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ABSTRACT 

The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology 

in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY 

chaos control method to encounter loop latency. A comparison study is provided and the advantages of the 

Smith predictor approach are clearly evident from the closed loop responses. The complex plants considered 

are coupled chaotic maps controlled by the extended OGY scheme. Simulation results are used to show the 

effectiveness of the applied Smith predictor scheme structure in multi chaotic systems. 
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1. INTRODUCTION 

Delay is a generic problem in the control of chaotic 

systems. The effective delay time in any feedback loop is 

the sum of present delay times, e.g. the measurement 

duration, control design computations, and the system 

response time to the applied control signal [1, 2, 3]. 

There are two major chaos control strategies: one is 

the OGY method (based on linearization of the Poincare´ 

map [4]) and the other is the Pyragas method (based on a 

time-delay feedback [5]).  

There is another delay- named latency- which is 

introduced in time-delay feedback methodology. As 

defined in [6], latency times are the times required to 

compare the current signal with its time-delayed 

counterpart and apply the feedback into the system. In an 

experimental setup, there is always latency involved. 

Control loop latency is associated with finite propagation 

speed of the control signal, measurement delays of the 

system to generate the control signal, or processing times 

for feedback calculation. In optical or opto-electronic 

systems, for instance, the length of an optical fiber used to 

transmit the control signal can become of crucial 

importance [7]. The same holds for electronic systems 

such as a fast diode resonator, where a propagation delay 

acts as a limiting factor [8]. Latency has adverse effects on 

control systems, which are analysed in [9] and [10]. It is to 

be noted that delay and latency concepts are 

interchangeably used in many papers. 

It has been shown in [11, 12] that longer latency times 

reduce the control abilities of the time-delayed feedback 

control. Similar results were found for the extended time-

delayed feedback [13]. Latency times on the OGY 

controllers is analysed in [1, 2, 3]. It was also shown that 

the measurement delay problem can be solved 

systematically for the OGY control and difference control 

by rhythmic control and memory methods. 

One approach to avoid the failure of chaos control due 

to latency is to simplify the controller as much as possible 

in order to minimize the control loop latency. An example 

of this approach includes methods that apply perturbations 

of a predetermined strength when the system crosses some 

threshold in the phase space [14, 15]. Using these 

methods, successful control of fast but low-dimensional 

chaos was demonstrated. A drawback of these methods is 

that they rely on the ability of easily defining proper 

windows and walls in the phase space. This task is 

conceptually much more difficult in the case of delayed 

systems where the phase space is infinite dimensional. 

These inherent difficulties prevented the applications of 

such methods to practical delay systems [16]. 

The primary objective of this paper is to derive by 

means of a simple example the latency adverse effects on 

feedback systems and to provide an approach for latency 

tackling in the face of substantial control-loop latency. 

The paper is focused on the OGY chaos control 

methodology and employs the Henon map as a two 

dimensional chaotic system. Then, Rhythmic control, 

Memory control, and Smith predictor will be applied in 

the presence of loop latency and study if these 

methodologies can overcome the problems caused by the 

loop latency. 

Then, upon the application of such compensating 

control methods in a single chaotic map, the proposed 

methods will be applied to complex multi-chaotic 

interconnected plants. In [17], complex structures 

containing chaotic subsystems with interactions was 

considered and an extended OGY method was presented 

to tackle the interaction effects. In this paper, the Smith 

predictor structure is appropriately inserted in the 

proposed structure and the simulation results show the 

efficiency of the final design methodology. 

The paper is organized as follows: A brief review of 

the OGY control system in its original form and the 

extended OGY control methodology for interconnected 

chaotic maps are presented in section 2. In section 3, 

latency structure is introduced and the stability regions are 

calculated for the Henon chaotic map, with and without 

loop latency. In section 4, Rhythmic control method, 

Memory method, and Smith predictor structure are 

presented as compensation methods of latency in chaos 

control systems. In section 5, the presented methods of 

section 4 are implemented on the Henon chaotic map with 

latency and simulation results are provided to show the 

effectiveness of the proposed methodologies. Section 6 

contains the implementation results for an interconnected 

multi- chaotic maps using the extended OGY control. 

Finally, section 6 concludes the paper. 

2. PRILIMINARY THEORIES 

OGY is a chaos control technique that does not require 

the exact dynamical equations governing the system. 

Moreover, its simple structure is valuable for practical 

implementations. Let a nonlinear plant be described as 

𝒛𝑖+1 = 𝑓(𝒛𝑖 , 𝑝), (1) 

where 𝑓 is a nonlinear function, 𝒛𝑖 ∈ ℝ
2 and 𝑝 is the 

accessible parameter. It can be shown that the OGY 

controller gain is [4] 
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𝐾 =
𝜆𝑢

𝜆𝑢 − 1

𝒇𝑢
𝑇

𝒇𝑢
𝑇𝒈
, (2) 

where 𝜆𝑢 is the unstable eigenvalue of the linearized 

system, 𝒇𝑢
𝑇
 is a related vector to the unstable eigenvalue 

such as 

𝒇𝑢
𝑇𝒆𝑢 = 1, 

𝒇𝑢
𝑇𝒆𝑠 = 0. 

(3) 

𝒆𝑠 and 𝒆𝑢 are the stable and unstable right eigenvectors of 

the linearized system at system’s fixed point (𝒛𝐹), and 𝒈 is 

defined as 

𝒈 =
𝜕𝒛𝐹(𝑝)

𝜕𝑝
|
𝑝=𝑝𝑛

. (4) 

As presented in [17], for control of interconnected 

chaotic networks, a multivariable control design strategy 

is needed. The extended OGY, is a methodology to tackle 

the interconnection effects. 

Consider the following chaotic systems that are 

initially decoupled 

{

𝑥𝑛+1 = 𝑓1(𝑥𝑛 , 𝑦𝑛, 𝑝1)

𝑦𝑛+1 = 𝑔1(𝑥𝑛 , 𝑦𝑛, 𝑝1)

𝑐1𝑛 = 𝑦𝑛                        

, (5) 

and 

{

𝑧𝑛+1 = 𝑓2(𝑧𝑛 , 𝑤𝑛 , 𝑝2)

𝑤𝑛+1 = 𝑔2(𝑧𝑛 , 𝑤𝑛, 𝑝2)

𝑐2𝑛 = 𝑤𝑛                        

, (6) 

where 𝑥, 𝑦, 𝑧 and 𝑤 are the states, 𝑐1 and 𝑐2 are the 

outputs, 𝑝1 and 𝑝2 are the control parameters. 

Now consider the following interconnected chaotic 

system: 

{

𝑥𝑛+1 = 𝑓1(𝑥𝑛 , 𝑦𝑛, 𝑝1 , 𝛼𝑧𝑛)

𝑦𝑛+1 = 𝑔1(𝑥𝑛 , 𝑦𝑛, 𝑝1 , 𝛼𝑧𝑛)
𝑧𝑛+1 = 𝑓2(𝑧𝑛, 𝑤𝑛 , 𝑝2, 𝛽𝑥𝑛)

𝑤𝑛+1 = 𝑔2(𝑧𝑛, 𝑤𝑛 , 𝑝2, 𝛽𝑥𝑛)

, (7) 

where 𝛼 and 𝛽 are the scalar interaction factors. The 

system described by (7) is called a multi-chaotic system. 

Parameters 𝛼 and 𝛽 affect the controller performance, 

since they change the actual dynamical equations of each 

primary system. The extended matrix form for the OGY 

controller with two manipulated parameters (𝛿𝑝1, 𝛿𝑝2) is 

[
𝛿𝑝1
𝛿𝑝2

] = 2 ((𝜆𝑈 − 𝐼)𝐹𝑈
𝑇𝐺)

−1

𝜆𝑈𝐹𝑈
𝑇𝛿𝜻𝑛 , (8) 

where 𝜆𝑈 is a matrix whose diagonal terms are the 

unstable eigenvalues and 

[𝐹𝑈 𝐹𝑆]
𝑇[𝐸𝑈 𝐸𝑆] = [

𝐹𝑈
𝑇

𝐹𝑆
𝑇 ] [𝐸𝑈 𝐸𝑆] = 𝐼, (9) 

where 𝐸𝑆 and 𝐸𝑈 are the stable and unstable eigenvectors 

and 𝐹𝑆 and 𝐹𝑈 are the related basis vectors, respectively. 

The extended OGY controller gain for the case of n-

manipulated parameters (𝛿𝑝1, … , 𝛿𝑝n) is 

[
𝛿𝑝1
⋮
𝛿𝑝𝑛

] = 𝑛 ((𝜆𝑈 − 𝐼)𝐹𝑈
𝑇𝐺)

−1

𝜆𝑈𝐹𝑈
𝑇𝛿𝜻𝑛 . (10) 

It was shown in [17] that the proposed procedure can 

satisfactorily control Multi Chaotic Maps. The matrix 

(𝜆𝑈 − 𝐼)𝐹𝑈
𝑇𝐺 must be non-singular, which is the 

controllability condition of the coupled chaotic system. 

3. LATENCY STRUCTURE 

In a closed loop chaotic system using the OGY control 

strategy, all latency times of different origins can be 

summed up to a new parameter 𝛿. An analytical 

expression will be derived for the upper bound of 𝛿, i.e., a 

maximum latency time, such that the design of an OGY 

controller is still possible. 

To assess the latency effects, the OGY control for the 

Henon map with one control parameter was considered in 

[18]. The Henon map can be described by the following 

equations 

{
𝑥𝑛+1 = 𝑝 − 𝑥𝑛

2 + 𝑏𝑦𝑛
𝑦𝑛+1 = 𝑥𝑛                    

, (11) 

where 𝑝0 = 1.29,   𝑏 = 0.3. The linearized model around 

the system’s fixed point (𝑥𝐹 , 𝑦𝐹) is a 2 × 2 system with 

two eigenvalues (𝜆𝑢 = −1.8398 , 𝜆𝑠 = 0.1630). The 

feedback law and updating parameter formula are: 

𝛿𝑝𝑛 = 𝐾𝛿𝒛𝑛, 

𝑝(𝑛) = 𝑝0 + 1.8401(𝑥(𝑛) − 𝑥𝐹)
− 0.3001(𝑦(𝑛) − 𝑦𝐹). 

(12) 

Therefore, the closed loop feedback law with loop latency, 

can be written as: 

𝑝𝑛 = 𝐾𝛿𝒛𝑛−𝛿 , 

𝑝(𝑛) = 𝑝0 + 1.8401(𝑥(𝑛 − 𝛿) − 𝑥𝐹) 

              −0.3001(𝑦(𝑛 − 𝛿) − 𝑦𝐹). 

(13) 

It can be shown that the closed loop system is unstable 

with 𝛿 = 1. Since the greater amount of latency will cause 

system instability, it is necessary to use compensation 

methods in control systems. 

Suppose that the row vector 𝐾 =[𝑘1 𝑘2], is the 

control vector that varies according to the map parameters. 

With the control algorithm in place, the stability of the 
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http://eej.aut.ac.ir/


Amirkabir International  Journal of Science & Research 

(Modeling, Identification, Simulation & Control)  

(AIJ-MISC)  

Ensieh Nobakhti and Ali Khaki Sedigh 

 

Vol. 47 - No. 2 - Fall 2015  4 

fixed point is determined by the eigenvalues of the matrix 

𝐴 − 𝐵𝐾. 𝐴 is the Jacobian of the uncontrolled Henon map 

and 𝐵 is the sensitivity of the map to some accessible 

system parameter 𝑝 that is displaced by 𝑝0 from its normal 

value. The stability of the map depends on the matrix 

𝐴 − 𝐵𝐾, which is the Jacobian of the controlled map [18]. 

To find the region in which the Henon Map presented 

in (11) may be stabilized with a control vector derived 

from the OGY method, we have 

{
𝑥𝑛+1 = (𝑝0 + 𝑘1𝑥𝑛 + 𝑘2𝑦𝑛) − 𝑥𝑛

2 + 𝑏𝑦𝑛
        𝑦𝑛+1 = 𝑥𝑛                                                               

 (14) 

The linearized closed loop equations of the system around 

the fixed point is: 

[
𝑥𝑛+1
𝑦𝑛+1

] = [
−2𝑥∗ + 𝑘1 𝑏 + 𝑘2

1 0
] [
𝑥𝑛
𝑦𝑛
] + [

1
0
] 𝑝0. (15) 

The characteristic equation of the closed loop system is 

then equal to 

𝜆2 + (2𝑥∗ + 𝑘1)𝜆 + (𝑘2 − 𝑏) = 0. (16) 

Fig. 1 shows the boundary on the 𝑘1 − 𝑘2 plane that 

can stabilize the chaotic orbit defined in the above 

equation. If the control parameters are chosen within the 

region bounded by the triangle and the control algorithm 

is applied, the system will be stabilized around the fixed 

point. The small filled circle on the figure shows the 

calculated state feedback using the OGY control method 

for the Henon map [17]. 

 

Fig. 1. Stability region for the Henon map using state feedback. 

The borders form the possible selection of 𝒌𝟏 and 𝒌𝟐 to stabilize 

the system with state feedback. 

Now, let us recalculate the above region for 𝛿 = 1. In 

this case, the equations of closed loop system are as: 

{
𝑥𝑛+1 = (𝑝0 + 𝑘1𝑥𝑛−1 + 𝑘2𝑦𝑛−1) − 𝑥𝑛

2 + 𝑏𝑦𝑛
𝑦𝑛+1 = 𝑥𝑛                                                              

 (17) 

The linearized model is: 

[

𝑥𝑛+1
𝑦𝑛+1
𝑦𝑛

] = [
−2𝑥∗ 𝑘1 + 𝑏 𝑘2
1 0 0
0 1 0

] [

𝑥𝑛
𝑦𝑛
𝑦𝑛−1

] + [
1
0
0
] 𝑝0 (18) 

The characteristic equation of the closed loop system is 

then equal to 

𝜆3 + 2𝑥∗𝜆2 − (𝑘1 + 𝑏)𝜆 − 𝑘2 = 0 (19) 

Using the Jury Criterion, the boundary on the 𝑘1 − 𝑘2 

plane in this case will be as shown in Fig. 2: 

 

Fig. 2. Stability region for the Henon map using state feedback 

with 𝜹 = 𝟏. 

It is clear that the OGY calculated feedback does not lie in 

the region of possible state feedback elements. 

Finally, the 𝑘1 − 𝑘2 plane is calculated for 𝛿 = 2 in 

which the system may be controlled by state feedback. In 

this case, the linearized closed loop system is presented as: 

[

𝑥𝑛+1
𝑦𝑛+1
𝑦𝑛
𝑦𝑛−1

] = [

−2𝑥∗ 𝑏
1 0

𝑘1 𝑘2
0 0

0 1
0 0

0 0
1 0

] [

𝑥𝑛
𝑦𝑛
𝑦𝑛−1
𝑦𝑛−2

] + [

1
0
0
0

] 𝑝0 (20) 

It is easily shown that the closed loop system is unstable 

for all values of 𝑘1 and 𝑘2. 

4. LATENCY COMPENSATION METHODS 

A. The Rhythmic OGY Control 

As explained in [1, 3], for a 𝛿 time step delay, one can 

restrict control application rhythmically only every 𝛿 + 1 

time-steps, and then leave the system uncontrolled for the 

remaining time-steps. For the following system with one 

state (𝑥) and one control parameter (𝑟) 

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑟) (21) 

the updating formula for system parameter with feedback 

gain (𝑘) is computed as 

𝑟𝑡 = 𝑟0 + 𝑘(𝑥𝑡 − 𝑥
∗), (22) 

where 𝑥∗ is the system fixed point. In the rhythmic control 

method, 𝑘 is time dependant: 

𝑘 = 𝑘(𝑡). (23) 

In this method, the calculated control gain will be applied 

in every (𝛿 + 1)-fold iteration of the original system 

http://eej.aut.ac.ir/
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(𝑘 = 𝑘0) and the gain is zero (𝑘 = 0) in remaining 

iterations. The closed loop characteristic equation in then 

calculated as 

𝑥𝑡+(𝛿+1) = 𝜆𝛿+1𝑥𝑡 + 𝑘0𝜇𝑥𝑡 , (24) 

where 

𝜆 = (
𝜕𝑓

𝜕𝑥
)𝑥∗,𝑟0     ,     𝜇 = (

𝜕𝑓

𝜕𝑟
)𝑥∗,𝑟0 . (25) 

The advantage of this method is that system dimension 

is not increased and the stability analysis is simpler due to 

the compact form of (24). 

|𝜆𝛿+1 + 𝑘0𝜇| < 1. (26) 

B. Memory OGY Control 

In this method, the control parameter (𝑟𝑡) is a linear 

function of previous states. For the case of 𝛿 = 1 we have: 

𝑟𝑡 = 𝑘1𝑥𝑡−1 + 𝑘2𝑥𝑡−2 +⋯+ 𝑘𝑛+1𝑥𝑡−𝑛−1. (27) 

For 𝛿 ≥ 2, 𝑘1 = ⋯ = 𝑘𝛿−1 = 0. If the state vector is 

[𝑥𝑡 … 𝑥𝑡−𝑛−1]𝑇, for 𝑛 steps memory and one step 

delay, the characteristic polynomial is 

(𝛼 − 𝜆)𝛼𝑛+1 +∑𝑘𝑖𝛼
𝑛−𝑖 = 0

𝑛

𝑖=1

. (28) 

This method allows control up to 𝜆𝑚𝑎𝑥 = 2 + 𝑛. In 

[3], the optimal values for 𝑘𝑖 was presented. For more 

than one step delay, the maximal controllable 𝜆 is reduced 

and there is no general scheme for optimal selection of 𝑘𝑖. 

It means that for any arbitrary 𝜆 to be controlled, a 

memory length of 𝑛 > 𝜆 − 2 is needed. 

There is another form for the memory method. If it is 

possible to use the previously applied control amplitudes 

𝑟𝑡−1, 𝑟𝑡−2, . . . , the control parameter will be 

𝑟𝑡 = 𝑘1𝑥𝑡−1 + 𝑘2𝑥𝑡−2 +⋯+ 𝑘𝛿𝑥𝑡−𝛿 + 𝜂1𝑟𝑡−1
+⋯+ 𝜂𝛿𝑟𝑡−𝛿 , 

(29) 

in which 𝑘1 = ⋯ = 𝑘𝛿−1 = 0 for 𝛿 ≥ 2 [3]. 

C. Smith Predictor Structure 

The presence of a large input delay 𝑘 implies that the 

control action will be equally delayed [19]. Suppose that 

𝐺(𝑧−1) is the system transfer function with delay 𝑧−𝑘. A 

practical and yet well established approach to delay 

control is the Smith predictor method. 

Fig. 3 represents a schematic structure for the Smith 

predictor. �̃�(𝑧−1) is delay free plant transfer function and 

𝐶(𝑧−1) is a designed controller that is considered 

satisfactory. 

 

Fig. 3. Block diagram of the Smith predictor algorithm. 

Using this structure, the controller generates the correct 

control action. 

5. CONTROLLING LATENCY IN HENON MAP 

In this section, the compensation control methods 

described in section 4 are applied to the Henon map. 

A. Rhythmic Control for Henon Map 

Rhythmic control equation for the Henon map can be 

written as: 

𝛿𝑝𝑛 = 𝐾𝑛𝛿𝒛𝑛−𝛿  , 𝛿 ≥ 1, (30) 

{
𝐾𝑛 = 𝐾 , 𝑛 = 𝑖 × (𝛿 + 1), 𝑖 = 0,1,2, …
𝐾𝑛 = 0 ,               𝑂.𝑊.                                      

, 
(31) 

{
𝑥𝑛+𝛿+1 = 𝑝0 + 𝐾1(𝑥𝑛 − 𝑥

∗) + 𝐾2(𝑦𝑛 − 𝑦
∗) − 𝑥𝑛

2 + 𝑏𝑦𝑛
𝑦𝑛+1 = 𝑥𝑛                                                                           

 

 

(32) 

Let 𝑍𝑛 = [𝑥𝑛 𝑦𝑛]𝑇 be the state vector, then 𝑍𝑛+1 =

𝑍𝑛 = 𝑍
∗ at the system fixed point. Using (32), the 

following equation will be obtained: 

𝑍𝑛+(𝛿+1) = 𝑍∗ + (𝐴𝛿+1 + 𝐵𝐾)(𝑍𝑛 − 𝑍
∗), (33) 

where 

𝐴 = (
𝜕𝑓

𝜕𝑍
)
𝑍∗,𝑝0

= [
−2𝑥∗ 𝑏
1 0

]     ,   

𝐵 = (
𝜕𝑓

𝜕𝑝
)𝑍∗,𝑝0 = [

1
0
]. 

(34) 

For the Henon map with 𝛿 = 1, we have 

𝐴2 + 𝐵𝐾 = [4𝑥
∗2 + 𝑏 + 𝑘1 −2𝑥∗𝑏 + 𝑘2
−2𝑥∗ 𝑏

], (35) 

The closed loop eigenvalues are 

𝜆1 = 5.2252     ,     𝜆2 = 0.0266, (36) 

which means that the closed loop with loop latency is not 

stable. In addition, simulation results show that this 

compensation method is not suitable for a Henon map 

with 𝛿 = 1. 

B. Memory Method for Henon Map 

Consider the Henon Map with 𝛿 = 1. For this case, 

there is no state feedback controller to place the unstable 

eigenvalues to zero and stable eigenvalues unchanged 
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(like the OGY strategy), hence an additional feedback 

term is used: 

𝑝𝑛 = 𝑘1𝑥𝑛−1 + 𝑘2𝑦𝑛−1 + 𝑘3𝑝𝑛−1. (37) 

The closed loop linearized system with 

[𝑥𝑛 𝑦𝑛 𝑦𝑛−1 𝑝𝑛−1]𝑇 as the state vector, gives 

𝜆4 + (2𝑥∗ − 𝑘3)𝜆
3 + (−𝑘1 − 2𝑥

∗𝑘3 − 𝑏)𝜆
2

+ (𝑏𝑘3 − 𝑘2)𝜆 = 0. 
(38) 

In this case, there is a solution to have the closed loop 

eigenvalues as 𝜆1 = 𝜆2 = 0 and 𝜆3 = 𝜆𝑠, by the following 

design: 

𝑘1 = −3.38498 , 𝑘2 = 0.55194, 𝑘3 = 1.8398 .  

Simulation results of the states and control parameter 

are shown in Fig. 4. 

For 𝛿 = 2, there is no solution with the following 

control law: 

𝑝𝑛 = 𝑘1𝑥𝑛−2 + 𝑘2𝑦𝑛−2 + 𝑘3𝑝𝑛−1. (39) 

But using additional terms of the previously applied 

control parameters as: 

𝑝𝑛 = 𝑘1𝑥𝑛−2 + 𝑘2𝑦𝑛−2 + 𝑘3𝑝𝑛−1 + 𝑘4𝑝𝑛−2, (40) 

there is a controller with satisfactory performance. In this 

case, the characteristic polynomial of the closed loop 

system is 

𝜆6 + (2𝑥∗ − 𝑘3)𝜆
5 + (−𝑘4 − 2𝑘3𝑥

∗ − 𝑏)𝜆4

+ (𝑏𝑘3 − 𝑘1 − 2𝑘4𝑥
∗)𝜆3

+ (𝑏𝑘4 − 𝑘2) = 0. 
(41) 

Using a controller with the following parameters 

𝑘1 = 6.2279 , 𝑘2 = −1.0155 ,  

𝑘3 = 1.8398 , 𝑘4 = −3.3850, 
(42) 

the stable eigenvalues of the open loop system remain 

unchanged and the unstable ones will be zero in the closed 

loop system. Simulation results of the states and control 

parameter are shown in Fig. 5. 

 

 

Fig. 4. Simulation of the Henon map with delay 𝜹 = 𝟏 by the 

memory method. 

 

 

Fig. 5. Simulation of the Henon map with delay 𝜹 = 𝟐 by the 

memory method. 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/


Amirkabir International  Journal of Science & Research 

(Modeling, Identification, Simulation & Control)  

(AIJ-MISC)  

Latency Compensation in Multi Chaotic Systems Using the Extended OGY 

Control Method  

 

Vol. 47 - No. 2 - Fall 2015   7 

C. Smith Predictor for Henon Map 

Fig. 6 presents the block diagram form of the Henon 

Map with loop latency. 

 

Fig. 6. Block diagram form of the Henon map with delay. 

Closed loop instability is inevitable even with 𝛿 = 1. The 

Smith predictor proposed to compensate the Henon 

system with latency is applied and simulation results 

indicate the success of this methodology. Fig. 7 

demonstrates the system states and control parameter 

deviations for 𝛿 = 2. 

The results show that the Smith predictor compensates 

for the system’s latency efficiently. 

6. COMPENSATION IN MULTI CHATIC MAPS 

For coupled Henon and Ushiki maps, the system 

equations will be as: 

{
 

 
𝑥𝑛+1 = 𝑝 − 𝑥𝑛

2 + 0.3𝑦𝑛                            
𝑦𝑛+1 = 𝑥𝑛 + 𝛼𝑧𝑛                                       

𝑧𝑛+1 = (𝑎 − 𝑧𝑛 − 0.06𝑤𝑛)𝑧𝑛                

𝑤𝑛+1 = (2.5 − 0.4𝑧𝑛 −𝑤n)𝑤𝑛 + 𝛽𝑥𝑛  

, (43) 

where 𝑥, 𝑦, 𝑧 and 𝑤 are the states, 𝑝 and 𝑎 are the control 

parameters, and 𝛼 and 𝛽 are the state interaction 

parameters between the two chaotic map dynamics [17]. 

As was shown in [17], the basic OGY method is not 

suitable for complex chaotic maps with interconnections 

and so the extended OGY methodology must be used. 

Simulation results show that the latency time can easily 

destabilize the controlled coupled Henon and Ushiki maps 

using the extended OGY methodology. 

For 𝛿 = 1, the states diverge and therefore a 

compensation method is needed. Hence, the proposed 

methods of section 4 will be applied to the system 

described in (43). 

A. Rhythmic Control in Coupled Multi Chaotic 

Maps 

For the linearized system described in (43) around the 

fixed point, with 𝛼 = 𝛽 = 0.05, 

 

 

Fig. 7. Smith predictor applied to the Henon map with latency 𝜹 

=2. 

 

𝐴 = [

−1.7142 0.3
1 0

0 0
0.05 0

0 0
0.0500 0

−1.9752 −0.1785
−0.1654 0.4827

], 

𝐵 = [

1 0
0 0

0 2.9752
0 0

] ,  

𝐾

= [
1.2915 −0.6919
−0.0161 −0.0124

0.1240 −0.0189
0.8979 0.0606

]. 

(44) 

The control feedback law in this case is: 

[
𝛿𝑝𝑛
𝛿𝑎𝑛

] = 𝐾𝑛 [

𝛿𝒙𝑛−𝛿
𝛿𝒚𝑛−𝛿
𝛿𝒛𝑛−𝛿
𝛿𝒘𝑛−𝛿

] , 𝛿 ≥ 1, (45) 

{
𝐾𝑛 = 𝐾 , 𝑛 = 𝑖 × (𝛿 + 1), 𝑖 = 0,1,2, …
𝐾𝑛 = 0 ,               𝑂.𝑊.                                      

. (46) 

The eigenvalues of 𝐴2 + 𝐵𝐾 are 4.9772, 6.6158, 

−0.1428, and 0.2448 and the closed loop system is 

unstable. It means that the Rhythmic methodology cannot 

solve the loop latency problem in this multi-chaotic case. 
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B. Memory Method in Coupled Multi Chaotic 

Maps 

In this case, the control feedback law is 

[
𝛿𝑝𝑛
𝛿𝑎𝑛

] = 𝐾𝑛 [

𝛿𝒙𝑛−𝛿
𝛿𝒚𝑛−𝛿
𝛿𝒛𝑛−𝛿
𝛿𝒘𝑛−𝛿

] , 𝛿 ≥ 1, (47) 

 

[
𝑝𝑛
𝑎𝑛
] = [

𝑘1 𝑘2
𝑘5 𝑘6

𝑘3 𝑘4
𝑘7 𝑘8

] [

𝑥𝑛−1
𝑦𝑛−1
𝑧𝑛−1
𝑤𝑛−1

]

+ [
𝑞1 𝑞2
𝑞3 𝑞4

] [
𝑝𝑛−1
𝑎𝑛−1

]. 

(48) 

If the state vector of the original system is defined as 

𝑍𝑛 = [𝑥𝑛 𝑦𝑛 𝑧𝑛 𝑤𝑛]𝑇 and the input control 

parameter vector is 𝑃𝑛 = [𝑝𝑛 𝑎𝑛]𝑇, then the state space 

vector for applying memory method for system described 

in (43) with latency time 𝛿 = 1 via memory method will 

be: 

[

𝑍𝑛
𝑍𝑛−1
𝑃𝑛−1

]  

This choice will form a system matrix with 10 × 10 

dimension which leads to difficulties in calculating a 

suitable state feedback to set all closed loop eigenvalues to 

zero (except the stable open loop ones which remain 

unchanged). As it is illustrated in this example, calculation 

burden is a limiting feature of this methodology. 

C. Smith Predictor in Coupled Multi Chaotic 

Maps 

In this section, Smith predictor is used for complex 

multi-chaotic systems. In order to examine the effect of 

this compensator, Smith predictor is applied to the system 

described in (43) as presented in Fig. 8. 

 

Fig. 8. Block diagram for Smith predictor applied in multi 

chaotic system. 

 

 

 

Fig. 9. States and two control parameters of interconnected 

maps described in (43) using extended OGY method as the 

controller and Smith predictor as latency time compensator. 

𝑥, 𝑦, 𝑧 and 𝑤 are the states, 𝑝 and 𝑎 are the control 

parameters, 𝑛 is the current iteration, and 𝛿 is the latency 

of the multi chaotic system. 

Simulation results in Fig. 9 indicate that Smith 

predictor can be an appropriate compensator for latency in 

multi chaotic systems. 

7. CONCLUSIONS 

In this paper, the problem of controlling chaotic 

systems in presence of loop latency was considered. The 

latency compensation methods were reviewed and they 

have been applied to both simple Henon map using OGY 

chaos control and a complex chaotic structure. For 

complex chaotic maps, the extended OGY control 

methodology must be used. The compensation methods 

analysed in this paper are Rhythmic control, Memory 

Method and Smith predictor. In Rhythmic control, the 

control signal was injected in every (𝛿 + 1)-fold 

rhythmically. It was a simple method, but the control was 

kept inactive for some time steps. The results show that 

Rhythmic control is not a suitable solution even for simple 

chaotic maps. In Memory method, previous applied 

control signals or states of the systems were involved in 

the control signal.  Besides this method’s advantages, 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/


Amirkabir International  Journal of Science & Research 

(Modeling, Identification, Simulation & Control)  

(AIJ-MISC)  

Latency Compensation in Multi Chaotic Systems Using the Extended OGY 

Control Method  

 

Vol. 47 - No. 2 - Fall 2015   9 

there were some problems in application such as 

instability and increasing the closed loop systems 

dimensions. It should be noted that in the Memory 

method, there is no rule for selecting the number of 

previous states/parameters to be involved in the control 

signal. Also, it is not a suitable solution for high 

dimensional systems. As it is shown in multi chaotic 

example, the dimension of added items (parameters or 

states) in the state vector of the system causes difficulties 

in calculations for finding an OGY controller. The Smith 

predictor is a structure in which the designed controller is 

not changed and the loop latency can be compensated. In 

both simple and complex chaotic maps, Smith predictor 

has a closed loop satisfactory performance in conjunction 

with the OGY controllers. 
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