a new 
Quantum Vision Transformer architecture, integrating variational quantum circuits within both the 
attention mechanism and the multi-layer perceptron. In our study, we conducted extensive experiments 
comparing the performance of the Quantum Vision Transformer with the Vision Transformer. The 
experimental results demonstrate that the Quantum Vision Transformer model achieves an Area Under 
the Curve of 0.928 and an accuracy of 66.85%, while the Vision Transformer model reaches an Area 
Under the Curve of 0.95 and an accuracy of 72.15%. This highlights the effectiveness and robustness 
of both models in accurately detecting tomato leaf conditions. The research findings suggest that the 
Quantum Vision Transformer architecture can serve as a powerful tool for early detection in agricultural 
applications using quantum computers, contributing to more efficient and sustainable farming practices.
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1- Introduction
Plants are essential because they serve as the primary 

source of energy production for humanity, providing nutrition, 
medicinal benefits, and other values. During crop cultivation, 
diseases affecting plant leaves can cause substantial losses 
in crop production and economic challenges. Therefore, the 
identification of leaf diseases is crucial in the agricultural 
industry [1]. Moreover, rising crop production in agriculture 
is increasingly threatened by plant diseases, posing a critical 
global challenge to food security. Modern environmental 
agriculture emphasizes not only increasing crop yields but 
also enhancing their quality [2], highlighting the urgent need 
for effective disease management practices. In recent years, 
crop occurrence has increased, accompanied by a rise in the 
complexity of plant diseases and the prevalence of harmful 
insects, posing significant risks to agriculture. Detecting 
and diagnosing plant diseases has thus become a pressing 
concern in recent times. Early identification of diseases is 
crucial as it enables farmers to take swift action to prevent 
their spread to other plants [3]. This early detection not 
only prevents substantial production and economic losses 

but also helps maintain the quality and quantity of crops. 
Therefore, through early detection and effective management 
strategies, these challenges can be mitigated [4]. Tomatoes 
are a widely cultivated and seasonal crop known for their 
high nutrient density. They offer significant health benefits 
and are used in various edible products like sauces, pastes, 
canned tomatoes, ketchup, and juices. Additionally, tomatoes 
possess pharmacological qualities that contribute to their 
protective effects against conditions such as hypertension, 
liver inflammation, and gum bleeding [5]. 

According to the UN Food and Agricultural Organization 
(FAO), every nation participates in the global tomato market, 
collectively producing millions of metric tons annually, 
reflecting significant competition as reported by Our World 
in Data [6, 7]. Tomato production faces various challenges 
post-planting, including climate change, soil fertility, water 
availability, and disease management. Pathogens such as 
bacteria, fungi, viruses, and viroids pose a significant threat to 
tomato plants, particularly affecting their leaves. The genetic 
susceptibility of tomatoes to these diseases necessitates 
effective management strategies, including addressing climate 
change impacts, implementing updated phytopathological 
controls, and considering the influence of the global seed *Corresponding author’s email: ebrahimnezhad@sut.ac.ir
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industry on tomato crop genetics [8]. The common threats 
to long-term tomato protection have a significant impact on 
agriculture worldwide. Additionally, farmers rely on their 
firsthand experience to identify diseases, which may lead to 
challenges in categorizing them [9]. 

Moreover, in contrast to the aforementioned challenges, 
early detection proves highly beneficial, facilitated by 
computer-aided technologies that utilize various Machine 
Learning (ML) techniques and Deep Learning (DL) networks 
specifically designed for this purpose. These technologies 
help mitigate damages and losses in the agriculture industry, 
resulting in significant economic savings. Traditional 
methods of plant disease detection, which rely on manually 
crafted classification features, are inadequate for effectively 
handling the differences between classes and variations 
within the same class of diseased leaf images in real-world 
environments. However, with advancements in computing 
power, big data, the Internet, and artificial intelligence 
technologies, convolutional neural networks (CNNs) have 
become popular for plant disease detection. CNNs leverage 
advantageous features such as local connections, weight 
sharing, and pooling operations, making them well-suited for 
this task [10, 11]. The prediction and training times of state-
of-the-art plant detection techniques are high due to the large 
number of training parameters involved [12]. 

A new network architecture is required to address the 
issues raised. An innovative architecture called QViT has 
been developed to classify tomato leaf diseases precisely. 
This architecture not only facilitates more precise disease 
classification but also brings several advantages:

Reduced Training Time: Quantum computing’s 
computational prowess enables QViT models to swiftly learn 
and effectively train with fewer parameters, significantly 
reducing training time.

Enhanced Feature Learning: Leveraging quantum 
computing’s capabilities, models can rapidly grasp intricate 
features, thereby improving the accuracy and speed of tomato 
leaf disease detection.

Optimized Data Utilization: QViT optimizes data 
utilization and accelerates training processes, diminishing the 
need for extensive datasets traditionally required for effective 
model training.

These advancements empower farmers to harness 
advanced technologies more efficiently to automate tomato 
leaf disease detection. This potential reduction in costs and 
increase in productivity underscore the transformative impact 
of QViT in agriculture.

2- Related Work
Kawsar Ahmed et al. proposed a Deep Convolutional 

Neural Network (DCNN) model aimed at enhancing the 
detection and classification of tomato leaf diseases. Their 
approach also incorporated image pre-processing techniques, 
such as Gaussian and Median filters, alongside color model 
transformations (HSI and CMYK) to further improve accuracy. 
The study identified optimal combinations for enhancing 
accuracy in disease classification. The results highlighted 

significant achievements, with the best-performing DCNN 
model—ResNet-50—demonstrating a remarkable 99.53% 
accuracy when using Gaussian Blur and Gaussian Noise 
filters alongside RGB to CMYK color conversion [13]. 
Al Amin Biswas et al. emphasized the critical importance 
of early and accurate diagnosis of tomato leaf diseases to 
enhance plant productivity and agricultural sustainability. 
They introduced a lightweight custom convolutional neural 
network (CNN) model for classifying eleven classes of tomato 
leaf diseases, including healthy leaves. Through extensive 
data preprocessing and augmentation, the proposed model 
achieved a 95.00% accuracy, utilizing transfer learning (TL)-
based models VGG-16 and VGG-19. Furthermore, the study 
integrated the best-performing model into web- and Android-
based applications for real-time disease classification, 
demonstrating its practical utility for farmers [14]. Kahkashan 
Perveen et al. introduced a multiscale U-network tailored for 
effective segmentation and diagnosis of tomato leaf lesions. 
Addressing challenges such as diverse lesion sizes and shapes, 
the model incorporated multi-scale residual modules to adapt 
dynamically. A Classifier and Bridge (CB) module connected 
disease feature extraction with lesion segmentation, utilizing 
minimal pixel-level annotations through supervised training 
with binary cross-entropy loss. Evaluation across diverse 
test sets demonstrated an impressive average accuracy of 
99.2%, along with robustness against brightness reduction 
at 92.4% and resilience to salt-and-pepper noise at 99.2% 
[15]. Chen CHEN et al. enhanced the AlexNet model with 
HOG and LBP weighted fusion techniques. Focusing on eight 
types of tomato leaf diseases and healthy leaves, the research 
employed transfer learning from the PlantVillage dataset, 
reducing fully connected layers to optimize classification 
efficiency. Using the Keras framework in Python, the 
proposed model achieved a high recognition accuracy of 
98.83% with AlexNet [16]. Ledbin Vini et al. introduced 
TrioConvTomatoNet, a deep convolutional neural network 
designed for the precise classification of leaf diseases by 
optimizing feature extraction through layered convolution 
stages. Employing stochastic gradient descent for enhanced 
learning, the method integrated both existing and real-time 
datasets, demonstrating superior accuracy with a 99.39% 
success rate across varied conditions. This approach not 
only enabled early disease detection crucial for agricultural 
management but also promised practical deployment via user-
friendly applications [6]. Manjunatha Badiger and Jose Alex 
Mathew employed advanced DL techniques, specifically 
the deep batch-normalized eLu AlexNet (DbneAlexnet), 
for detecting and classifying tomato plant diseases. Initial 
preprocessing involved anisotropic filtering to refine leaf 
images, followed by precise segmentation using U-Net 
optimized through Gradient-Golden search optimization 
(Gradient-GSO). Augmentation techniques enhanced dataset 
diversity, while classification utilized DbneAlexnet trained 
with Gradient Jaya-Golden search optimization (GJ-GSO, 
achieving a high accuracy of 92.4% in identifying diseases 
such as bacterial spots and late blight. Identified gaps include 
the need for broader dataset validation and scalability 
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assessment in diverse agricultural environments [2]. Shanthi 
et al. demonstrated that using CNNs, particularly with 
architectures like AlexNet and VGGNet-16, significantly 
improves the early detection and classification of tomato 
leaf diseases. This early detection is crucial for reducing 
economic losses and improving crop quality and yield. The 
study achieved an accuracy of 91.2%, but it also recognized 
the need for a more diverse dataset and further refinement of 
the model to enhance accuracy and reliability [17]. Neeraj S 
Kumar et al. used YOLOv5 and YOLOv7 models with transfer 
learning and ensemble techniques on an open-source tomato 
leaf disease dataset. The combined YOLO models achieved 
a high accuracy of 98.8%, along with impressive precision 
and recall. Challenges included high computational time 
and limited dataset diversity, which were addressed through 
transfer learning [18]. Santar Pal Singh et al. demonstrated 
that the modified Mask R-CNN model effectively detects and 
segments tomato leaf diseases, achieving a high accuracy of 
98% and efficiency. However, the study identified challenges 
such as misidentification of lesions, dependency on precise 
annotations, and limited scope in disease identification [19]. 
Table 1 provides a comprehensive summary of the previous 
works referenced in this study, highlighting the key findings 
and methodologies employed in the research on tomato leaf 
disease detection and classification. In this work, the QViT 
architecture is employed to detect and classify tomato leaf 
diseases.

The rest of the paper is ordered in the following manner. 
The material and method are detailed in Section 3. The 
evaluation, analyses, and discussions of the experiment 
performance are presented in section 4. Finally, section 5 
provides a comprehensive summary of the article.

3- Materials and methods
This section details the methodologies employed in this 

investigation, encompassing the structures and the detection 
process. 

3- 1- Preprocessing
Before feeding the images to the model, we resized them to

40 40× for several reasons. First, transformers require fixed-
size inputs; hence, by resizing the images, we ensure that 
all the images have the same dimensions, which is essential 
for batch processing. Additionally, resizing the images to 
smaller dimensions yields computational efficiency—the 
smaller the images, the less memory usage, and the faster 
the processing. Furthermore, a model that can handle lower-
quality images often learns to focus on the important features 
that are invariant to resolution and noise, leading to better 
generalization. This means the model can work well with 
high-quality images as well. 

3- 2- Model
 We utilized a Quantum Transformer Encoder in our 

approach, incorporating Variational Quantum Circuits 
(VQCs) into the multi-head attention (MHA) and multi-
layer perceptron (MLP) components. The VQCs conduct 
sophisticated quantum computations, the MHA enables 
the model to focus on different regions of the image 
simultaneously, and the MLP processes the information 
from the MHA for final prediction. The procedure closely 
resembles the original classical Vision Transformer (ViT) 
[20], in such a way that the input image is divided into small 
patches, which are accompanied by position embeddings. 
Position embeddings are vectors that encode the patches in 
the original image; this allows the model to ascertain the 
spatial position of each patch in the given image. Fig. 1. 
depicts the architecture of the model.

In this approach, to enhance the functionality of both MHA 
and MLP within the encoder, the traditional feedforward 
layers and classical fully connected are replaced with VQCs 
[21]. To elaborate, VQCs substituted for the classical MHA to 
compute the linear projections—Query (Q), Key (K), Value 
(V), and the final output, which are essential for the MHA 
to simultaneously focus on different parts of the input—
during the MHA calculations. Moreover, the replacement of 

Table 1. Summary of Previous Research on Tomato Leaf Disease Detection.Table 1. Summary of Previous Research on Tomato Leaf Disease Detection. 

Reference Year Dataset 
Size 

Number 
of Class Method Accuracy (%) 

Manjunatha and Jose [2]  2023 18161 10 DbneAlexnet 92.40 
Ledbin et al. [6] 2024 18160 10 TrioConvTomatoNet 99.39 
Ahmed et al. [13] 2023 6794 3 DCNN 99.53 
Al Amin et al. [14] 2023 32535 11 Lightweight custom CNN 95.00 
Kahkashan et al. [15] 2023 18096 10 Multiscale U-network 99.20 
Chen et al. [16] 2024 13038 9 Enhanced AlexNet 98.83 
Shanthi et al. [17] 2024 2782 6 CNN 91.20 
Neeraj et al. [18]  2024 18162 10 Multiple YOLO 98.80 
Santar et al. [19]  2022 1610 7 Modified Mask R-CNN 98.00 
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the classical fully connected layers, in which each neuron 
applies a linear transformation to the input vector through a 
weights matrix, with the VQCs in the MLP, has been carried 
out. Albeit these changes, the activation functions employed 
in MLP, namely GELU [22], continue to be computed with 
classical methodologies. 

More precisely, the output of the classical multi-head 
attention layer is calculated by using VQCs to calculate 
all linear projections in the MHA calculations instead of 
classical feedforward layers. Similarly, in the MLP module of 
the encoder, we also apply VQCs to substitute classical fully 
connected layers. The configuration of the VQCs we utilized 
[21] can be observed in Fig. 2. 

Using rotation angles, every element of the vector 
0 1( , , )nx x x −=  is embedded into qubits. Rotation angles, 

which allow precise encoding of classical data into quantum 
states, specify how much each qubit rotates around different 
axes of the Bloch sphere—a spherical representation used 
to visualize the quantum state of a qubit. Subsequently, 
each qubit undergoes one-parameter rotations, which are 

0 1( , , )nθ θ θ −=  and are learned alongside other model 
parameters during training to optimize the qubit states. 
Afterward, CNOT gates interconnect the qubits, linking the 
qubits states together to have a functionality akin to matrix 
multiplication. At the final stage, each qubit is measured, and 
its output is passed to the next part of the encoder.

4- Experiment Results and Discussion
In this section, we cover the specifics of the experiments, 

such as data collection, parameters, and experimental results. 

 

Fig. 1. Model Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Model Structure

 

Fig. 2. Implementation of Variational Quantum Circuits in QViT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Implementation of Variational Quantum Circuits in QViT
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We also demonstrate the performance of each model using 
different data and methods.

4- 1- Dataset
We used the public dataset named PlantVillage Dataset, 

which consists of plant leaves of 14 crops [7]. For this 
research, we incorporated a diverse range of tomato leaves, 
including healthy ones and those affected by nine diseases. 
The samples can be observed in Fig. 3. Each category of the 
leaves, with their accompanying briefly explained symptoms, 
is listed in Table 2. In the analysis of the data set, we have 

indicated class distribution, as shown in Fig. 4.
4- 2- Experiment setup

The experiment was conducted on a Windows 10 PC 
using Google Colaboratory and Google Drive with 8 GB of 
storage. The setup included a 64-bit operating system, Python 
3.10.12, 12.67 GB of memory, and 2 CPUs. Keras 3.4.1 and 
TensorFlow 2.17.0 were employed to manage the deep neural 
network training and validation processes.

We trained both the classical ViT and the proposed QViT 
with the same hyperparameters. These hyperparameters are 
shown in Table 3. 

 

Fig. 3. Examples of 10 different types of tomato leaf diseases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Examples of 10 different types of tomato leaf diseases

 

Fig. 4. Bar Chart Illustrating Class Distribution in the Original Dataset of Tomato Leaf Diseases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Bar Chart Illustrating Class Distribution in the Original Dataset of Tomato Leaf Diseases.
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To have a fair comparison, we adhered to a benchmark 
established by [31]; therefore, we set the same trainable 
parameters for QViT as the ones for classical ViT. Due to 
the same dimensionality of the input and output of the 
VQC, the number of qubits should match the size of the 
corresponding layer in the classical neural network. Thus, 
the quantum architecture utilizes circuits of 4 qubits each 
for both the QMHA layer and the QML layers within each 
transformer block—16 qubits in total [21]. We compared 
two types of transformers—ViT and QViT; the parameters of 
the transformers are listed in Table 4. For each model, the 

number of classes was 10, and the number of epochs was 250.
The key point is that the QViT has fewer parameters 

compared to the classical ViT. The reason is that the proposed 
VQC has only n free parameters; however, a classical fully 
connected layer bias has 2n n+ parameters. 

The classical model components and baseline were 
implemented using Jax [32] and Flax [33]. These tools were 
also used to train both the classical and quantum-based 
models. The VQCs were implemented, trained, and executed 
through numerical simulation on the classical computer using 
Tensor Circuit [34].

Table 2. Leaf Categories and Briefly Explained SymptomsTable 2. Leaf Categories and Briefly Explained Symptoms 

Number Class Symptoms Number of 
Images 

1 Healthy Total green color 1591 
2 Yellow Curl Virus Leaf curling, yellowing, and stunting [23] 5357 
3 Target spot Necrotic brown lesions with concentric rings on tomato leaves [24] 1404 

4 Mosaic Virus Lighter coloring, bushy appearance, mottled leaves, leaf curling, 
distorted fruit, and internal browning [25] 373 

5 Spider Mites Speckled leaves, whitish-yellowish discoloration, webbing, brown 
falling leaves, fruit russeting [26] 1676 

6 Early Blight Dark spots with concentric rings [27] 1000 
7 Late Blight  1909 
8 Septoria Leaf Spot Small circular spots, light centers [28] 1771 
9 Leaf Mold Yellow upper spots, fuzzy underside [29] 952 
10 Bacterial Spot Small dark spots, yellow halos [30] 2127 
 Total  18160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Hyperparameters Used for Training ViT and QViTTable 3. Hyperparameters Used for Training ViT and QViT 

Number Hyperparameter Value 

1 Patch Size 14 

2 Hidden Size 6 

3 Number of Transformer Block 4 

4 Number of Attention Heads 2 

5 Hidden MLP Size 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Parameters of the TransformersTable 4. Parameters of the Transformers 

Number Model Total Parameters 

1 ViT 4588 

2 QViT 4024 
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4- 3- Performance Analysis
In this study, the performance of the quantum model 

during the training and validation process is evaluated using 
the Area Under the Curve (AUC) metric. Specifically, we 
adopt the same training–validation–test split utilized by 
Andrews et al. [34]. Our dataset is divided into 13,620 images 
for training, 1,816 images for validation, and 2,724 images 
for testing. Fig. 5 illustrates the training AUC, represented 
by the red line, and the validation AUC, shown by the blue 
line. The training AUC exhibits a rapid increase in the early 
epochs, reaching near-perfect performance by around the 
75th epoch and continuing to improve gradually thereafter. In 
contrast, the validation AUC also shows a steady increase but 
at a slower rate compared to the training performance. This 
divergence between the training and validation AUC curves 
suggests that the model may be overfitting to the training data, 
a common challenge in ML that requires careful monitoring 
and mitigation techniques to ensure robust generalization on 
unseen data. We calculate the AUC for each epoch across 
all model configurations. At the conclusion of the training, 
we select the parameters corresponding to the epoch that 
yields the highest validation AUC and subsequently reassess 
these parameters on a separate hold-out test set to derive 
the final test AUC. This approach allows us to gauge our 
model’s proficiency in accurately detecting and categorizing 
various tomato leaf diseases, which is crucial for facilitating 
early diagnosis and enhancing agricultural practices. 
Additionally, it is observed that the training and validation 
loss curves do not converge throughout the 250 epochs 
of training. The significant and persistent gap between 
the two loss curves indicates that the model is unable to 
generalize well to the validation data, implying that it has 
overfit to the training data. A confusion matrix, illustrated 
in Fig. 6, is also employed to further evaluate the model’s 
performance across different classes. In this matrix, each 

row represents actual classes, while each column represents 
the model’s predictions, with the main diagonal elements 
indicating correctly classified samples and the off-diagonal 
elements showing misclassified samples in other classes. The 
confusion matrix reveals that the model performs particularly 
well in classifying yellow leaf curl virus with 473 correct 
predictions and limited misclassifications, indicating strong 
feature learning for this disease. It also performs reasonably 
well for Spider mites and Target spots, though moderate 
misclassification occurs in classes like Healthy, Late blight, 
and Septoria leaf spots. However, the model struggles with 
Early blight and Bacterial spots, frequently misclassifying 
them as other diseases, possibly due to overlapping visual 
features. This suggests a need for improved feature extraction 
or addressing class imbalance, as some underrepresented 
classes, such as Early blight and mosaic virus, show weaker 
performance. Incorporating data augmentation may help 
reduce misclassification and strengthen model accuracy 
across all classes.

Moreover, it is essential to understand the concepts of 
Precision and Recall, which are crucial metrics for evaluating 
classification models. Precision refers to the ratio of true 
positive predictions to the total predicted positives, indicating 
the accuracy of the positive predictions made by the model. It 
is calculated as shown in Eq. (1):

0P 1re isi n 0c o
TP

TP FP
 


 (1) 

 

0R 1ec l 0al
TP

TP FN
 


 (2) 

 

 (1)

where TP (True Positives) is the number of correctly 
identified positive samples, and FP (False Positives) is the 
number of incorrectly identified positives. Recall, on the 
other hand, is the ratio of true positive predictions to the actual 
positive samples, reflecting the model’s ability to identify all 

 

Fig. 5. Performance of the Quantum Model During Training and Validation 
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relevant instances. It is expressed as shown in Eq. (2):

0P 1re isi n 0c o
TP

TP FP
 


 (1) 

 

0R 1ec l 0al
TP

TP FN
 


 (2) 

 

 (2)

where FN (False Negatives) represents the number of 
actual positives that were not identified. There is often a 
trade-off between precision and recall, where increasing one 
may decrease the other.

In the context of our study, the ViT model demonstrated 
superior performance metrics compared to the QViT model. 
This is reflected in its higher accuracy, AUC, recall, and 

precision. High precision and recall values for ViT suggest 
that it has effectively learned to classify diseases with fewer 
misclassifications, contributing to its overall reliability in 
detecting and categorizing tomato leaf diseases.

4- 4- Results
The parameters—AUC, Acc, and Loss—of each model 

have been computed at the end of each epoch, and they are 
shown in Table 5.

Moreover, the train time and the total time of each model, 
calculated at the end of the process, are presented in Table 6. 

The QViT model required a total training time of 7792.68 
seconds and an overall time of 10456.41 seconds (including 

 

Fig. 6. Confusion matrix illustrating the model's classification accuracy for tomato leaf diseases. 

 

 

 

Fig. 6. Confusion matrix illustrating the model’s classification accuracy for tomato leaf diseases.

Table 5. Computed Parameters of Each ModelTable 5. Computed Parameters of Each Model 

Number Model AUC Accuracy Precision Recall Loss 

1 ViT 0.95 72.15 65.54 61.96 0.84 

2 QViT 0.92 66.85 60.29 53.95 0.96 
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evaluations), achieving an AUC of 92.76, a loss of 0.96, 
an accuracy of 66.85%, a recall of 53.95%, and a precision 
of 60.29%. In contrast, the ViT model trained significantly 
faster, with a training time of only 686.80 seconds and a total 
time of 1031.72 seconds, resulting in a higher AUC of 95.11, 
a lower loss of 0.84, and better accuracy at 72.15%. ViT also 
showed improved recall (61.96%) and precision (65.54%) 
compared to QViT. 

These findings suggest that ViT outperformed QViT across 
key metrics, including accuracy, AUC, recall, and precision, 
while also requiring significantly less computational time. The 
faster training and evaluation times for ViT can be attributed 
to its execution on a classical computing platform, which suits 
its architecture well. In contrast, QViT’s slower performance 
and slightly lower metrics are likely due to the fact that it 
was executed on classical hardware, which is suboptimal 
for quantum-inspired models that are designed to benefit 
from quantum computing environments. Consequently, ViT 
appears to be more efficient and effective in this classical 
setting, while QViT may realize its full potential only on a 
quantum computing platform.

5- Conclusion
Tomato leaf disease identification is a crucial and 

challenging task due to the variability and complexity of 
diseased leaf images. By incorporating Variational Quantum 
Circuits (VQCs) into the attention mechanisms and multi-
layer perceptron, a Quantum Vision Transformer model was 
developed for this purpose. This model leverages quantum 
computing to enhance the accuracy and efficiency of disease 
classification. The ViT model achieved an AUC of 0.95 and 
an accuracy of 72.15%, while the QViT model reached an 
AUC of 0.928 and an accuracy of 66.85%.

This study demonstrates that incorporating quantum 
circuits into the QViT model, along with the Multi-MHA 
mechanism, has the potential to improve accuracy and 
efficiency in tomato leaf disease identification. The MHA 
mechanism, by enabling simultaneous focus on different 
regions of an image, boosts the model’s processing speed and 
provides it with the capability to analyze complex features in 
a shorter time.

However, it is essential to note that this paper lacks 
substantial discussion on the practical implications of 
the QViT approach in real-world agricultural settings, 
particularly regarding the increased computational resources 
required for its implementation. Given these challenges, 

further research is necessary to explore solutions that can 
optimize computational efficiency and reduce the resource 
demands of the QViT model. This is especially pertinent for 
smaller farms or environments with limited resources, where 
the adoption of such technologies could be hindered.

Furthermore, the current limitations of the QViT 
model, particularly in classical computing infrastructure, 
may significantly impact its practical implementation. The 
lack of memory for utilizing larger datasets restricts the 
execution speed of this model, and the inability to balance the 
dataset may detract from the training quality for each class. 
Addressing these limitations will be crucial for improving the 
model’s applicability in real-world scenarios.

Finally, framing this research as an exploratory study 
testing the integration of quantum circuits into DL, rather 
than asserting superiority over classical models, could 
provide a more accurate context for our findings. This shift in 
perspective allows for a more comprehensive understanding 
of the potential benefits and future directions for integrating 
quantum technologies into agricultural applications.
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