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ABSTRACT: Effective breast cancer screening is essential for early detection and treatment. Ultrasound 
(US) radio frequency (RF) data offers a novel, equipment-independent approach. However, class 
imbalance and limited interpretability hinder its application in clinical practice. This study proposes 
a hybrid deep learning model combining a pre-trained convolutional neural network (CNN) based on 
VGG16 and capsule neural networks (CapsNets) to classify breast lesions. The model was evaluated 
using an RFTSBU dataset, comprising 220 data points from 118 patients, acquired on the SuperSonic 
Imagine Aixplorer® system with a linear transducer. To address data imbalance, the synthetic minority 
over-sampling technique (SMOTE) was employed to generate synthetic samples while preserving data 
distribution. Furthermore, Gaussian process (GP) was applied to fine-tune CapsNet hyperparameters, 
improving classification performance. Three experiments were conducted to classify breast lesions into 
two, three, and four classes: (I) CapsNet with balanced datasets based on class weight, (II) CapsNet 
with balanced datasets using SMOTE, and (III) CapsNet with hyperparameters optimized using GP on 
SMOTE-balanced datasets. The proposed model achieved average accuracies of 98.81%, 97.89%, and 
95.94% for two-, three-, and four-class classifications, respectively. The hybrid VGG16-CapsNet model 
effectively addresses class imbalance and captures critical lesion attributes such as size, perspective, 
and orientation. Integrating GP optimization achieves superior accuracy in multi-class breast lesion 
classification. The proposed approach can serve as a valuable aid in breast tumor classification using US 
RF B-mode images. Its enhanced interpretability and efficiency enable clinicians to move beyond binary 
classification, facilitating the identification and differentiating a broader spectrum of breast lesions. 
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1- Introduction
Breast cancer is a significant health concern worldwide, 

with its prevalence particularly notable among Iranian 
women, where it constitutes a substantial portion of cancer 
cases [1]. Globally, it is projected that by 2040, the burden of 
breast cancer will exceed 3 million new cases and 1 million 
deaths annually [2]. At the national level in Iran, breast 
cancer was the most prevalent cancer among women in 2020, 
accounting for 28.1% of all reported cases in the country3] ]. 

Mammography screening, although common, often 
necessitates additional procedures for women with abnormal 
results [4, 5]. The breast imaging-reporting and data system 
(BI-RADS) method is a valuable tool in decision-making, 
helping to determine the need for further sampling. Minimizing 
unnecessary procedures is essential for patient well-being, 
healthcare access, and reducing screening costs [6-9]. 

Breast sonography presents advantages over 
mammography, being radiation-free [10, 11] and more 
convenient for routine screenings, making it a cost-effective 
option for various regions [12]. It exhibits higher sensitivity, 
particularly in dense breast tissue, proving valuable for 
women under 35 [10, 13]. Breast sonography also reduces 
false positives compared to mammography, minimizing 
unnecessary biopsies [14]. Breast sonography demonstrates 
high accuracy, particularly in detecting simple cysts, with 
success rates ranging from 96% to 100% [15]. However, its 
effectiveness relies on the operator’s skills and subjective 
interpretation by experienced radiologists [11]. Consequently, 
this paper propounded a pressing need to enhance the 
effectiveness of current diagnostic approaches.

The rest of the paper is organized as follows: Related 
works are described in Section 2. Preliminary and fundamental 
information is covered in Section 3, along with details on 
the data collection, capsule neural networks (CapsNets), *Corresponding author’s email: afallah@aut.ac.ir
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suggested method, and process for classifying breast lesions. 
In Section 4, the performance of the proposed approach is 
analyzed, and the experimental results are detailed. Section 
5 addresses the techniques, corresponding outcomes, 
limitations, and directions for future works. Finally, Section 
6 concludes the paper.

2- Related Works
Jarosik et al. conducted a study using convolutional 

neural networks (CNNs) for classifying radio frequency (RF) 
signals from the OASBUD dataset [1]. The research explored 
three approaches—CNN-1D, CNN-2D, and CNN-1D-2D—
focusing on processing small 2D patches of RF signals 
and their amplitude samples. While this method allows the 
creation of parametric maps to assess breast mass malignancy, 
it is limited to classifying benign and malignant lesions 
only. The final CNN-1D-2D model achieved a modest 70% 
accuracy in two-class classification and required significant 
pre-processing and network training time.

In 2020, faster region-based CNN (Faster R-CNN) models 
were implemented to detect and classify breast lesions in 
ultrasound (US) images, marking a significant step forward 
in deep learning-based diagnostics [16]. The algorithm 
successfully identifies lesions by generating bounding boxes 
and classifying them as malignant or benign, offering an 
alternative to traditional methods. It is optimized for CPU 
and GPU platforms, improving efficiency and reducing 
training and testing times. However, the study lacks detailed 
reporting of the network’s evaluation parameters, only stating 
an accuracy rate above 95%, and no validation was conducted 
due to the limited dataset.

In 2021, Behboodi et al. investigated deep learning for 
breast cancer classification using US images, focusing on 
multi-tasking learning (MTL) techniques [17]. Due to the 
limited training data and significant inter-class variations, 
training the network from scratch was impractical. Therefore, 
they used two pre-trained networks, ResNet-34 and 
MobileNet-v2, as backbone feature extractors with task-
specific modifications. The method’s key advantage was 
classifying breast lesions into four categories. However, the 
accuracy for the two-class classification did not surpass 84%, 
and for the four-class classification, it stayed at 90%. The 
study also lacked justification for including the background 
as a class and did not discuss its impact on the results.

Qiao et al. developed a deep learning framework for 
detecting calcifications using multi-channel US RF signals, 
offering a promising approach for enhancing breast cancer 
diagnosis [18]. The study introduced a unique integrated 
framework, where multi-channel RF signals were merged 
through beamforming and then transformed using short-time 
Fourier transform (STFT) to extract frequency domain features. 
They proposed the RF signal spectrogram-calcification-
detection-net (SCD-Net), a CNN based on the YOLOv3 
model, enhanced with convolutional short-term memory 
(ConvLSTM) for detecting calcifications from spectrograms. 
While the framework showed promise in accurately detecting 
tumor calcifications and assisting radiologists, it involved 

complex preprocessing and detection processes and lacked 
straightforward interpretability. Additionally, the study’s 
focus was limited to calcification detection, suggesting that 
expanding to include mass screening and tumor classification 
could further benefit radiologists.

Kim et al. undertook a comprehensive approach in their 
study, developing an end-to-end CNN framework to analyze 
breast US images using multiparametric images derived 
from RF signals. This thorough research approach provides 
reassurance about the validity and reliability of the study’s 
findings [19]. The study utilized entropy and phase images, 
which offer fine structural and anatomical details, along 
with conventional B-mode images in the temporal domain. 
Additionally, attenuation images estimated from the frequency 
domain of RF signals were used to capture spectral features. 
The proposed ensemble architecture integrates these diverse 
parametric images from both time and spectral domains, 
enhancing the representation of tissue echogenicity and 
reducing the risk of overfitting by creating a richer dataset for 
deep neural network training. The architecture’s strength lies 
in combining various image types, significantly improving 
classification performance compared to single parametric or 
B-mode images. However, the study’s effectiveness is limited 
by its relatively small dataset. Allowing voting algorithm 
weights during training could improve classification accuracy 
if a larger dataset were available.

In 2022, Byra et al. used US RF data in deep learning 
methods, achieving a higher area under the curve (AUC) 
than B-mode imaging for breast lesion classification and 
segmentation [20]. Their approach distinguishes between 
benign and malignant lesions and segments them, using 
RF data from the mass and surrounding tissue for a more 
comprehensive analysis. However, limitations include a 
small training dataset and less robustness compared to 
quantitative ultrasound (QUS) techniques. Additionally, their 
algorithm underperformed in classification, leading to the 
development of an improved Naive Bayes-based algorithm, 
which enhanced classification performance [21]. Similarly, 
Gare et al. combined RF data with B-mode images in CNNs, 
achieving a higher AUC than B-mode alone, highlighting the 
benefits of incorporating RF data in breast lesion classification 
[22].

In 2022, researchers explored deep learning methods 
using QUS multiparameter maps to predict breast treatment 
response, achieving an 88% accuracy rate [23]. The approach 
involved extracting intrinsic features from raw US RF data 
and integrating them with QUS image features in a CNN-
based structure. This method effectively classifies individuals 
as responders or non-responders to therapeutic interventions 
by capturing spatial heterogeneity across multiple QUS image 
channels. However, the model faced overfitting issues due to 
small datasets, leading the researchers to use early stopping 
during training to improve generalizability. Table 1 provides 
a concise overview of relevant previous studies.

Unlike previous studies [1, 16, 18-20, 23] that primarily 
focus on benign and malignant lesions, this research 
expands its scope to include a broader range of lesions. The 
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Table 1. Method comparison of related breast lesion classification experiments   

Study Database Proposed 
Model 

Data 
Preprocessing 

Evaluation 
Metrics 

Results Advantages Disadvantages 

Jarosik et 
al. [1] 

OASBUD 
(78 subjects 
and 100 US 

RF Data) 
2 Class 

CNN-1D, 
CNN-2D, 

and 
CNN-1D-

2D 

1. Extract 2D 
RF data 
patches. 

2. Develop 1D 
convolutional 

layers to 
process RF 
signals for 
CNN-1D. 

3. Train CNN-
1D based on the 
envelope of RF 

signals. 

4. Combine 
CNN-1D with 
CNN-2D to 

create the CNN-
1D-2D model. 

Accuracy 
AUC 

Best results: 
Accuracy=70%, 

AUC=77% 

1. Creating 
parametric maps 

to assess potential 
malignancy in 
breast masses. 

 
2. Providing an 

expressive 
approach for 

analyzing breast 
masses. 

1. Limited 
differentiation 

between benign 
and malignant 

lesions. 

2. Low accuracy 
(Only 70% by 
CNN-1D-2D 

model) despite 
using three CNN-
based approaches 

and RF 2D 
patches.  

3. Requiring 
considerable time 

for both pre-
processing and 

network training. 

Wei et al. 
[16] 

OASBUD 
(78 subjects 
and 100 US 

RF Data) 
2 Class 

Faster R-
CNN - Accuracy Accuracy>95% 

1. Identifying 
breast lesions and 

the region of 
interest (ROI). 

2. Compatible 
with both CPU 

and GPU 
platforms. 

3. Reducing the 
time required for 

training and 
testing. 

1. Evaluation 
lacks detailed 

metrics (Offering 
only a general 

accuracy 
statement above 

95%). 

2. Lack of 
complete 

validation due to 
limited dataset 

(Hindering 
comprehensive 

assessment of the 
method's 

effectiveness). 

Behboodi 
et al. [17] 

Publicly 
available US 
dataset (40 

invasive 
ductal 

carcinomas 
(IDC), 65 

cysts (CYST), 
and 39 

fibroadenoma
s (FA)) 
4 class 

MTL 
(ResNet34-
MobileNet-

V2) 

1. Crop images 
and resize them. 

2. Normalize 
image. 

3 Augment data 
(Apply random 

on-the-fly). 

Accuracy, 
Precision, 
Recall, F1-

Score 

For 2-class: 
Accuracy=84%, 
Precision=100%, 

Recall=25%,  
F1-Score=40% 

For 4-class: 
Accuracy=90%, 
Precision=80%, 

Recall=50%, 
 F1-Score=62% 

1. Classifying 
breast lesions into 

four classes. 
 

2. Utilizing 
background as an 
additional class. 

1. Lack of 
justification for 
including the 

background as a 
class. 

2. Lack of 
discussion on the 

impact of 
including the 

background class. 

Qiao et al. 
[18] 

US RF 
signals of 337 
breast tumors 

with 
calcifications 

2 class 

Deep 
learning 

architecture 
based on 

the 
YOLOv3 
model and 
integrated 
features 

1. Apply 
beamforming. 

2. Utilize STFT 
to extract 
frequency 
domain 
features. 

Accuracy, 
Precision, 
Recall, F1-

Score, 
Precision-

Recall (PR) 

Accuracy=84.13%
, 

Precision=88.47%
, Recall=94.5%,  

F1-
Score=91.38%, 
Precision-Recall 

(PR)=88.25% 

1. Performing 
strongly in 
accurately 

diagnosing tumor 
calcification. 

1. Complex 
framework steps. 

2. Less clear 
network 

interpretability. 

Table 1. Method comparison of related breast lesion classification experiments. (Continued)
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classification process in this study is conducted across four 
distinct classes, with the primary objective of developing a 
method that not only achieves high accuracy in two-, three-, 
and four-class classifications with reduced complexity-unlike 
[1, 20] but also serves as a supportive system for radiologists 
in diagnosing breast lesions. Unlike [1, 19, 20, 23], the 
proposed approach effectively avoids overfitting due to the 
carefully selected strategies and appropriate dataset size for 
this method. Evaluating data across three proposed scenarios 
allows for a thorough assessment of the technique, with the 

best approach for each classification mode being identified 
and presented.

One of the research’s fundamental strengths and 
innovations is using the Gaussian process (GP) optimization, 
which enables the optimal performance of the VGG16 and 
CapsNet networks through fine-tuned hyperparameters. This 
is noteworthy because the need to optimize hyperparameters 
is not addressed in [16, 17, 20], with only [19] highlighting 
this concern. Additionally, this study goes beyond [16, 17] 
by providing a comprehensive set of evaluation criteria for 

Table 1. Method comparison of related breast lesion classification experiments 

through 
ConvLSTM 

3. Focusing only 
on calcification 

detection. 

Kim et al. 
[19] 

OASBUD 
(78 subjects 
and 100 US 

RF Data) 
2 Class 

End-to-end 
ensemble 

CNN 
 

1. Extract the 
entropy and 

phase images. 
 

2. Construct the 
B-mode images. 

 
3. Extract the 
attenuation 

image. 

Accuracy, 
Precision, 
Recall, F1-

Score, 
AUC 

Accuracy=83%, 
Precision=79.57%
, Recall=91.33%,  

F1-
Score=85.05%, 
AUC=91.61% 

1. End-to-end 
ensemble 

architecture for 
1D time series 

classification of 
RF signals. 

2. Utilizing 
multiple 

parametric images 
from time and 

spectral domains. 

1. Relatively 
small dataset. 

 
 

2. Enhancing 
classification with 
voting algorithm 

weights. 

Byra et al. 
[20] 

273 breast 
masses 
2 Class 

Y-Net 
architecture 

1. Resize image. 
 

2. Segment 
manually. 

Accuracy, 
Sensitivity, 
Specificity, 

AUC 

Accuracy=86.50%
, Sensitivity=82%, 
Specificity=90.60
%, AUC=87.40% 

1. Classifying 
benign/malignant 

lesions and 
performing 

segmentation for 
detailed analysis. 

2. Utilizing RF 
data 

characteristics 
from breast mass 
and surrounding 

regions for 
informed 
decisions. 

1. Requiring 
significant time. 

 
2. Hindering 

effectiveness due 
to a small number 
of data samples. 

 
3. Less robust 

than traditional 
QUS techniques. 

Taleghama
r et al. [23] 

181 patients 
2 class 

Deep 
convolution

al neural 
network 
(DCNN) 

and 
residual 
attention 
network 
(RAN) 

1. Resize 
images. 

 
2. Normalize 

images. 
 

3. Augment 
data (Flipping 

horizontally and 
shifting 

horizontally and 
vertically). 

Accuracy, 
Sensitivity, 
Specificity, 

AUC 

Accuracy=88%, 
Sensitivity=70%, 
Specificity=92.50

%, AUC=86% 

1. Extracting 
essential 

information by 
analyzing the 
entire image 

during feature 
extraction. 

2. Quantifying 
spatial 

heterogeneity 
across multiple 

QUS image 
channels for 

enhanced analysis. 

3. Including tumor 
core and periphery 

improves 
accuracy in 
predicting 
treatment 
responses. 

1. Network 
structure 

overfitting with 
small datasets, 
compromising 

generalizability. 
 

2. Using early 
stopping to 

improve 
generalizability 

and reduce 
overfitting. 
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each approach, demonstrating the superiority of the proposed 
method. The comparison between the VGG16 and CapsNet 
methods and the proposed approach is also detailed, with 
the best scenario for each classification mode identified and 
discussed. In summary, the main contributions of this paper 
are as follows:
• The proposed approach extends its performance 

beyond benign and malignant lesions, offering a more 
comprehensive classification capability, by utilizing a 
more comprehensive range of lesions.

• The GP was employed to optimize the parameters, leading 
to an improvement in classification accuracy.

• The proposed model has been empirically demonstrated 
to outperform other classification methods across all 
evaluation metrics. Its high efficiency makes it particularly 
applicable in real-world scenarios, especially for analyzing 
breast US RF B-mode images. This capability holds 
significant potential for various medical applications, 
particularly in the clinical classification of breast tumors.

• Unlike [18], the proposed method is more understandable 
and interpretable for radiologists because it utilizes US 
RF B-mode images, making it easier to comprehend than 
studies that employed US RF signals. This enhanced clarity 
contributes to the method’s accessibility and usability in 
clinical practice.
In this study, the motivation behind developing the 

VGG16-CapsNet model for breast cancer classification 
is to achieve a more efficient and accurate diagnostic tool 
by leveraging the strengths of both CNNs and CapsNets. 
Despite its power in image classification, CNN struggles 
with capturing spatial relationships and feature orientations, 
leading to potential misclassifications, particularly with 

rotated or differently angled objects [24-28]. It also requires 
large labeled datasets and is prone to overfitting on smaller 
ones [28-30]. 

CapsNets address these limitations by preserving spatial 
hierarchies and orientations, improving object recognition 
regardless of pose, and reducing overfitting [24-26]. This 
study developed the VGG16-CapsNet model for breast 
cancer classification, combining the strengths of CNNs 
and CapsNets. While CNNs often rely on handcrafted 
features, CapsNets employ end-to-end training, extracting 
more intricate features. Integrating VGG16 with CapsNet 
enhances feature recognition and model accuracy, offering a 
more efficient and reliable diagnostic tool for breast cancer 
classification.

3- Theoretical Modeling
This study concentrates on the non-invasive classification 

of breast lesions into benign, probably benign, suspicious, and 
malignant classes using VGG16-CapsNet and three scenarios. 
The classification process is demonstrated in Fig. 1.

3- 1- Data Collection 
This study utilizes the RF time series breast US (RFTSBU) 

dataset, comprising 220 RF signal frames and corresponding 
B-mode images, collected at Dezashib Imaging Center 
in Tehran, Iran, using a SuperLinearTM SL18-5 linear 
transducer (18.5 MHz) and the US SuperSonic Imagine 
Aixplorer® medical and research system.

With participant consent, ethical approval was obtained 
from the committee of ethics of the Islamic Azad University, 
Science and Research Branch, Tehran, Iran. Mammography 
and biopsies were conducted to confirm malignancy and 

 

Fig. 1. The proposed VGG16-CapsNet-based breast cancer classification process  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The proposed VGG16-CapsNet-based breast cancer classification process 
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assess suspicious lesions, with additional data collected for 
some cases. Patient information, including family history 
and reproductive details, was recorded. The overall data 
collection framework and the number of registered data in 
each group are illustrated in Fig. 2.

3- 2- Data Preprocessing: RF Data Parser
The RF signals captured by the Supersonic Imagine are 

saved in a specific format, which requires conversion to the 
MAT file for readability in Matlab. A graphical user interface 
(GUI) named “RF Data Parser” was employed to facilitate this 
conversion process. This GUI is responsible for converting each 
recorded RF data into a MAT file. Additionally, it can generate a 
B-mode image from each recorded US RF signal and present the 
user with both the B-mode image and the RF signal. This article 
utilizes B-mode images derived from US RF data.

3- 3- Proposed GP Optimized CapsNet based on VGG16
A GP is completely defined by its mean function, 

m(x)=E[f(x)], and co-covariance, k(x, x’)=E[(f(x)-m(x))
(f(x’)-m(x’))]. So, write the GP as [31]: 

(1) ~ ( ( ), ( , '))( ) GP m x k x xf x 

 

(2) min[ ( )] [max( ,0)]E I E f Y   

 

)3( 
min

min min

[ ( )] ( ( ))
( ) ( )( ) ( ))

E I f
f f

   
   

 

  
 


 

 

)4( 
( _ _ _ )

( _ _ )
( _ _ _ _ _ )

i
Total Number of Samplesw

Number of Classes
Number of Samples in Class i





 

 

(5) 

min ( , ; )
. . arg min ( ; )

G valx R

train

f x S
s t f S





 



 

 

 

 (1)

The Bayesian model represents a primary instantiation 
of a GP, the foundation for Bayesian optimization, a widely 
used approach in general optimization. This iterative method 

operates by sequentially refining its search for optimal 
solutions. A probabilistic surrogate model and an acquisition 
function that directs the choice of the subsequent evaluation 
point are components of the GP framework. During each 
iteration, the surrogate model is updated based on all previous 
evaluations of the target function. The acquisition function 
then makes use of the predictive distribution derived from 
the probabilistic model to evaluate the relative usefulness 
of different candidate points, striking a balance between 
exploration (i.e., looking for less-explored areas) and 
exploitation (i.e., concentrating on areas that are most likely 
to produce high performance). The acquisition function 
can be thoroughly optimized because it is computationally 
inexpensive, in contrast to the costly evaluation of the black 
box function [31, 32]. The acquisition function is the expected 
improvement (EI), which is derived from Eq. (2)  [33].

(1) ~ ( ( ), ( , '))( ) GP m x k x xf x 

 

(2) min[ ( )] [max( ,0)]E I E f Y   

 

)3( 
min

min min

[ ( )] ( ( ))
( ) ( )( ) ( ))

E I f
f f

   
   

 

  
 


 

 

)4( 
( _ _ _ )

( _ _ )
( _ _ _ _ _ )

i
Total Number of Samplesw

Number of Classes
Number of Samples in Class i





 

 

(5) 

min ( , ; )
. . arg min ( ; )

G valx R

train

f x S
s t f S





 



 

 

 

 (2)

Eq. (3) defines the prediction of the model Y at 
configuration λ according to a normal distribution, and EI is 
computed in the closed form.

(1) ~ ( ( ), ( , '))( ) GP m x k x xf x 

 

(2) min[ ( )] [max( ,0)]E I E f Y   
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min min
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( ) ( )( ) ( ))
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i
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min ( , ; )
. . arg min ( ; )

G valx R
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f x S
s t f S
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Fig. 2. The data collection framework and the number of records in each class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The data collection framework and the number of records in each class
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where fmin is the best-observed value, φ(·) is the standard 
normal density, and Φ(·) is the standard normal distribution 
function.

3- 4- Breast Cancer Classification Procedure
The proposed breast cancer classification model 

comprises four main phases: data preparation, pre-training, 
classification and optimization, and evaluation. The ensuing 
subsections describe each step in detail.

3- 4- 1- Data Preparation Step
To properly model the training data, a network must 

learn a high-variance function, which leads to overfitting. 
Three essential steps are involved in this phase: balancing 
the dataset, data augmentation, and dividing the data into 
training and testing sets. Considering its novelty, we found 
two main problems with the dataset: the small number of US 
RF B-mode data in each class and the imbalance in the data. 
There aren’t many images in the medical dataset, but deep 
learning methods need a lot of samples to prevent overfitting. 
This study used image data augmentation techniques, such as 
rotating images by 10 degrees to the left and right.

To address the imbalance in the dataset, we employed 
two approaches. The first approach is based on class weights, 
assigning higher costs to misclassifications of the minority class. 
For manual calculation, the weight for each class can be set as:

(1) ~ ( ( ), ( , '))( ) GP m x k x xf x 

 

(2) min[ ( )] [max( ,0)]E I E f Y   

 

)3( 
min

min min

[ ( )] ( ( ))
( ) ( )( ) ( ))

E I f
f f

   
   

 

  
 


 

 

)4( 
( _ _ _ )

( _ _ )
( _ _ _ _ _ )

i
Total Number of Samplesw

Number of Classes
Number of Samples in Class i





 

 

(5) 

min ( , ; )
. . arg min ( ; )

G valx R

train

f x S
s t f S





 



 

 

 

 (4)

The second approach utilizes the synthetic minority over-
sampling technique (SMOTE), which includes generating 
synthetic instances of the minority class to balance the dataset. 
The SMOTE balances the class distribution by introducing 
synthetic samples to the minority class, which improves the 
dataset’s suitability for machine learning model training [34, 
35]. Additionally, we split the RFTSBU into training, testing, 
and validation sets, with a 70%, 15%, and 15% ratio, to 
facilitate the proper evaluation of the model.

3- 4- 2- Pre-training and CapsNet Optimizing Steps
The three steps in the training process are as follows:

Step (1): VGG16 CNN Structure: An essential aspect of 
CNNs is weight sharing, where similar feature detectors are 
applied across the entire object. To handle variations in the 
dataset, CNNs incorporate subsampling layers that address 
the significance of the precise location of features [36]. Deep 
feature extraction is further enhanced through transfer learning 
with pre-trained models like VGG16, which captures activation 
values from various layers as features [37]. VGG16, with its 
five-block structure, facilitates immediate feature extraction 
and is integrated into the CapsNet architecture [38]. 

Step (2): CapsNet (Breast-caps): In the CapsNet primary 
capsule (PC) layer, each capsule takes in a tiny subset of the 
receptive field as input and tries to figure out the pose of a 
given pattern [39]. A capsule’s output is a vector dynamically 
routed to the layer below the relevant parent capsule. This 
output vector is used to predict the output of capsules in the 
next layer (parent capsules) through a learned transformation 
matrix. The dynamic routing mechanism then calculates the 
agreement between these predictions and the actual outputs 
of the parent capsules. Capsules with higher agreement have 
increased routing weights, ensuring their contributions are 
emphasized. This process dynamically routes the output 
vectors to the most relevant parent capsules, enabling accurate 
information flow through the network. Fig. 3 demonstrates 
the CapsNet architecture.

Step (3): CapsNet Hyperparameter Optimization: 
Finding a D-dimensional hyperparameter setting x that 
minimizes the CapsNet’s validation loss/error f is the 
goal of hyperparameter optimization. The function f maps 
the validation error of a CapsNet algorithm with learned 
parameters to a hyperparameter choice x of G configurable 
hyperparameters. Eq. (5), which illustrates optimizing f, looks 
for a way to find the ideal hyperparameters automatically:
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Fig. 3. The CapsNet architecture
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The enormous complexity of the function f makes it 
challenging to solve the problem in Eq. (5). In this case, Sval  
stands for the validation dataset and Strain for the training 
dataset. The value of x falls inside a bounded set, and the 
learning procedure lowers the training loss/error. Among the 
algorithms for Bayesian optimization is the GP. Bayesian 
optimization algorithms approximate the costly error function 
using a low-cost probabilistic surrogate model. As a result, 
we utilize the GP to optimize the CapsNet’s hyperparameters. 
The specific steps of the breast CapsNet classification model 
are displayed in Table 2.

4- Results
The experiments used tensor flow and Keras with a TPU 

Google COLAB environment. To assess the effectiveness of 
the proposed approach, its performance was evaluated using 
several metrics, including accuracy, recall, precision, F-score, 
and AUC.

Experiment Scenario (I): In this approach, class weights 
were assigned as follows to address class imbalance: for the 
four-class scenario (benign, probably benign, suspicious, 
and malignant), the weights were 0.9545, 1.0758, 1.0892, 
1.05, and 0.9242, respectively. The weights in the three-class 

Table 2. The breast CapsNet classification model.Table 2. The breast CapsNet classification model 

Input data: 

Breast lesions US RF B-mode images (X, Y); 

where Y={y|y∈{Benign, Probably Benign, Suspicious, and Malignant}} 

Output data:  

The CapsNet model that classified Breast lesions US RF B-mode images x ∈ X 

Begin: 

// Pre-processing steps: 
{Resize US RF B-mode images to 128×128 dimensions 
Generate US RF B-mode images using data preparation operations 
Balance the RFTSBU dataset using the SMOTE method  
Split into train, valid, and test dataset}  
// Deep feature extraction step: 
{Utilize pre-trained transfer model VGG16 
Extract features using VGG16} 
// CapsNet hyperparameter optimization 𝜃𝜃 (routing No, capsule No) 

{Initialize the search space routing No [1, 5]], and capsule No [5, 20]—with random values   

while j∈i+1 …., N 

            Perform search space exploration. 

            Update posterior distribution by incorporating prior information. 

            Select the following sample, the θ minimizing error/loss 

            Train CapsNet (θ) 

            Evaluate 𝑦𝑦𝑗𝑗=f (𝑥𝑥𝑗𝑗, θ)) //objective function 

           Update the GP model of f(x) to refine posterior estimation. 

End 

Return optimized hyperparameters  

Retrain the CapsNet (θ) 

Test the CapsNet 

Output the classification 
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scenario (benign, suspicious, and malignant) were 1.0697, 
1.1358, and 0.8440, respectively. In the two-class scenario 
(benign and malignant), the weights were 1.0627 and 0.9442, 
respectively. 

A custom function was implemented to calculate network 
error, allowing for different weights for each class and 
adjusting the impact of each class’s examples on the final 
error calculation. In CapsNet, “Routing” refers to the process 
by which capsules in one layer dynamically send their outputs 
to the next layer based on how well the predictions align [27, 
38]. It uses algorithms like dynamic routing by agreement to 

refine connections iteratively. The “Dimension of Capsules” 
pertains to the length of the vectors that capsules output, 
which encodes complex feature attributes such as pose and 
orientation, allowing for a richer representation of data than 
traditional scalar outputs. The CapsNet parameters were 
optimized through 20 experimental repetitions, resulting in 
a capsule dimension of ten and a routing number of 5. The 
evaluation results of two-, three-, and four-class classifications 
are presented in Table 3. Fig. 4 shows the training, testing, 
and validation accuracy and loss for experiment scenario (I) 
across two-, three-, and four-class classifications.

Table 3. Result assessment of two-, three, and four-class classification using experiment scenario (I)Table 3. Result assessment of two-, three, and four-class classification using experiment scenario (I) 

Class/Parameters Accuracy  
(%) 

Precision 
(%) 

Recall  
(%) 

F-Score 
(%) 

Macro Average 
AUC (%) 

2 98.36 98.41 98.36 98.36 100 

3 94.94 94.99 94.94 94.91 99.33 

4 94.22 94.23 94.22 94.20 99.50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications and ROC for 

(d) two-, (e) three-, (f) four-class classifications in experiment scenario (I) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications 
and ROC for (d) two-, (e) three-, (f) four-class classifications in experiment scenario (I).
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Experiment Scenario (II): In this approach, the minority 
class was augmented to match the size of the majority class, 
yielding 63 images per class, and the SMOTE method 
was used to balance the dataset. CapsNet parameters were 
optimized through 20 experimental repetitions, yielding a 
capsule dimension of ten and a routing number of 5. Table 
4 visually represents the experiment scenario (II) evaluation 
results. Fig. 5 shows the training, testing, and validation 
accuracy and loss for experiment scenario (II) across two-, 
three-, and four-class classifications.

Experiment Scenario (III): The CapsNet 
hyperparameters were optimized using the GP method. 
Optimal performance was achieved with different routing 
and capsule dimensions for two-, three-, and four-class 
classifications, followed by a final investigation using 
20 epochs. This approach identified the most accurate 
configurations for each classification task. For four-class 
classification, the optimal results were achieved with a 
routing number of four and a capsule dimension of eight. 
The best performance was obtained in the three-class 

Table 4. Result assessment of two-, three, and four-class classification using experiment scenario (II)Table 4. Result assessment of two-, three, and four-class classification using experiment scenario (II) 

Class/Parameters Accuracy 
 (%) 

Precision  
(%) 

Recall  
(%) 

F-Score 
(%) 

Macro Average 
AUC (%) 

2 97.87 97.88 97.87 97.87 100 

3 97.02 97.16 97.02 97.04 100 

4 94.29 94.53 94.29 94.24 98.50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications and ROC for 

(d) two-, (e) three-, (f) four-class classifications in experiment scenario (II) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications 
and ROC for (d) two-, (e) three-, (f) four-class classifications in experiment scenario (II).
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classification with a routing number of five and a capsule 
dimension of 14. For two-class classification, the optimal 
settings were a routing number of five and a capsule 
dimension of 20. The evaluation results of two-, three-, and 
four-class classifications of experiment scenario (III) are 
depicted in Table 5. Fig. 6 presents the training, testing, and 
validation accuracy and loss for experiment scenario (III) 
across two-, three-, and four-class classifications.

5- Discussion
The primary objective of this research was to explore 

three scenarios for classifying breast lesions across two, 
three, and four classes, which include benign, probably 
benign, suspicious, and malignant lesions. The proposed 
method addresses the challenges of data imbalance and the 
limited number of images in the RFTSBU dataset, which 
can impact classification results. It combines a pre-trained 

 

Fig. 6. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications and ROC for 

(d) two-, (e) three-, (f) four-class classifications in experiment scenario (III) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications 
and ROC for (d) two-, (e) three-, (f) four-class classifications in experiment scenario (III).

Table 5. Result assessment of two-, three, and four-class classification using experiment scenario (III)Table 5. Result assessment of two-, three, and four-class classification using experiment scenario (III) 

Class/Parameters Accuracy  
(%) 

Precision  
(%) 

Recall  
(%) 

F-Score 
(%) 

Macro Average 
AUC (%) 

2 98.51 98.56 98.51 98.51 100 

3 97.51 97.61 97.51 97.52 99.33 

4 95.05 95.08 95.05 95.06 99.50 
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VGG16 CNN with CapsNet for breast cancer classification. 
Model accuracy is enhanced by applying GP optimization to 
fine-tune the CapsNet hyperparameters for two- and three-
class classifications. In addition to Tables 3-5, Fig. 4, Fig. 5, 
Fig. 6, and Fig. 7 demonstrate that scenario (III) yields the 
best classification results on average, primarily due to the use 
of the GP method and the optimization of hyperparameters 
across two-, three-, and four-class classifications. In relative 
terms, scenario (III) has shown an average improvement 
of 0.009% and 0.005% over the (I) and (II) scenarios, 
respectively.

In this study, beyond evaluating the accuracy, precision, 
recall, and F-score, we employed the ROC curve to assess 
the model’s discriminative capability, with AUC as a crucial 
performance metric. Scenario (III) achieved exceptional macro 
average AUC values of 100%, 99.33%, and 99.50% for two-
class, three-class, and four-class classifications, respectively. 
These results underscore the model’s discriminative strong 
power, demonstrating its effectiveness in distinguishing 
between the target classes. Compared to previous studies [1, 
19, 20, 23], our model exhibits a marked improvement, likely 
due to the innovative approaches we implemented.  

The computational complexity of various breast cancer 
detection models varies significantly due to their different 
approaches and model architectures. Jarosik et al.’s research 
is computationally intensive due to the direct processing of 
raw US RF signals [1]. Their CNN-based model requires 
extensive parameter optimization during training and 
inference, leading to high computational costs, especially with 
iterative epochs. Wei et al.’s method also demands substantial 
resources during training and inference because it uses deep 
network layers, region proposal processes, and bounding box 
refinement for lesion detection and classification [16].

For MTL-based models, the computational complexity 
increases with the number of classification categories, the 
challenge of managing limited training data, and the need for 
extensive optimization processes [17]. Qiao et al.’s framework 
adds complexity with signal preprocessing (beamforming and 
STFT), running deep models like SCD-Net with YOLOv3 
and ConvLSTM, and performing temporal tracking with the 
Kalman filter [18]. This multi-step approach requires high-
performance hardware for practical training and deployment.

Kim et al. system also demonstrates high computational 
demands, with image preprocessing steps (entropy, phase, 
and attenuation image generation), CNN training, and 
inference, all compounded by multiple input data channels, 
convolution operations, and data augmentation strategies 
[19]. Similarly, Byra et al.’s method requires significant 
computational resources due to large RF input sizes, MTL 
architecture, and intensive convolution operations coupled 
with data augmentation and interpretability steps [20].

Lastly, Taleghamar et al.’s methodology involves deep 
learning models (ResNet and RAN), attention mechanisms, 
large input image sizes, and multi-parametric data, increasing 
computational complexity [23]. Training and evaluation 
become progressively more demanding with deeper networks, 
input channels, and larger datasets.

Compared to these approaches, the VGG16-CapsNet with 
GP optimization method, while computationally expensive 
due to its deep architecture and optimization techniques, is 
designed to handle complex tasks like hierarchical feature 
extraction and multi-class classification more effectively 
than simpler models. While methods like CNNs are 
computationally cheaper, they may not achieve the same 
level of performance in nuanced tasks such as breast lesion 
classification. Thus, a trade-off between computational cost 
and model performance must be considered when selecting a 
model for clinical applications.

Results were obtained independently using VGG16 and 
CapsNet to compare VGG16, CapsNet, and the VGG16-
CapsNet combination comprehensively. Fig. 8 illustrates 
the average performance of these three approaches across 
scenarios (I), (II), and (III). On average, the VGG16-CapsNet 
approach demonstrates a performance improvement of 4.31% 
compared to the VGG16 approach and 9.06% compared to 
CapsNet.

Moreover, Fig. 8 highlights the impact of incorporating 
the GP method (scenario (III)) with the VGG16-CapsNet 
approach. This optimization method enhances performance 
across all three approaches—VGG16, CapsNet, and VGG16-
CapsNet. Compared to scenarios (I) and (II), scenario 
(III) incorporates GP optimization, which offers a more 
comprehensive solution by balancing the dataset and fine-
tuning the model’s hyperparameters for optimal performance. 
This approach enhances the model’s ability to capture complex 
data patterns, improves its generalization capabilities, 
reduces the time required to find optimal hyperparameters, 
and ultimately results in higher accuracy and robustness in 
breast lesion classification.

The findings demonstrate that incorporating CapsNet 
into the VGG16 architecture significantly improves feature 
detection and classification accuracy. The synergy between 
VGG16’s ability to extract dense, hierarchical features 
and CapsNet’s strength in modeling spatial relationships 
and preserving feature hierarchies made this combination 
particularly effective for classifying breast lesions. Other 
pre-trained networks, while powerful, may not provide the 
same balance of simplicity, detailed feature extraction, and 
compatibility with CapsNet’s architecture. The dynamic 
routing between capsules in CapsNet is crucial in enhancing 
the model’s ability to accurately classify breast cancer 
cases by emphasizing the most relevant features during the 
classification process. This integration results in a more 
efficient and accurate diagnostic tool, particularly in scenarios 
requiring complex classifications.

In this study, we selected the CapsNet architecture for its 
ability to capture spatial hierarchies of features essential for 
accurate breast lesion classification. The network’s dynamic 
routing mechanism helps prioritize and apply these features 
across various classification tasks as follows:

Two-Class Classification (Benign vs. Malignant): 
CapsNet focuses on key features like lesion size, boundary 
irregularity, and echogenicity to differentiate benign 
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(smoother, uniform) from malignant (irregular, complex) 
lesions. Dynamic routing emphasizes lesion shape and 
structural integrity.

Three-Class Classification (Benign, Suspicious, 
Malignant): In this task, CapsNet considers additional 
features like internal texture and lesion orientation to 
distinguish “suspicious” lesions, which share traits with 
both benign and malignant categories. Dynamic routing 
emphasizes subtler features like lesion homogeneity and 
internal echoes.

Four-Class Classification (Benign, Probably Benign, 
Suspicious, Malignant): For this detailed classification, 
CapsNet focuses on finer features like microcalcifications, 
margin clarity, and small histological changes. Dynamic 
routing is adjusted to distinguish “probably benign” from 
“suspicious” lesions by recognizing intricate patterns in 
lesion structure.

CapsNet adapts its dynamic routing as the classification 
complexity increases to focus on progressively finer details, 
highlighting the most distinguishing features. This flexibility 
makes CapsNet highly effective and allows it to refine its 

 

Fig. 7. Average results for scenario (I), scenario (II), and scenario (III) across two-, three-, and four-class classifications 
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Fig. 8. Comparison of average results for scenario (I), scenario (II), and scenario (III) using CapsNet, VGG16 and VGG16-
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performance across various classification scenarios. Table 6 
provides a comparison of the approaches proposed by other 
researchers. 

The following is a summary of this investigation’s main 
benefits:
• Finding solutions for the balancing issues and the small 

number of US RF B-mode images in the RFTSBU dataset 
to improve the classification outcomes.

• Using the VGG16 model as input for CapsNet to extract 
deep features.

• Applying GP optimization to adjust the hyperparameters 
of CapsNet.

• Creating a classifier for breast cancer using CapsNet.

5- 1- Limitations and Future Works
The RFTSBU dataset used in this study is relatively 

small, comprising 220 data points from 118 patients, which 
may limit the model’s robustness and generalizability 
to broader populations. This limited sample size poses 
challenges for training deep learning models. Additionally, 
the RFTSBU dataset originates from a specific US system 
(SuperSonic Imagine Aixplorer®), which could restrict the 
model’s applicability to other medical centers, devices, or 
patient populations with different characteristics such as age 
or ethnicity.

While GP optimization was employed to fine-tune 
hyperparameters and enhance performance, it can be 
computationally intensive and sensitive to kernel choices, 
potentially leading to suboptimal outcomes in some cases. 
Although the hybrid model demonstrates strong experimental 
results, its performance in real-world settings is not guaranteed 

due to variations in US image quality, device calibration, 
and noise levels across healthcare environments. Moreover, 
its reliance on data from a specific US system highlights 
potential challenges in generalizing the model’s effectiveness 
to data from other devices with differing imaging protocols, 
resolutions, and performance characteristics.

Future works for improving the breast lesion classification 
model can focus on the following:

Expanding the dataset is a critical step to improving the 
model’s generalization and clinical applicability. Collecting 
more extensive and diverse datasets, including samples 
from various medical centers, US systems, and patient 
demographics (e.g., age and ethnicity), will help the model 
adapt to broader real-world scenarios. This expansion reduces 
overfitting risks and enhances robustness, ensuring reliable 
performance across different clinical settings.

Optimization methods also hold significant potential 
for future work. While this study utilized GP optimization, 
exploring alternative techniques such as Bayesian 
optimization, genetic algorithms, or reinforcement learning 
could yield better hyperparameter tuning while reducing 
computational overhead. Additionally, addressing real-
world clinical challenges, such as robustness to noise and 
artifacts, is essential. Incorporating techniques like image 
denoising, adversarial training, and augmented datasets 
with simulated noise will ensure the model can withstand 
distortions commonly encountered in clinical practice. Multi-
center trials with datasets from diverse hospitals will further 
enable comprehensive performance evaluation, providing the 
model’s reliability across varying imaging conditions and 
patient populations. 

Table 6. Comparison of relevant RF time series and US RF B-mode methodsTable 6. Comparison of relevant RF time series and US RF B-mode methods 

Study Database 
Feature 

Extraction 
Method 

Classifier No. of 
classes Results 

Jarosik et 
al. [1] 

OASBUD 

(78 subjects and 
100 US RF 

data) 

CNN-1D, CNN-
2D, CNN-1D-

2D 

CNN-1D, CNN-
2D, CNN-1D-

2D 
2 

Accuracy= 70.00% 
with CNN-1D-2D 

Kim et al. 
[19] 

OASBUD 

(78 subjects and 
100 US RF 

data) 

Entropy and 
phase images, 

B-mode images, 
Attenuation 

images  

End-to-end 
ensemble 

CNN 
2 Accuracy=83.00% 

with DenseNet-201 

Wei et al. 
[16] 

OASBUD 

(78 subjects and 
100 US RF data) 

Faster R-CNN Faster R-CNN 2 Accuracy>95% 

Proposed 
Method 

RFTSBU 

(118 subjects 
and 220 RF B-

mode data) 

VGG16 CapsNet 

2 
 Accuracy=98.81% 

3 Accuracy=97.89% 

4 Accuracy=95.94% 
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6- Conclusion
Impressive breast cancer screening relies on early 

detection and treatment. While US RF B-mode provides a 
novel, equipment-independent approach, challenges like 
class imbalance and limited interpretability hinder its clinical 
application. This study presents a hybrid deep learning model 
for breast lesion classification that integrates a pre-trained 
CNN (VGG16) with a CapsNet to address critical challenges 
in breast cancer screening, including class imbalance and 
small sample sizes. The model leverages the SMOTE and 
data augmentation to mitigate data imbalance and enhance 
training stability. GP optimization was applied to fine-tune 
the hyperparameters of the CapsNet, ensuring optimal 
performance across various classification scenarios.

The experimental results demonstrate that the proposed 
hybrid model achieves superior classification accuracy 
compared to alternative approaches. Specifically, it achieves 
average accuracies of 98.81%, 97.89%, and 95.94% for two-
, three-, and four-class classifications, respectively. This 
performance reflects the model’s robustness in handling 
complex, multi-class breast lesion data and accurately 
capturing key lesion characteristics, such as size, shape, 
orientation, and internal texture.

Integrating VGG16 with CapsNet allows for effective 
feature extraction and hierarchical representation of lesion 
attributes, while GP optimization fine-tunes the model’s 
hyperparameters to enhance diagnostic precision. This 
model improves classification accuracy and offers significant 
interpretability, making it a viable solution for clinical 
applications, particularly in classifying breast lesions using 
US RF B-mode images. The results underscore the potential of 
advanced hybrid deep learning models in real-world medical 
diagnostics, with promising implications for further research 
in improving breast cancer detection and classification.
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