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ABSTRACT: Recent advancements in Weakly Supervised Semantic Segmentation have highlighted 
the use of image-level class labels as a form of supervision. Many methods use pseudo-labels from Class 
Activation Maps to address the limited spatial information in class labels. However, Class Activation 
Maps generated from Convolutional Neural Networks are often led to focus on prominent features, 
making it difficult to distinguish foreground objects from their backgrounds. While recent studies show 
that features from Vision Transformers are more effective in capturing the scene layout than Convolutional 
Neural Networks, the use of hierarchical Vision Transformers has not been widely studied in Weakly 
Supervised Semantic Segmentation. This work introduces “SWTformer” and explores the effect of Swin 
Transformer’s local-to-global view on improving the accuracy of initial seed Class Activation Maps. 
SWTformer-V1 produces Class Activation Maps solely based on patch tokens as its input features. 
SWTformer-V2 enhances this process by integrating a multi-scale feature fusion mechanism and 
employing a background-aware mechanism that refines the accuracy of localization maps, resulting 
in better differentiation between objects. Experiments on the Pascal VOC 2012 dataset demonstrate 
that compared to state-of-the-art models, SWTformer-V1 achieves 0.98% mAP higher in localization 
accuracy and generates initial localization maps that are 0.82% mIoU higher in accuracy while relying 
solely on the classification network. SWTformer-V2 enhances the accuracy of the seed Class Activation 
Maps by 5.32% mIoU. Code available at: https://github.com/RozhanAhmadi/SWTformer
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1- Introduction
Semantic segmentation is an important task in computer 

vision where every pixel in an image is classified. Although 
advancements in fully supervised learning have highly 
improved results in this area, manually annotating images at 
the pixel level is labor-intensive and expensive.

In recent years, weakly supervised semantic segmentation 
(WSSS) has emerged as a solution to lower annotation costs. 
This method trains segmentation models using weak labels 
(bounding boxes [1], scribble [2, 3], points [4], and image-
level labels). Image-level labels are the most commonly used 
in WSSS due to their ease of annotation, despite lacking 
detailed spatial information about objects. To tackle this, 
many approaches use a three-step pipeline. These labels are 
involved in generating seed Class Activation Maps (CAMs) 
from an image classification model, which highlight key 
object parts [5]. These seeds are then refined to create pseudo-
labels, which are used to train a fully supervised segmentation 
network. The success of this approach heavily relies on the 
quality of the initial seed CAMs, making them a critical focus 
of research efforts.

Convolutional neural networks (CNNs) are commonly 
used for WSSS but struggle with capturing complete object 
regions, Fig. 1 (a), due to their limited local perception. In 
comparison to CNNs, Vision Transformers (ViTs) can capture 
long-range dependencies for a more global understanding 
of scenes, Fig. 1 (b). However, switching from CNNs to 
ViTs can result in losing fine details while gaining better 
coverage of large objects. Hierarchical Vision Transformers 
(HVTs) combine the strengths of both CNNs and ViTs by 
generating feature maps at multiple resolutions. This allows 
them to capture both local and global context effectively, Fig. 
1 (c), making them suitable for accurate multi-scale object 
localization. Despite their potential, HVTs have not yet been 
applied in WSSS. 

This research presents a new method, SWTformer, to 
explore the validity of this concept. SWTformer-V1, which 
utilizes Swin Transformer [6] as its backbone classifier 
network, is supervised by image-level labels. This presents 
challenges since Swin Transformer relies on patch tokens 
instead of class tokens commonly used in WSSS. The 
shifted window mechanism of the Swin Transformer also 
requires careful tuning. In order to generate more accurate 
CAMs, previous ViTs have benefited from Attention Roll-*Corresponding author’s email: kasaei@sharif.edu
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Out [7] which is a mechanism that aggregates attention maps 
derived from the layers. Attention Roll-Out facilitates a more 
nuanced analysis of the attention flow present within the 
network. Despite being effective, this method is not directly 
applicable to Swin Transformers due to its shifted window 
mechanism and hierarchical multi-scale features. To address 
these challenges and enhance contextual understanding, 
SWTformer-V2 proposes a multi-scale feature fusion module 
within a background-aware refinement mechanism. This aims 
to produce more accurate localization masks with improved 
discrimination across objects.

The main contributions of this work are:
• Introducing SWTformer, the first hierarchical transformer-

based solution for generating initial Class Activation Maps 
(CAMs) in weakly supervised semantic segmentation 
(WSSS). This approach addresses the limitations of CNNs’ 
local receptive fields and ViTs’ global scene views.

• Presenting SWTformer-V1, which utilizes the Swin 
Transformer as a backbone for classification and initial 
CAM generation using only patch tokens.

• Developing SWTformer-V2 to overcome the challenges 
of applying Attention Roll-Out to the Swin Transformer 
architecture, proposing a solution that incorporates 
hierarchical feature fusion and a background-aware 
refinement mechanism.

• Validating the effectiveness of the proposed methods 

through extensive experiments on the Pascal VOC 2012 
dataset.

2- RELATED WORK
2- 1- Vision Transformers

In recent years, Vision Transformers (ViTs) have 
significantly revolutionized the field of computer vision. 
ViT [8] is a deep learning model that transforms an input 
image into a sequence of patch tokens plus a class token 
that represents the entire image and analyzes the visual data 
using multi-head self-attention blocks. This self-attention 
mechanism allows ViT to capture global information and 
long-range dependencies in the data. DeiT [9] builds on ViT by 
introducing new data augmentation methods and a distillation 
token. Although ViTs succeed in capturing global context, 
they have limitations in capturing local details. Conformer 
[10] addresses ViT’s limitation in capturing local details by 
combining a CNN branch with a ViT branch, although this 
integration requires significant training adjustments and 
computational resources. Hierarchical Vision Transformers 
(HVTs), namely T2T [11] and PVT [12], provide an effective 
solution by bringing the strengths of ViTs and CNNs together. 
Their pipeline starts from fine-grained local details and moves 
towards long-range global dependencies. Swin Transformer 
[6] utilizes a novel patch merging module and a shifted 
window self-attention mechanism. This approach allows 
smaller groups of patches to be mixed together, enabling 

 

 

Fig. 1. Class activation maps generated by a (a) CNN (Resnet-50), (b) ViT (DeiT-S), and (c) HVT (Swin-T). Red and yellow 

boxes indicate the large and small-scale objects relative to the image size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Class activation maps generated by a (a) CNN (Resnet-50), (b) ViT (DeiT-S), and (c) HVT (Swin-
T). Red and yellow boxes indicate the large and small-scale objects relative to the image size.
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the model to capture long-range feature dependencies more 
accurately.

2- 2- Weakly Supervised Semantic Segmentation with CNNs
Recent studies on WSSS mostly use image-level labels 

for supervision and rely on Class Activation Maps (CAM) 
to localize objects. Methods that utilize a CNN as the 
classification backbone, generate the seed localization maps 
by calculating a CAM for each class through a weighted 
combination of the feature maps in the last layer of a CNN 
[5]. While CAMs are capable of visualizing the most 
discriminative regions of an image, they have limitations in 
comprehensively activating objects and distinguishing them 
from the background. Post-processing methods such as PSA 
[13] and IRN [14] have further refined the initial CAMs 
through iterative seed region growing. As the performance 
of WSSS is heavily dependent on the quality of the initial 
CAMs, various techniques have been explored to improve 
the accuracy of the initial activation maps. These methods 
include adversarial erasing [15-17], cross-affinity extraction 
modules and contrastive learning [18-21], prototype-based 
learning [22-24], attention mechanism [25, 26], and self-
supervised learning [23, 27]. Recent research [28-33], 
pioneered by CLIMS [34], has also explored using language 
models such as CLIP [35] in order to extract further context 
from an image by matching the corresponding label prompts 
in the CLIP embedding space. With the emergence of SAM 
[36] in the field of full-supervised semantic segmentation, 
some recent works such as [37-40] have investigated the 
effect of combining the features extracted from this model 

with conventional methods in WSSS. Knowledge distillation 
is another popular field that has been utilized in SeCo [41] to 
mitigate the issue of frequent object co-occurrence in images. 

2- 3- Weakly Supervised Semantic Segmentation with ViTs
With Vision Transformers (ViTs) making significant 

progress in various tasks, some recent works have utilized 
them for WSSS. AFA [42] proposes refining initial pseudo 
labels using global semantic affinity learned from self-
attention. MCTformer [43] replaces ViT’s singular class 
token with multiple tokens, each corresponding to a particular 
semantic class. It also employs patch affinity learned from 
attention maps to refine the initial CAMs. ViT-PCM [44] 
proposes an end-to-end CAM-independent framework relying 
on ViT’s spatial characteristics. ToCo [45] addresses the over-
smoothing issues of ViTs by using the model’s intermediate 
knowledge to supervise its output features. TransCam [46] 
adopts Conformer [10] by proposing to use the attention 
weights of the ViT branch to refine the CAMs generated 
from the CNN branch. A recent work, CTI [47] has focused 
on class tokens and proposed infusion methods to improve 
CAM consistency within classes. DuPL [48] integrates two 
ViT subnets to provide supervision for one another while also 
developing regularization on discarded regions. 

It is worth mentioning that the majority of these studies 
rely on class tokens, inspired by observations made in DINO 
[49] that class tokens and their attention to patch tokens 
contain useful knowledge regarding the semantic layout of 
a scene. Hierarchical Vision Transformers are a rather recent 
development in the field of vision transformers and have not 

 

 

Fig. 2. An overview of the proposed SWTformer (V2). The backbone is the Swin-T version of the Swin Transformer and the 
training of the model is optimized by the CLS, GSC, and CCL loss functions. The “Structure-aware seed locating” and 
“Background-aware prototype modeling” modules are adopted from SIPE [23] with modifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An overview of the proposed SWTformer (V2). The backbone is the Swin-T version of the Swin Trans-
former and the training of the model is optimized by the CLS, GSC, and CCL loss functions. The “Structure-
aware seed locating” and “Background-aware prototype modeling” modules are adopted from SIPE [23] with 

modifications.
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yet been introduced to WSSS. HVTs are expected to capture 
scene layouts more effectively than CNNs and ViTs. However, 
their specific impact in the context of WSSS remains an open 
area for research.

3- PROPOSED METHOD
3- 1- Overview

This paper introduces SWTformer, illustrated in Fig. 2, 
a novel framework that utilizes the Swin Transformer as the 
classifier backbone to generate initial localization maps for 
WSSS. Moreover, Swin Transformer’s multiscale contextual 
information is utilized through a novel Hierarchical Feature 
Fusion (HFF) module within a background-aware prototype 
exploration mechanism based on SIPE [23]. 

3- 2- Generating Class Activation Maps from Patch Tokens
Unlike traditional ViTs, Swin Transformer 

(SWTformer-V1) utilizes only patch tokens without class 
tokens. Inspired by [43], SWTformer-V1 incorporates a 
CAM module to generate activation seeds and class scores 
from Swin’s output patch tokens for classifier training. 
Swin encodes an input image 3 H WI × ×∈  by partitioning it 
into N N× patches and later projecting them into tokens

D N NT × ×∈ with D being the embedding dimension. A patch 
merging module connects subsequent transformer blocks, 
doubling the embedding dimension and halving the patch 
size, resulting in an output token sequence of 'D N N

outT × ×∈
, where ' 8D D= and / 8P N= . To generate CAMs for C  
classes outT  is converted to a to a 2D  feature map C P P

outF × ×∈
. Since outF  may contain negative values,  a ReLU function is 
applied to outF , followed by a feature normalization function. 
This process results in feature maps C P P

outC × ×∈  and can be 
summarized as Eq. (1)
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outC is then upsampled to the size of the original image, 
producing the initial class activation maps C H WM × ×∈ .

3- 3- Multi-label Classification Training
For multi-label classification, global average pooling is 

applied to outF , generating class scores C
cs ∈ for {1,.., }c C∈  

semantic categories. The classification loss, CLSL , is then 
calculated by averaging over multi-label soft margin losses 
over all C  classes as Eq. (2),
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where cs and cs represent the predicted score and its 
corresponding ground truth, respectively. This loss helps with 
the training optimization of the classifier by using image-
level labels as supervision.

3- 4- Hierarchical Feature Fusion
SWTformer-V1 uses patch tokens to compute class 

scores and generate CAMs, but its hierarchical structure 
makes combining attention maps from intermediate layers 
challenging. To address this, SWTformer-V2 introduces a 
Hierarchical Feature Fusion (HFF) module, which leverages 
Swin’s multiscale contextual information, instead of 
combining attention maps to learn semantic patch affinity. 
In the field of deep learning, leveraging feature maps from 
both the final and intermediate layers of a hierarchical 
network is a well-established strategy [50], [51]. Inspired 
by this, the suggested approach takes advantage of the 
distinct characteristics of information captured at different 
stages of the network. Shallow layers, which are closer to 
the input data, are capable of identifying low-level granular 
local features such as edges, texture, and color. On the other 
hand, deep layers, as the network hierarchy is ascended, are 
capable of recognizing more abstract, high-level features and 
complex patterns. By fusing feature maps from both shallow 
and deep layers, the model can harness a comprehensive 
range of information, from simple to complex patterns. This 
fusion does not add significant computational overhead and 
maximizes semantic knowledge from all four transformer 
blocks. Fig. 3 illustrates the proposed hierarchical feature 
fusion method. The HFF module extracts the output patch 
features from all four transformer blocks and concatenates 
them in two stages to maximize the semantic knowledge 
obtained. The upsampling in this module is achieved through 
bilinear interpolation, while the downsampling is performed 
using a convolutional layer. This module is specifically 
designed to be compatible with the Swin Transformer and 
outputs a new feature map hieF  that contains the combined 
local to global semantic contexts of the scene.

3- 5- Background-aware Prototype Exploration
SWTformer-V2 builds the HFF module on 

SWTformer-V1 by employing it in a background-aware 
prototype exploration mechanism. The primary goal of 
SWTformer-V2 is to refine the initially generated CAMs 
from SWTformer-V1, enabling the model to create more 
comprehensive object regions and accurately distinguish 
foreground objects from the background. To leverage the 
semantic knowledge encapsulated in hieF  for enhancing 
the initially generated CAMs and generating masks with 
more comprehensive object activation, SWTformer-V2 
adapts and modifies the utilization strategy demonstrated 
by SIPE [23], an architecture based on a CNN.  Given 

C H WM × ×∈  for C   foreground classes, to enhance the 
model’s awareness of the background, an activation map 

BM   is estimated as Eq. (3)
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 BM  is then concatenated to the initial foreground CAMs, 

making ( 1)C H WM + × ×∈ .
In the next step, outT  and M are input to a modified 
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version of the structure-aware seed locating module from 
SIPE [23]. This module generates seed maps ( 1)C P PR + × ×∈
for each class category 1C + , including the background. The 
module operates by calculating the cross-token semantic 
affinity map cS   from outT  to capture each token’s spatial 
structure. It then compares the similarity between each 
token’s spatial structure in cS with the class activations in 
M  and assigns that token the class label to which it has the 
most structural similarity. In contrast to the original method, 
SWTformer-V2 produces the cross-token semantic similarity 
map cS by calculating the cosine similarity as Eq. (4)
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where ⋅ denotes the dot product. The use of the absolute 

value of the similarity is motivated by experiments showing 
that even a negative value similarity between two tokens 
represents a high structural correlation between them.

In the final step of this framework, the generated seed 
maps R  and the hierarchical feature hieF  are passed to the 
background-aware prototype modeling module from SIPE 
[23]. This module first creates image-specific prototypes cP   
for all 1C + , classes, which are equivalent to the centroid 
of R  for each class in the feature space of hieF . Lastly, the 
refined image-specific CAMs, R-CAMs, are generated from 
the correlation calculated between cP and hieF .

To ensure consistency between the initial CAM and the 
refined R-CAM, the utilization of a normalization loss is 
suggested by the original paper as Eq. (5),
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SWTformer-V2 proposes to use a Class-wise Contrastive 

Loss (CCL ) in addition to the GSC loss. The CCL loss aims 
to enhance the generation of comprehensive initial CAMs at 
each step, building on the R-CAMs generated in the previous 
step. It achieves this by optimizing the model to minimize the 
distance between the representations of similar classes and 
maximize the distance between representations of dissimilar 
classes, represented in CAM and R-CAM. The CCL  loss is 
calculated as Eq. (6)

2DConv ( )
Norm(ReLU( ))

out out

out out

F T
C F




                                  (1) 

 

 

 

1

1 log( ) (1 ) log(1 ).
C

CLS c c c c
i

L s s s s
C 

            (2) 

 

1
1 maxB cc C

M M
 

    (3) 

 

( )( ) Cos ( , ) ,
( )

T
out out

c out out out T
out out

T TS T Sim T T
T T


    (4) 

1

1 _ .
1GSCL CAM R CAM

C
 


  (5) 

 

2

2

2( Cos ( , _ ))1 .3
2 (1 Cos ( , _ ))

CCL

Sim CAM R CAM
L

Sim CAM R CAM

    
   

     (6) 

 

.Total CLS GSC CCLL L L L           (7) 

 

 (6)

 
In summary, the overall loss for optimizing the model 

training includes the CLS , GSC  and CCL  loss functions 
as Eq. (7)

 

Fig. 3. Illustration of the proposed hierarchical feature fusion (HFF) module in SWTformer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Illustration of the proposed hierarchical feature fusion (HFF) module in SWTformer.
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4- EXPERIMENTS
4- 1- Dataset

The proposed method is evaluated on the PASCAL 
VOC 2012 [52] dataset, a widely used benchmark for image 
classification and segmentation, particularly in WSSS. The 
dataset consists of 20 classes, 1,464 training images, 1,449 for 
validation, and 1,456 for testing. Additionally, an augmented 
set of 10,582 images is added from [53] for training, following 
standard practices in semantic segmentation. 

4- 2- Evaluation Metrics
The mean Average Precision (mAP) metric is used 

to evaluate the classifier model’s localization accuracy. 
Additionally, mean Intersection-over-Union (mIoU) is 
employed to measure the accuracy of the generated class 
activation maps.

4- 3- Implementation Details
SWTformer is built with Swin-T [6] pre-trained on 

ImageNet [54] as its backbone. Images are cropped to 224 
× 224 for training, and data augmentation is done following 
[55]. The model is trained using the Adam W optimizer with 
a batch size of 16 on two Nvidia T4 GPUs. Seed maps are 
equivalent to the refined CAMs, R-CAM.

4- 4- Experimental Results
4- 4- 1- Improvement in object localization

The main objective of this study is to investigate the 
impact of using the Swin Transformer as the classification 
backbone for WSSS in localizing objects supervised by 
image-level labels and generating CAMs. Table 1 compares 
the localization accuracy of the Swin Transformer used in 
SWTformer with DeiT-S [9], which is commonly employed 
in state-of-the-art WSSS methods using a vision transformer 
as the backbone. Specifically, the localization results of 
DeiT-S utilized in MCTformer [43] are considered for 
comparison. The results show that using Swin-T outperforms 
DeiT-S as a backbone for WSSS by 0.98%, demonstrating 
the effectiveness of Swin’s local-to-global view in localizing 
objects.  

In terms of computational complexity, fine-tuning 

Swin-T took approximately one hour for both versions of 
SWTformer, converging in 30 epochs. In contrast, fine-
tuning DeiT-S required twice as long, about two hours and 
60 epochs to converge, demonstrating Swin-T’s advantage in 
both localization accuracy and efficiency.

4- 4- 2- Evaluation of seed localization maps
Given that the generation of seed CAMs is the most crucial 

step in WSSS, this study aimed to propose a framework for 
utilizing the Swin Transformer in this process. A comparison 
of the proposed method with other state-of-the-art methods is 
presented in Table 2, demonstrating the mIoU accuracy of the 
seed maps. To ensure an accurate comparison and evaluate 
the effectiveness of the Swin Transformer, results from other 
approaches that rely solely on the backbone are utilized. 
The comparison reveals that SWTformer V1 achieves an 
average of 0.82% mIoU accuracy higher than other methods, 
demonstrating the method’s comparable performance. 
Furthermore, SWTformerV2 improves upon SWTformer-V1 
by 5.32% in mIoU, therefore demonstrating the effectiveness 
of the strategies proposed to address the limitation of using 
attention maps from the Swin Transformer for refinement.  

4- 4- 3- Qualitative results
The effectiveness of the proposed approach is further 

confirmed through various qualitative evaluations of the 
model’s performance. Fig. 4 visualizes refined seed class 
activation maps (R-CAM) generated by SWTformer for 
various categories.

4- 5- Ablation Studies
The training procedure of the proposed model is optimized 

by the sum of three loss functions, termed CLS  loss, GSC  
loss, and CCL  loss. An analysis of the impact of each of 
these loss functions on the enhancement of SWTformer 
is presented in Table 3. Experiments demonstrate that the 
simultaneous use of these three losses results in the best 
accuracy. Specifically, CLS  is responsible for classification, 
GSC  provides consistency between the two sets of CAMs, 
and CCL further balances these modules.

5- Conclusion
This paper introduces SWTformer, a novel approach that 

uses the Swin Transformer as a backbone for weakly supervised 

Table 1. Comparison Of Object Localization On Pascal Voc 2012 Dataset. † De-
notes Our Implementation.

Table 1. COMPARISON OF OBJECT LOCALIZATION ON PASCAL VOC 2012 DATASET. † DENOTES OUR 
IMPLEMENTATION. 

Method Backbone mAP (%) 
MCTformer-V1† [43] DeiT-S 95.62 
MCTformer-V2† [43] DeiT-S 95.47 

SWTformer-V1 Swin-T 96.49 
SWTformer-V2 Swin-T 96.60 
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Table 2. Evaluation Of The Initial Seed Localization Maps (Seed) On The Pascal Voc 2012 
Train Set In Terms Of MIoU (%).

Table 2. EVALUATION OF THE INITIAL SEED LOCALIZATION MAPS (SEED) ON THE PASCAL VOC 2012 
TRAIN SET IN TERMS OF MIOU (%). 

Method Backbone Seed 

PSA [13] VGG-16 48.00 
IRN [14] ResNet-50 48.30 

SEAM [26] ResNet-38 47.43 

SC-CAM [27] ResNet-101 50.90 

SIPE [23] ResNet-50 50.10 

MCTformer-V1 [43] DeiT-S 47.20 

MCTformer-V2 [43] DeiT-S 48.51 

TransCAM [46] Conformer 51.70 

SWTformer-V1 Swin-T 49.84 

SWTformer-V2 Swin-T 55.16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Qualitative results of the class activation maps generated by SWTformer on PASCAL VOC 2012 train set. Images contain 

singular or multiple class labels. 

 

 

 

 

 

 

 

Fig. 4. Qualitative results of the class activation maps generated by SWTformer on PASCAL VOC 2012 train set. 
Images contain singular or multiple class labels.

Table 3. Ablation Study On The Effectiveness Of The Proposed Loss Functions On The 
Accuracy Of The Seed Map.

provides consistency between the two sets of CAMs, and CCL  further balances these modules. 

Table 3. ABLATION STUDY ON THE EFFECTIVENESS OF THE PROPOSED LOSS FUNCTIONS ON THE 
ACCURACY OF THE SEED MAP. 

LCLS LGSC LCCL mIoU (%) 
✓   49.84 
✓ ✓  54.58 
✓ ✓ ✓ 55.16 
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semantic segmentation (WSSS). SWTformer-V1 effectively 
captures both local details and global structure through the 
Swin Transformer’s hierarchical flow. However, due to the 
challenges introduced by the Swin Transformer’s shifted 
window and multi-scale feature mechanisms, which limit 
the direct use of the transformer’s attention flow for refining 
activation maps (a common approach in non-hierarchical 
strategies), SWTformer-V2 introduces a hierarchical feature 
fusion module to capture multi-scale semantic knowledge. It 
also refines activation maps through a modified background-
aware mechanism. SWTformer outperforms state-of-the-art 
transformers in object localization and yields comparable 
results to other approaches in generating seed activation maps. 
The strategies introduced in SWTformer-V2 further enhance 
this framework, refining initial activation maps to cover 
object regions more comprehensively. Future work aims to 
further leverage Swin Transformer’s attention mechanisms to 
unlock its full potential for refined activation map generation 
and object localization.
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