
تعداد نشریات | 8 |
تعداد شمارهها | 414 |
تعداد مقالات | 5,478 |
تعداد مشاهده مقاله | 6,010,334 |
تعداد دریافت فایل اصل مقاله | 5,299,918 |
ارائه یک روش تطبیقی بر پایه ترکیب روش پریدینامیک حالت مبنا و روش نقطه-ماده در مدل سازی عددی آسیب فلزات | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 56، شماره 9، 1403، صفحه 1185-1210 اصل مقاله (3.87 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23510.7775 | ||
نویسندگان | ||
امین نوریان؛ محمود شریعتی* ؛ خلیل فرهنگ دوست | ||
دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
چکیده | ||
این پژوهش رویکردی جدید برای ترکیب روش پریدینامیک حالتمبنا و روش نقطه-ماده ارائه میدهد که به کمک آن رفتار الاستوپلاستیک فلزات تحت تغییر شکلهای بزرگ و مدلسازی جوانهزنی و رشد ترک در حالت دو بعدی بررسی میشود. در روش پیشنهادی، محاسبات تغییر شکلهای بزرگ الاستوپلاستیک در ناحیه نقطه-ماده انجام میشود، و بخش پریدینامیک بهصورت خودکار در نقاط با پتانسیل شروع و رشد آسیب ایجاد شده و به همراه نوک ترک جابهجا میشود. ابتدا دامنه مادی توسط ذرات روش نقطه-ماده گسسته شده و سپس با الگوریتم تطبیقی جدید، ذرات نقطه-ماده به ذرات پریدینامیک تبدیل میشوند تا منطقه آسیب را بر اساس فاصله از نوک ترک بهینه مدلسازی کنند. این فرایند بهصورت معکوس نیز انجام شده و نقاط پریدینامیک دوباره به ذرات نقطه-ماده تبدیل میشوند. محدودیت مساحت ناحیه پریدینامیک هنگام رشد ترک و استفاده از پریدینامیک حالتمبنا در کنار مکانیک کلاسیک، مهمترین مزیت این روش است. عملکرد این روش از طریق مثالهای عددی بررسی و از نظر سرعت و دقت با روشهای عددی مشابه و نتایج آزمایشگاهی مقایسه میشود. این رویکرد مزیتی قابل توجه از نظر هزینه محاسبات و دقت در مدلسازی رفتار فلزات نرم تحت تغییر شکلهای بزرگ و شکست ماده ارائه میدهد. | ||
کلیدواژهها | ||
پریدینامیک حالت-مبنا؛ روش نقطه-ماده؛ آسیب فلزات؛ تغییرشکل الاستوپلاستیک؛ فلز نرم | ||
عنوان مقاله [English] | ||
An adaptive approach based on the state-based peridynamic method and the material point method for numerical modeling of damage in ductile metals | ||
نویسندگان [English] | ||
Amin Noorian؛ Mahmoud Shariati؛ Khalil Farhang Doost | ||
Ferdowsi University of Mashhad | ||
چکیده [English] | ||
This study presents a novel method that combines the state-based peridynamic approach with the material point method to analyze the elastoplastic behavior of metals under significant deformations and to simulate crack initiation and propagation in a two-dimensional framework. The proposed approach computes large elastoplastic deformations within the material point region, while the peridynamic region is automatically established around areas with high damage potential, relocating efficiently as the crack tip advances. Initially, the material domain is discretized using material point particles. A new adaptive algorithm then transforms these particles into peridynamic particles, enabling efficient and accurate modeling of the damaged region based on proximity to the crack tip. This transformation process is reversible, allowing peridynamic particles to revert to material point particles when appropriate. A key feature of this method is the controlled size of the peridynamic region during crack propagation, combined with the integration of state-based peridynamics and classical mechanics. The method’s effectiveness is assessed through numerical examples and compared with experimental data and other numerical techniques, demonstrating superior performance in terms of computational speed and accuracy. This innovative approach offers substantial improvements in computational efficiency and precision for simulating the behavior of ductile metals during large deformations and subsequent material failure. | ||
کلیدواژهها [English] | ||
State-Based Peridynamic Method, Material Point Method, Metal Damage, Elastoplastic Deformation, Ductile Metal | ||
مراجع | ||
[1] R. Russo, V. Phalke, D. Croizet, M. Ziane, S. Forest, F.A.G. Mata, H.-J. Chang, A. Roos, Regularization of shear banding and prediction of size effects in manufacturing operations: A micromorphic plasticity explicit scheme, International Journal of Material Forming, 15(3) (2022) 21. [2] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1) (2000) 175-209. [3] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic States and Constitutive Modeling, Journal of Elasticity, 88(2) (2007) 151-184. [4] F. Han, G. Lubineau, Y. Azdoud, Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure, Journal of the Mechanics and Physics of Solids, 94 (2016) 453-472. [5] F. Bobaru, Y.D. Ha, ADAPTIVE REFINEMENT AND MULTISCALE MODELING IN 2D PERIDYNAMICS, International Journal for Multiscale Computational Engineering, 9(6) (2011). [6] D. Dipasquale, M. Zaccariotto, U. Galvanetto, D. Dipasquale, M. Zaccariotto, U. Galvanetto, Crack propagation with adaptive grid refinement in 2D peridynamics, International Journal of Fracture 2014 190:1, 190(1) (2014-10-14). [7] F. Mousavi, S. Jafarzadeh, F. Bobaru, An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity, International Journal of Solids and Structures, 229 (2021) 111146-111146. [8] L. Strömberg, M. Ristinmaa, FE-formulation of a nonlocal plasticity theory, Computer Methods in Applied Mechanics and Engineering, 136(1-2) (1996) 127-144. [9] F. Han, G. Lubineau, Y. Azdoud, A. Askari, A morphing approach to couple state-based peridynamics with classical continuum mechanics, Computer Methods in Applied Mechanics and Engineering, 301 (2016) 336-358. [10] Y. Azdoud, F. Han, G. Lubineau, A Morphing framework to couple non-local and local anisotropic continua, International Journal of Solids and Structures, 50(9) (2013) 1332-1341. [11] G. Lubineau, Y. Azdoud, F. Han, C. Rey, A. Askari, A morphing strategy to couple non-local to local continuum mechanics, Journal of the Mechanics and Physics of Solids, 60(6) (2012) 1088-1102. [12] M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Computers & Mathematics with Applications, 71(11) (2016) 2218-2230. [13] M. D'Elia, M. Gunzburger, Optimal Distributed Control of Nonlocal Steady Diffusion Problems, SIAM Journal on Control and Optimization, 52(1) (2014) 243-273. [14] F. Han, G. Lubineau, Coupling of nonlocal and local continuum models by the Arlequin approach, International Journal for Numerical Methods in Engineering, 89(6) (2012) 671-685. [15] S. Prudhomme, H. Ben Dhia, P.T. Bauman, N. Elkhodja, J.T. Oden, Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method, Computer Methods in Applied Mechanics and Engineering, 197(41-42) (2008) 3399-3409. [16] E. Madenci, P. Roy, D. Behera, Peridynamic Modeling of Elastoplastic Deformation, Advances in Peridynamics, (2022) 185-199. [17] D. Sulsky, Z. Chen, H.L. Schreyer, A particle method for history-dependent materials, Computer Methods in Applied Mechanics and Engineering, 118(1-2) (1994) 179-196. [18] D. Sulsky, S.J. Zhou, H.L. Schreyer, Application of a particle-in-cell method to solid mechanics, Computer Physics Communications, 87(1-2) (1995) 236-252. [19] E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening, Journal of the Mechanics and Physics of Solids, 86 (2016) 192-219. [20] Z. Zeng, Y.C. Su, X. Zhang, Z. Chen, Combining peridynamics and generalized interpolation material point method via volume modification for simulating transient responses, Computational Particle Mechanics, 8(2) (2021) 337-347. [21] H. Bagherzadeh, O.R. Barani, Coupling the material point method and Peridynamics via the force partitioning and concurrent coupling schemes, Computational Particle Mechanics, 11(1) (2024) 55-71. [22] J. Burghardt, R. Brannon, J. Guilkey, A nonlocal plasticity formulation for the material point method, Computer Methods in Applied Mechanics and Engineering, 225-228 (2012) 55-64. [23] M. Steffen, P.C. Wallstedt, J.E. Guilkey, R.M. Kirby, M. Berzins, Examination and Analysis of Implementation Choices within the Material Point Method (MPM), Computer Modeling in Engineering & Sciences, 31(2) (1970) 107-128. [24] Q.V. Le, W.K. Chan, J. Schwartz, A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98(8) (2014) 547-561. [25] J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics, Sandia National Laboratories, Albuquerque, NM, and Livermore, CA (United States), 2011. [26] Z. Zeng, H. Zhang, X. Zhang, Y. Liu, Z. Chen, An adaptive peridynamics material point method for dynamic fracture problem, Computer Methods in Applied Mechanics and Engineering, 393 (2022) 114786-114786. [27] W. Liu, J.W. Hong, A coupling approach of discretized peridynamics with finite element method, Computer Methods in Applied Mechanics and Engineering, 245-246 (2012) 163-175. [28] H. Hooputra, H. Gese, H. Dell, H. Werner, A comprehensive failure model for crashworthiness simulation of aluminium extrusions, International Journal of Crashworthiness, 9(5) (2004) 449-464. [29] D.J. Littlewood, Roadmap for Software Implementation, Handbook of Peridynamic Modeling, (October) (2021) 147-178. [30] I.N. Giannakeas, T.K. Papathanasiou, H. Bahai, Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM, Journal of the European Ceramic Society, 38(8) (2018) 3037-3048. [31] H.C. Ho, K.F. Chung, X. Liu, M. Xiao, D.A. Nethercot, Modelling tensile tests on high strength S690 steel materials undergoing large deformations, Engineering Structures, 192(April) (2019) 305-322. [32] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & Structures, 83(17) (2005) 1526-1535. [33] R. Ni, X. Zhang, A precise critical time step formula for the explicit material point method, International Journal for Numerical Methods in Engineering, 121(22) (2020) 4989-5016. [34] B.C. Simonsen, R. Törnqvist, Experimental and numerical modelling of ductile crack propagation in large-scale shell structures, Marine Structures, 17(1) (2004) 1-27. | ||
آمار تعداد مشاهده مقاله: 299 تعداد دریافت فایل اصل مقاله: 241 |