
تعداد نشریات | 8 |
تعداد شمارهها | 420 |
تعداد مقالات | 5,520 |
تعداد مشاهده مقاله | 6,330,786 |
تعداد دریافت فایل اصل مقاله | 5,461,457 |
Presenting an Automatic Hierarchical Method to Segmentation of Pulmonary Nodules in CT-Scan Images | ||
AUT Journal of Electrical Engineering | ||
دوره 57، Issue 2 (Special Issue)، 2025، صفحه 409-420 اصل مقاله (1.28 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/eej.2024.23555.5623 | ||
نویسندگان | ||
Marzia Asadi؛ Hamid Hassanpour* | ||
Faculty of Computer Engineering and IT, Shahrood University of Technology, Shahrood, Iran | ||
چکیده | ||
Pulmonary nodules are significant factors in the development of lung cancer, making timely identification crucial for effective patient management. This study introduces a fully automated method employing a two-stage deep learning approach for the segmentation of pulmonary nodules in CT scan images. In the first stage, we utilize a deep learning network known as BCD-Unet to extract the lung region from the CT scans. The second stage employs another deep learning network that incorporates attention mechanisms and residual modules for the precise segmentation and extraction of pulmonary nodules within the identified lung region. The proposed algorithm was rigorously tested on the LUNA16 dataset, yielding impressive results: a Dice coefficient of 97.75 for lung segmentation, alongside a Dice coefficient of 91.73% and a sensitivity of 92.31% for nodule segmentation. These findings underscore the effectiveness of the proposed method in enhancing the accuracy of pulmonary nodule detection, which is vital for early intervention in lung cancer cases. Also, this research contributes significantly to the field of medical imaging and has important implications for clinical practice in lung cancer management. | ||
کلیدواژهها | ||
Attention-Unet؛ BCD-Unet؛ Histogram Equalization؛ Image Segmentation؛ Lung Nodules | ||
مراجع | ||
[1] R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: a cancer journal for clinicians, 74(1) (2024).
[2] T.B. Kratzer, P. Bandi, N.D. Freedman, R.A. Smith, W.D. Travis, A. Jemal, R.L. Siegel, Lung cancer statistics, 2023, Cancer, 130(8) (2024) 1330-1348.
[3] S. Shamas, S. Panda, I. Sharma, Review on lung nodule segmentation-based lung cancer classification using machine learning approaches, in: Artificial Intelligence on Medical Data: Proceedings of International Symposium, ISCMM 2021, Springer, 2022, pp. 277-286.
[4] A. Halder, D. Dey, A.K. Sadhu, Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review, Journal of Digital Imaging, 33(3) (2020) 655-677.
[5] Y. Gu, J. Chi, J. Liu, L. Yang, B. Zhang, D. Yu, Y. Zhao, X. Lu, A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning, Computers in biology and medicine, 137 (2021) 104806.
[6] R. Aggarwal, V. Sounderajah, G. Martin, D.S. Ting, A. Karthikesalingam, D. King, H. Ashrafian, A. Darzi, Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis, NPJ digital medicine, 4(1) (2021) 65.
[7] S. Gite, A. Mishra, K. Kotecha, Enhanced lung image segmentation using deep learning, Neural Computing and Applications, 35(31) (2023) 22839-22853.
[8] H.M. Kim, T. Ko, I.Y. Choi, J.-P. Myong, Asbestosis diagnosis algorithm combining the lung segmentation method and deep learning model in computed tomography image, International Journal of Medical Informatics, 158 (2022) 104667.
[9] A. Comelli, C. Coronnello, N. Dahiya, V. Benfante, S. Palmucci, A. Basile, C. Vancheri, G. Russo, A. Yezzi, A. Stefano, Lung segmentation on high-resolution computerized tomography images using deep learning: a preliminary step for radiomics studies, Journal of Imaging, 6(11) (2020) 125.
[10] R. Azad, M. Asadi-Aghbolaghi, M. Fathy, S. Escalera, Bi-directional ConvLSTM U-Net with densley connected convolutions, in: Proceedings of the IEEE/CVF international conference on computer vision workshops, 2019, pp. 0-0
[11] A.T. Abdulahi, R.O. Ogundokun, A.R. Adenike, M.A. Shah, Y.K. Ahmed, PulmoNet: a novel deep learning based pulmonary diseases detection model, BMC Medical Imaging, 24(1) (2024) 51.
[12] S. Kumar, H. Kumar, G. Kumar, S.P. Singh, A. Bijalwan, M. Diwakar, A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review, BMC Medical Imaging, 24(1) (2024) 30.
[13] P. Kamra, R. Vishraj, S. Gupta, Performance comparison of image segmentation techniques for lung nodule detection in CT images, in: 2015 International Conference on Signal Processing, Computing, and Control (ISPCC), IEEE, 2015, pp. 302-306.
[14] S. Uzelaltinbulat, B. Ugur, Lung tumor segmentation algorithm, Procedia computer science, 120 (2017) 140-147.
[15] M.N. Saad, Z. Muda, N.S. Ashaari, H.A. Hamid, Image segmentation for lung region in chest X-ray images using edge detection and morphology, in: 2014 IEEE International Conference on control system, computing, and engineering (ICCSCE 2014), IEEE, 2014, pp. 46-51.
[16] V. Kalaria, S. Priyadarsini, Morphed Sobel Approach for Detecting Cancer Cells in Lungs, INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH, 2(2) (2014) 1751-1758-1751-1758.
[17] L. Ramos, I. Pineda, A Semiautomatic Image Processing-Based Method for Binary Segmentation of Lungs in Computed Tomography Images, SN Computer Science, 5(6) (2024) 689.
[18] M. Savic, Y. Ma, G. Ramponi, W. Du, Y. Peng, Lung nodule segmentation with a region-based fast marching method, Sensors, 21(5) (2021) 1908.
[19] V. Thamilarasi, R. Roselin, Lung segmentation in chest X-ray images using Canny with morphology and thresholding techniques, International Journal of Advance and Innovative Research, 6(1) (2019) 1-7.
[20] C. Liu, R. Zhao, M. Pang, Lung segmentation based on random forest and multi‐scale edge detection, IET Image Processing, 13(10) (2019) 1745-1754.
[21] S.Y. Chong, M.K. Tan, K.B. Yeo, M.Y. Ibrahim, X. Hao, K.T.K. Teo, Segmenting nodules of lung tomography image with level set algorithm and neural network, in: 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), IEEE, 2019, pp. 161-166.
[22] S.M. Naqi, M. Sharif, M. Yasmin, Multistage segmentation model and SVM-ensemble for precise lung nodule detection, International journal of computer assisted radiology and surgery, 13 (2018) 1083-1095.
[23] G. Du, X. Cao, J. Liang, X. Chen, Y. Zhan, Medical Image Segmentation based on U-Net: A Review, Journal of Imaging Science & Technology, 64(2) (2020).
[24] X. Ma, H. Song, X. Jia, Z. Wang, An improved V-Net lung nodule segmentation model based on pixel threshold separation and attention mechanism, Scientific Reports, 14(1) (2024) 4743.
[25] X. Zhang, S. Kong, Y. Han, B. Xie, C. Liu, Lung Nodule CT Image Segmentation Model Based on Multiscale Dense Residual Neural Network, Mathematics, 11(6) (2023) 1363.
[26] P. Musa, F. Al Rafi, M. Lamsani, A Review: Contrast-Limited Adaptive Histogram Equalization (CLAHE) methods to help the application of face recognition, in: 2018 third international conference on informatics and computing (ICIC), IEEE, 2018, pp. 1-6.
[27] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Advances in neural information processing systems, 28 (2015).
[28] S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3-19.
[29] A.A.A. Setio, A. Traverso, T. De Bel, M.S. Berens, C. Van Den Bogaard, P. Cerello, H. Chen, Q. Dou, M.E. Fantacci, B. Geurts, Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge, Medical image analysis, 42 (2017) 1-13.
[30] G. Naidu, T. Zuva, E.M. Sibanda, A review of evaluation metrics in machine learning algorithms, in: Computer Science Online Conference, Springer International Publishing, Cham, (2023), pp. 15-25.
[31] T. Eelbode, J. Bertels, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, M.B. Blaschko, Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index, IEEE transactions on medical imaging, 39(11) (2020) 3679-3690.
[32] Z. Xiao, B. Liu, L. Geng, F. Zhang, Y. Liu, Segmentation of lung nodules using improved 3D-UNet neural network, Symmetry, 12(11) (2020) 1787.
[33] A. Garcia-Uceda Juarez, R. Selvan, Z. Saghir, M. de Bruijne, A joint 3D UNet-graph neural network-based method for airway segmentation from chest CTs, in: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 10, Springer, 2019, pp. 583-591.
[34] D.D. Kadia, Advanced UNet for 3D Lung Segmentation and Applications, University of Dayton, 2021.
[35] S.N. Kumar, P.M. Bruntha, S.I. Daniel, J.A. Kirubakar, R.E. Kiruba, S. Sam, S.I.A. Pandian, Lung nodule segmentation using unet, in: 2021 7th International conference on advanced computing and communication systems (ICACCS), IEEE, 2021, pp. 420-424.
[36] D. Bhattacharyya, N. Thirupathi Rao, E.S.N. Joshua, Y.-C. Hu, A bi-directional deep learning architecture for lung nodule semantic segmentation, The Visual Computer, 39(11) (2023) 5245-5261. | ||
آمار تعداد مشاهده مقاله: 168 تعداد دریافت فایل اصل مقاله: 171 |