
AUT Journal of Electrical Engineering

AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368
DOI: 10.22060/eej.2025.23497.5618

 Kidney Stones CT Images Classification using Graph Convolutional Network
Amin Asgari , Hossein Ebrahimnezhad * , Mohammad Hossein Sedaaghi

Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran

ABSTRACT: Kidney stones are solid crystals made of minerals and salts that form within the kidney,
often creating a sharp, hard mass. These stones can block urine flow as they move into the urinary
tract, making early detection crucial. Although deep neural networks (DNNs) have been used to
diagnose kidney stones with some success, they still face performance and standardization issues. A
new approach combines graph convolutional networks (GCNs) with DNNs to address these challenges.
This method extracts orb features from images, converts them into graphs, and embeds nodes using a
graph convolutional network, which includes a message-passing layer and node feature aggregation.
The GCN updates node properties, enhancing efficiency and performance when integrated into a deep
network. This approach enables more comprehensive and precise feature extraction from images,
improving kidney stone diagnosis. The study highlights GCNs’ potential in analyzing medical images
for diagnosing kidney stones. The proposed architecture was tested using publicly available CT scan
images and demonstrated outstanding accuracy, correctly identifying kidney stones or healthy conditions
in 98.6% of cases. It outperformed other advanced techniques, especially in detecting stones of various
sizes, including very small ones, proving its effectiveness in medical image analysis.

Review History:

Received: Sep. 02, 2024
Revised: Dec. 13, 2024
Accepted: Jan. 22, 2025
Available Online: Jan. 23, 2025

Keywords:

Graph Convolution Network

Kidney Stones

ORB Feature Extraction

Node Embedding

Deep Neural Network

355

1- Introduction
Kidney stones are hard mineral and salt deposits that form

within the kidneys. They can cause severe pain and potentially
block urine flow, leading to kidney damage if left untreated.
Traditional methods for diagnosing kidney stones, such as
ultrasound, CT scans, and X-rays, rely heavily on medical
imaging techniques, but interpreting these images can be
complex and time-consuming. Often, the process requires the
expertise of specialist radiologists [1]. However, the advent
of deep learning has significantly transformed medical image
analysis. Convolutional neural networks (CNNs), a type of
deep learning model, have proven highly effective in image
classification and object recognition, enabling accurate
disease diagnosis, including kidney stone detection, by
learning intricate patterns from large datasets [2].

A newer class of neural networks, known as graph
convolutional networks (GCNs), operates on graph-structured
data and excels in modeling spatial relationships within
medical images. This ability to represent complex structures
and relationships within the data can enhance diagnostic
accuracy, offering a promising alternative or complement
to traditional CNNs in medical imaging tasks. By capturing
the connections between different kidney segments or stone
features, GCNs provide valuable insights into kidney stone

formation and distribution. The integration of deep learning
models like CNNs and GCNs into kidney stone diagnosis
offers the potential to improve both accuracy and speed
while reducing radiologists’ workload, ultimately expediting
patient treatment [3].

As deep learning technologies continue to evolve, GCNs,
in particular, hold great promise for advancing the diagnosis
of renal pathologies. With their ability to learn from large
and diverse datasets, these models are well-positioned to
generalize to new data, making them invaluable tools in the
future of medical image analysis. This progress is expected to
result in improved diagnostic accuracy and better healthcare
outcomes for patients [4-6].

The integration of computer vision and deep learning into
medical imaging has significantly enhanced the capabilities
of diagnostic tools. Deep learning models have shown
great success in various tasks, such as image segmentation,
classification, and lesion detection when applied to medical
imaging techniques like MRI, CT scans[7], and X-rays[8].
Fig. 1 shows examples of renal CT scans, including normal
images and images with kidney stones. These advancements
have improved diagnostic accuracy and reliability, aiding
physicians in diagnosing and managing various medical
conditions. Recent progress in artificial intelligence,
particularly through deep neural networks (DNNs), has yielded
significant achievements in interpreting medical images and

*Corresponding author’s email: ebrahimnezhad@sut.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/eej.2025.23497.5618
https://orcid.org/0009-0002-2135-9453
https://orcid.org/0000-0003-4071-2750
https://orcid.org/0000-0001-6937-9176

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

356

biological signals[9]. These sophisticated algorithms have
proven valuable across many medical applications, including
the urology field, where deep learning is increasingly used for
the automated identification of urinary tract stones[10].

This study combines Graph Convolutional Networks
(GCNs) for node feature embedding and Deep Neural
Networks (DNNs) for final learning. GCNs update nodes by
incorporating information from neighboring nodes, integrating
both local and neighboring data. This approach applies to
various graph-structured data, such as social networks and
protein interactions. The refined node features from GCNs
are then processed by the DNN to identify complex patterns,
making the two-step method more effective at capturing node
characteristics.

Several studies have explored different deep-learning
approaches to improve the classification and detection of
urinary tract stones. Nithya et al.[11], in 2020 achieved a
93.45% accuracy rate in classifying stone cases by using
GLCM feature extraction models and analyzing 100 samples,
despite the dataset being considered small. Wu et al[12]. In
2020 utilized a multi-feature fusion neural network, combined
with Inception-V3, to achieve a 94.67% accuracy rate when
analyzing ultrasound data. However, the complexity of
the model presented challenges for practical application.
Other studies, such as those by in 2018 Thein et al[13]. and
Cui et al. also focused on kidney stone segmentation and
classification, achieving varying degrees of accuracy. Each
study highlighted limitations related to dataset size, model
complexity, and generalizability. For instance, Yildirim et
al[14]. In 2021 used the XResNet-50 method with a SoftMax
classifier to achieve a 96.82% accuracy rate but noted the
model’s complexity as a potential barrier to practical use. In
2023, Chaohua Yan et al[15]. introduced an optimized Deep
Belief Network (DBN) using a fractional coronavirus herd
immunity optimizer (FO-CHIO). This method combines deep
learning and meta-heuristics to create a customized DBN
tailored for kidney stone detection. The approach is based
on a fractional version of the coronavirus herd immunity
enhancer, aiming to deliver an efficient and reliable detection
system. Simulations demonstrate that the proposed DBN/
FO-CHIO approach outperforms other studied methods,
achieving an accuracy of 97.98%.

The current research aims to leverage Graph Convolutional
Networks (GCNs) and deep neural networks to reduce missed
kidney stone diagnoses in CT scans and minimize human
error, particularly in emergency settings where specialist
radiologists may not be available. The increasing availability
of data has facilitated the integration of deep learning in
medical applications, and graph-based techniques have
shown promise in optimizing data usage for image analysis.
This study proposes a novel model that combines GCNs
with DNNs for the automated classification of kidney stones
using CT imaging. The innovative model seeks to enhance
the classification accuracy of kidney stones by utilizing
features from coronary CT scans, offering a powerful tool for
healthcare providers to make precise diagnoses and improve
patient outcomes. Experiments were conducted to assess the
impact of combining graph convolutional networks (GCN)
with deep learning on improving recognition accuracy,
specifically by integrating GCN with convolutional neural
networks (CNN). This approach leverages the capabilities of
GCNs in modeling relationships between elements and the
strengths of CNNs in extracting visual features and, resulting
in more comprehensive feature extraction and a deeper
understanding of the data. The combined method outperforms
the use of either technique individually and proves effective
in addressing various problems and processing structured
data. The goal of this model is to assist radiologists in the
precise identification of kidney stones. Key contributions of
this study include:
•	 Dataset Preparation: A dataset of CT scan images

focusing on coronary arteries is compiled. From these
images, a region of interest (ROI), specifically targeting
kidney areas, is isolated to improve the accuracy of
detecting kidney stones.

•	 Feature Extraction: A feature extraction algorithm
processes each image, creating a feature matrix that
encapsulates critical image attributes.

•	 Image-to-Graph Conversion: The feature vectors are
transformed into graph nodes, converting images into
graph structures based on extracted features.

•	 Graph Convolutional Network (GCN) Processing: The
GCN analyzes the graph nodes to generate embeddings,
ensuring accurate feature recognition, including the

 (a) (b)

Fig. 1. Sample CT images: (a) kidney stone, and (b) healthy.

Fig. 1. Sample CT images: (a) kidney stone, and (b) healthy.

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

357

identification of small kidney stones.
•	 Deep Neural Network Classification: The deep neural

network classifies the embedded features, facilitating the
recognition and classification process.

•	 Effectiveness Evaluation: An in-depth analysis evaluates
the performance of the GCN combined with deep learning
approaches, verifying its efficacy in enhancing diagnostic
precision.
The remainder of the paper is structured as follows:

Section 2 outlines the problem statement and details the
proposed methodology. Section 3 provides the results along
with their analysis. Lastly, Section 4 offers the conclusion.

2- Proposed method
This research explores a method for classifying kidney

stones in CT images using a combination of a graph
convolutional network (GCN) and a deep neural network
(DNN). The process begins with the preprocessing and
cropping of CT images to focus on significant areas. The
ORB (Oriented FAST and Rotated BRIEF) feature extractor

is then used to identify and extract distinct points in each
image, which are treated as nodes in a graph, resulting in
a separate graph for each image. A GCN is employed to
embed these nodes, refining each node’s representation
based on its neighbors, to capture spatial relationships and
dependencies within the image. The refined graphs, enriched
with contextual information from the GCN, are then input
into a DNN to complete the training process. This integrated
approach of GCN and DNN allows the model to effectively
learn and classify the presence of kidney stones in CT images
by combining graph-based and neural network techniques.

2- 1- Pre-processing
This research aims to develop a framework to reduce

the oversight of kidney stone cases by physicians during
CT scan evaluations. The proposed model utilizes Graph
Convolutional Networks (GCNs) to detect kidney stones in
low-contrast coronary CT scans, combining advanced deep
learning with radiographic image processing. As shown
in Fig. 2, The methodology involves five key phases: data

Fig. 2. Overall steps of the proposed method for kidney stone CT image classification.

a) standard model of GCN. b) Enhanced model of GCN.

Fig. 2. Overall steps of the proposed method for kidney stone CT image classification. a) standard model
of GCN. b) Enhanced model of GCN.

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

358

acquisition, data preparation, image-to-graph conversion,
application of the GCN, and image classification.

The dataset is compiled by sourcing images and
standardizing their dimensions to an average size. To increase
data variability and improve machine learning model
performance, the images are synthetically modified through
rotations (5 and 10 degrees) and translations (horizontal
and vertical shifts). These augmentation techniques help the
model recognize features from different angles and reduce
orientation bias. The images are then preprocessed through
resizing, rotation, translation, and trimming. Trimming
removes border areas to focus on the kidney region,
enhancing the precision and depth of analysis. This targeted
approach reduces noise, improves algorithm effectiveness,
and increases the accuracy and reliability of image analysis,
particularly crucial in medical imaging. Fig. 3 depicts the pre-
processing stage, highlighting the kidney region.

2- 2- ORB Feature Extraction
In medical image processing, algorithms like ORB

(Oriented FAST and Rotated BRIEF) [16] improve diagnostic
efficiency by focusing on key image points, such as edges,
where brightness and contrast change significantly. This
targeted approach reduces unnecessary pixel processing,
enhancing detection accuracy for critical areas like kidney
stones and speeding up analysis.

The study did not use deep feature extraction due to
challenges in interpreting complex image-derived concepts.
Although deep learning can identify intricate patterns, the
abstract nature of deep features makes it difficult to correlate
them with specific image elements, limiting their practical
application in analyzing CT images of kidney stones. For
the present study, the use of the ORB feature extractor is as
follows, after locating the kidney region in the images, we
employ the ORB feature extractor, a robust image processing
and machine vision technique, to extract features. ORB
identifies and describes key points in images, which are
distinct points characterized by significant changes in color
intensity or texture. These key points, along with their
descriptors, are crucial for image analysis and matching.

In Eq. (1), The FAST algorithm, which detects points with
substantial color intensity differences from their surroundings,

is used to identify these key points. If the number of points
within a circular area around a potentially key point P with
intensity changes greater than a threshold t compared to P’s
intensity exceeds a certain number, P is recognized as a key
point.

()
()

() n N P
True if Intensity p k

FAST P
False otherwise

∈

 ≥= 


∑
 (1)

In this equation, ()Intensity p represents the color
intensity at point p , and n denotes one of its neighboring
points. The variable t is the threshold for color intensity
change, and k indicates the number of neighboring
points. Descriptors are characteristic attributes that offer
supplementary details regarding salient points within an
image. The ORB (Oriented FAST and Rotated BRIEF)
algorithm enhances the BRIEF (Binary Robust Independent
Elementary Features) descriptors to ensure they are invariant to
rotational transformations. BRIEF encodes the characteristics
of these salient points in a binary format. These descriptors
are derived by evaluating the color intensity differences at
various sampled locations surrounding the salient points.
According to Eq. (2), The outcome of these evaluations is
encoded as a binary vector consisting of 0s and 1s. For each
salient point, the color intensity is compared between pairs of
sampled points in its vicinity. If the color intensity at the first
sampled point

1 p exceeds that of the second sampled point

2 p , a value of 1 is assigned to the corresponding position in
the binary vector; conversely, if the intensity at

1 p is less
than or equal to that at 2 p ,a value of 0 is assigned.

1 () ()
()

0
i jif I p I p

BRIEF P
otherwise

>
= 


 (2)

In this equation, ()iI p is the color intensity of point i p
and j p of another point in the sampled area.

 (a) (b)

Fig. 3. Image preprocessing reduces noise by using image cropping, which removes excess information by
focusing on the kidney region. (a) kidney stone images cropped, (b) normal images cropped.

Fig. 3. Image preprocessing reduces noise by using image cropping, which removes excess information by
focusing on the kidney region. (a) kidney stone images cropped, (b) normal images cropped.

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

359

BRIEF descriptors are not particularly robust against
image rotation; therefore, ORB incorporates an additional
step to enhance feature rotation invariance. This step involves
computing an orientation for each key point to ensure that
the descriptors remain consistent despite image rotations.
An angle is determined for each key point, which defines
the orientation of the descriptor. This angle is then applied
to the BRIEF descriptors to make them resistant to rotational
transformations.

The process of feature extraction using ORB is as
follows: initially, the FAST algorithm is employed to detect
key points within the image. Subsequently, the orientation
angle for each key point is computed. Following this, BRIEF
is utilized to generate a binary descriptor for each key point.
These descriptors are constructed based on the intensity
values at sampled locations around each key point. Finally,
the descriptors are rotated in accordance with the computed
orientation angle to achieve rotational invariance. The optimal
threshold for identifying key points with the FAST algorithm
was determined through various experiments, in such a way
that it provided the highest accuracy in identifying features
and small kidney stones, and the overall performance of the
algorithm remained resistant to threshold changes

2- 3- Image to graph With Features
In this study, ORB features are extracted from the image

using the FAST algorithm to detect key points with sharp
intensity changes, followed by the BRIEF algorithm to
describe these points. ORB is effective under varying lighting
conditions and image rotation. Each key point is treated as
a node in a graph, and connections are formed based on the
distances between nodes within a certain area, modeling
spatial relationships and enhancing the understanding of the
image’s structure. After extracting features from images using
the ORB algorithm, a 200 32× feature matrix is obtained for
each image. Each 1 32× feature vector is treated as a node,
and a graph with 200 nodes is constructed for each image by
connecting nodes based on a similarity threshold set at 200.
This process is applied to all images, resulting in a unique
graph for each, as illustrated in Fig. 4. The graph-based

representation preserves local and global image information,
enables flexible comparison, and captures complex spatial
relationships, facilitating the application of graph algorithms
and analysis techniques to visual data.

Empirical testing established a similarity threshold of
200 as the most effective option after evaluating various
values. This threshold was selected based on tests across
multiple datasets, optimizing graph density and connectivity,
which enhanced the Graph Convolutional Network (GCN)
model’s learning and prediction accuracy. While adaptive
thresholds were considered, they were excluded due to higher
computational complexity and instability. Thus, a threshold of
200 was confirmed as optimal for improving graph structure
and GCN performance.

2- 4- Graph convolution network for node embedding
Graph Convolutional Networks (GCNs) are neural

networks tailored for graph-structured data, excelling in
tasks like node classification, link prediction, and graph
classification. They work by embedding nodes to capture
their properties and inter-node relationships. GCNs extend
the convolution operation from grid-like structures to graphs
through message passing, where nodes share attribute
information with neighbors, followed by aggregation and
update steps to refine node representations. As shown in
Eq. (3), The effectiveness of a GCN layer can be described
mathematically, typically through a formulation that captures
how node representations are transformed through these
steps. This mathematical expression encapsulates the process
of information propagation and aggregation across the graph,
leading to the learning of meaningful node embeddings.

| () - | ()
 ()

t for at least neighbors
Intensity n True if Intensity p
FAST p


 (1)

 () 1
 0

 ()

i

i

if I p
otherwise
Binary Feature Vector where
each bit b BRIEF p








(2)

1 1
(1) () ()2 2()l l l

 H D AD H W (3)

() ()

() { }

l l
i j

j i U i

 M h (4)

1 1
() ()2 2

() { }

l l
i ii ij j jj

j i U i

 



 A D A h D (5)

(1) () ()()l l l
i i h A W (6)

 (3)

where ()lH is the matrix of node features at layer l , with
dimensions lN F× , where N is the number of nodes, and

lF is the number of features at layer l . A = A + I Is the
adjacency matrix of the graph with added self-loops, where

(a) (b)

Fig. 4. (a) ORB Feature Extraction, (b) Feature to graph

Fig. 3. (a) ORB Feature Extraction, (b) Feature to graph

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

360

A is the original adjacency matrix and I is the identity
matrix. D is the diagonal degree matrix of A , with entries

ii ijj
=∑D A . ()lW the learnable weight matrix at layer l

, with dimensions 1l lF F +× . σ is an activation function, such
as ReLU or a sigmoid function. The formula is derived from
spectral graph theory, where the convolution operation on a
graph within the spectral domain is defined using the graph
Laplacian. The normalization term

1 1() ()
2 2()

− −
D A D  , ensures that

the node features are normalized, preventing the unbounded
growth of features across layers. The stages of the graph
convolution network (GCN) layer in the study are:

Message Passing: In the message passing phase, which
is specified by Eq. (4), each node i sends its current feature
vector ()l

ih to its immediate neighbors. This process can
be conceptualized as a node disseminating its information
throughout the graph. By including self-loops in the adjacency
matrix A , each node also takes into account its own features.

| () - | ()
 ()

t for at least neighbors
Intensity n True if Intensity p
FAST p


 (1)

 () 1
 0

 ()

i

i

if I p
otherwise
Binary Feature Vector where
each bit b BRIEF p








(2)

1 1
(1) () ()2 2()l l l

 H D AD H W (3)

() ()

() { }

l l
i j

j i U i

 M h (4)

1 1
() ()2 2

() { }

l l
i ii ij j jj

j i U i

 



 A D A h D (5)

(1) () ()()l l l
i i h A W (6)

 (4)

where ()iℵ denotes the set of neighbors of node i .
Aggregation Phase: During the aggregation phase,

according to Eq. (5), each node collects and combines
the messages it has received from its neighboring nodes.
This process typically involves summing or averaging the
messages. To ensure that nodes with varying numbers of
connections (degrees) contribute fairly to the overall sum,
a normalization by

1
2

−
D is applied. This normalization step

is crucial for maintaining the integrity of the aggregated
information, regardless of the node’s degree of connectivity
within the network.

| () - | ()
 ()

t for at least neighbors
Intensity n True if Intensity p
FAST p


 (1)

 () 1
 0

 ()

i

i

if I p
otherwise
Binary Feature Vector where
each bit b BRIEF p








(2)

1 1
(1) () ()2 2()l l l

 H D AD H W (3)

() ()

() { }

l l
i j

j i U i

 M h (4)

1 1
() ()2 2

() { }

l l
i ii ij j jj

j i U i

 



 A D A h D (5)

(1) () ()()l l l
i i h A W (6)

 (5)

This step captures the local structure of the graph by
combining information from neighboring nodes.

Update Phase: In the update phase, according to Eq. (6),

the aggregated information is transformed using a learnable
weight matrix ()lW . This transformation is followed by the
application of a nonlinear activation function σ , which
generates updated node features (1)l

i
+h . This process allows

the model to learn complex patterns and relationships within
the graph structure.

| () - | ()
 ()

t for at least neighbors
Intensity n True if Intensity p
FAST p


 (1)

 () 1
 0

 ()

i

i

if I p
otherwise
Binary Feature Vector where
each bit b BRIEF p








(2)

1 1
(1) () ()2 2()l l l

 H D AD H W (3)

() ()

() { }

l l
i j

j i U i

 M h (4)

1 1
() ()2 2

() { }

l l
i ii ij j jj

j i U i

 



 A D A h D (5)

(1) () ()()l l l
i i h A W (6)

 (6)

This transformation allows the network to learn complex
patterns in the data by applying nonlinearities and tuning
the parameters of ()lW . Graph Convolutional Networks
(GCNs) typically consist of several layers, with the output
of each layer serving as the input for the subsequent layer.
This hierarchical structure enables the network to learn
representations of the graph that capture both local and global
structural information.

In the study, Graph Convolutional Networks (GCNs)
are utilized to enhance image analysis by transforming
image features into graph nodes. Initially, image features are
extracted using the ORB feature extractor, producing high-
dimensional vectors that capture local patterns. These features
are then used to construct a graph where each feature point is
a node, and edges are established based on spatial proximity
or feature similarity, forming an adjacency matrix. The GCNs
process this graph through multiple layers, refining the node
features by integrating information from neighboring nodes.
This process enhances the representation of each node by
considering the broader image context.

Through the iterative process of message passing,
aggregation, and non-linear activation in GCNs, the
embeddings of the nodes are continually refined,
incorporating both local and global contextual information.
This refined representation significantly improves the
performance of image-related tasks such as segmentation,
classification, and object recognition. GCNs thus offer a
robust framework for capturing intricate relationships within
image data, making them highly effective for complex image
analysis tasks. Fig. 5 shows the graph convolution network
used in embedding nodes. This procedure is conducted over
multiple iterations to enhance the positioning of nodes within

Fig. 5. Features of each node are updated in every message-passing layers.

Fig. 5. Features of each node are updated in every message-passing layers.

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

361

the graph, taking into account the broader context of their
neighborhood. Subsequent to the update of the graph nodes, a
200 32× matrix is generated for each image, which serves as
a representation of the image features extracted through the
graph convolution network.

In graph convolutional networks (GCNs), selecting the
right adjacency matrix, including inner loops, is crucial for
effective feature propagation and model performance. This
choice allows nodes to update their attributes using both
their own and neighbors’ characteristics, enhancing pattern
recognition accuracy. Normalization helps prevent feature
accumulation across layers, but in sparse graphs, it can lead to
information loss, while in dense graphs, it may overemphasize
central nodes. Thus, choosing suitable normalization methods
and adjacency matrices based on the graph’s structure is
essential for optimizing GCN performance.

In the standard Graph Convolutional Network (GCN)
workflow, after the node embedding stage, the learned
embeddings are typically passed to a downstream model
for task-specific learning. Initially, a Multilayer Perceptron
(MLP) with three fully connected layers of 256, 128, and
64 neurons is used. The MLP processes these embeddings
to perform classification or regression tasks, with training
done using backpropagation and an appropriate loss function.
However, the results from this approach often fall short of
expectations. This underperformance is likely due to the
MLP’s inability to leverage the rich structural and topological
information embedded in the node features, as it treats features
independently and lacks the capacity to capture complex
patterns inherent in the graph data. To improve performance,
the MLP is replaced with a convolutional network, which
is better equipped to process the spatial and hierarchical
relationships in the embeddings. Convolutional layers, by
design, are adept at identifying local patterns and maintaining
feature correlations, making them more effective in extracting

meaningful representations from the node embeddings.
This approach leads to significantly better results, as the
convolutional network can exploit the structural properties of
the embeddings, enhancing task-specific learning. This shift
highlights the importance of selecting the right downstream
architecture to complement the embeddings produced by
GCNs, especially for tasks where the graph’s inherent
structure plays a crucial role in determining the outcome.

2- 5- Deep Neural Network
In the subsequent phase, the extracted features from each

image are fed into a Deep Neural Network for the feature
training process. This network consists of several key
components designed for efficient learning and classification,
including convolutional layers with Leaky ReLU activation,
normalization layers, max-pooling layers, fully connected
layers, and dropout layers. The initial six convolutional layers
are crucial for extracting and refining high-level features from
the images, with batch normalization applied after each layer
to stabilize and accelerate training. MaxPooling layers then
reduce the spatial dimensions of the feature maps, helping to
decrease computational load and control overfitting.

To further enhance generalization and prevent overfitting,
dropout layers are used, randomly omitting a portion of input
units during training. The fully connected layers follow, with
one dense layer using Leaky ReLU for high-level reasoning,
and another final fully connected layer responsible for
generating class scores. These scores are passed through a
SoftMax layer, which normalizes them into probabilities for
classification. The classification layer then interprets these
probabilities to predict the final class, assigning labels to
the input data and playing a critical role in loss calculation
during training. Fig. 6 illustrates the architecture of the deep
network used for training, incorporating features extracted
from the graph convolutional network. As shown in Fig.

Fig. 6. Architecture of the proposed CNN network

Fig. 6. Architecture of the proposed CNN network

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

362

6, a convolutional neural network (CNN) is defined for
classification. It begins with an input layer designed to process
the feature matrix obtained from the graph convolutional
network. The network comprises four convolutional blocks,
each with convolutional layer that use 3*3 filters, followed by
batch normalization, a Leaky ReLU activation (0.01), and a
max-pooling layer that halves the spatial dimensions. These
blocks progressively increase the number of filters from 64 to
512, allowing the network to extract more complex features at
each stage. Dropout layers, with a dropout rate of 20 percent,
are included after each block to mitigate overfitting. After
feature extraction, the network transitions to fully connected
layers with sizes gradually reducing from 256 to 64 neurons,
each followed by Leaky ReLU activation and dropout
layers. The final fully connected layer maps the features to
the number of output classes. A SoftMax layer converts the
outputs into probabilities, and a classification layer computes
the loss for classification. This architecture effectively
combines feature extraction, nonlinearity, dimensionality
reduction, and regularization to build a robust model for
image classification tasks.

The deep learning model’s training process involves
feeding image features through convolutional, normalization,
pooling, and fully connected layers, with dropout layers to
prevent overfitting. The network’s weights are adjusted using
the Adam optimizer to minimize the loss, typically cross-
entropy, which measures the difference between predicted
probabilities and actual labels. This architecture effectively
processes and refines image features, enabling the network
to learn complex patterns and achieve accurate image
classification, with the final SoftMax layer generating class
probabilities for classification.

The combination of Graph Convolutional Networks
(GCNs) and Deep Neural Networks (DNNs) significantly
enhances the model’s ability to process complex data,
especially in contexts where both relational graph data and
image-based patterns need to be analyzed together. GCNs

are designed to efficiently extract and propagate information
from graph-structured data by learning from the connectivity
between nodes (i.e., entities in the graph) and their neighbors.
This allows GCNs to capture both the inherent structure of
the graph and the interactions between entities, providing
a comprehensive feature matrix that encodes essential
structural relationships and node-specific information. When
these graph-derived features are passed as inputs into a
Convolutional Neural Network (CNN), the fusion of GCN
and CNN capabilities is powerful. The CNN’s hierarchical
layers excel in recognizing spatial patterns and capturing
complex, multi-level features in images or other structured
data. By feeding the feature-rich output of a GCN into the
CNN, the model benefits from the GCN’s ability to preserve
the graph’s topological information, which is crucial for tasks
like node classification, graph classification, or any task
involving data with inherent structure.

Moreover, the synergy between GCN and CNN plays a
pivotal role in improving the model’s capacity to understand
both the structural dependencies and the local patterns in
the data. The GCN provides a solid foundation by encoding
the relationships between entities in a graph, while the CNN
further enhances this information through its powerful
feature extraction and abstraction capabilities. The end result
is a model that can simultaneously capture relational patterns
(from the graph) and local, spatial patterns (from the CNN),
which is essential for tasks requiring a deeper understanding
of both graph structures and complex, spatial relationships.

As specified in Algorithm 1, a convolutional neural
network (CNN) model is designed to classify images into
two classes. First, the input data, including features obtained
from the convolutional graph network and the training and
test labels, is loaded and preprocessed. This process involves
randomizing the data, normalizing the pixel values to the
interval [0, 1], and converting the labels into a categorized
format. Next, the training data is split into two parts:
training and validation. The CNN model is constructed with

Algorithm 1. Preprocessing, Training, and Validation of a CNN Model for Classification
Algorithm1. Preprocessing, Training, and Validation of a CNN Model for Classification

Step Description

Input Training and test Features and labels.

Output Trained CNN model.

1. Initialization Clear workspace and load data files.

2. Preprocessing Shuffle data,input Features [200 × 32], normalize to [0, 1], and convert labels to
categories.

3. Data Split Split training data into 80% training and 20% validation sets.
4. CNN Definition Define CNN with input, convolutional, pooling, dropout, and fully connected layers.
5. Training Setup Config. optimizer (Adam), learning rate, epochs (30), and validation monitoring.
6. Training Train the CNN using train Network with prepared data and options.

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep learning-based methods.

Model Accuracy Epochs Sensitivity Specificity Precision F1-
Score Test time

Urinary[19] 88% - 86% 90% 89.6% 86.5% -

DELM[20] 94.4% 50 94.6% 93.3% 92.5% 93.9% -

xResNet-50 [14] 96.8% 200 95% 97% 97% 96% 1.3 Sec

DKN[21] 98.5% 150 98.1% 98.9% 99% 98.6% 1.5 Sec

GCN-Standard
 (proposed) 80.06% 200 80% 81% 82% 81% 1.06 Sec

GCN-Enhanced
(proposed) 98.6% 50 99% 97.5% 97.8% 98.7% 0.93 Sec

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

363

convolutional layers for feature extraction, normalization
layers for stability, activation layers for nonlinear learning,
and aggregation and dropout layers to reduce complexity and
prevent overfitting. The training configuration includes the
Adam optimizer, a fine-tuned learning rate, and continuous
evaluation of the validation data. Finally, the trained model is
capable of classifying new data with high accuracy.

3- Results & Discussions
We developed the proposed model using the MATLAB

2023b programming environment. The simulation ran on a
system with an Intel i7 processor, 48 GB of DDR4 RAM,
and an NVIDIA RTX 3080 GPU. The dataset contains 1799
CT scans of kidneys: 790 scans with kidney stones and
1009 scans of healthy kidneys. We divided the data into two
subsets for testing: 90% for training and 10% for validation.
Additionally, the experimental dataset included 346 CT scans,
with 165 images showing kidney stones and 181 depicting
healthy kidneys.

3- 1- Dataset
The dataset was prepared by Yildirim et al [14] following

approval from the Ethics Committee of Firat University,
Turkey. It includes 500 non-contrast computed tomography
(NCCT) scans from 433 patients aged 18 to 80, divided
into two groups, 278 with kidney stones and 165 healthy
individuals. The CT scans were independently reviewed
and labeled by a radiologist and a urologist to confirm the
presence or absence of stones. The scans were taken using a
120 kV CT protocol with an automatic current range of 100-
200 mA and a slice thickness of 5 mm. The dataset comprises
a total of 1,799 images, with 790 depicting kidney stones and
1,009 showing healthy kidney tissue. To maintain a balanced
dataset, data augmentation techniques were used to adjust the
ratio of stone-containing to normal images. The data was then
split into training and testing sets, with the training directory
containing 1,453 images (625 with stones and 828 without
stones) and the testing directory containing 346 images
(165 with stones and 181 without stones). To minimize
bias, participants in the training set were not included in
the testing set, ensuring distinct groups for each phase. The
images were saved in PNG format and used for evaluating
the performance of the graph convolutional network (GCN)
algorithm combined with a deep neural network (DNN).

3- 2- Setting hyperparameters
During the training and validation phases of a deep

learning model, hyperparameters are fine-tuned to enhance
performance. Initially, the model is trained on a training
dataset, and its performance is evaluated on a validation
dataset. Hyperparameters such as learning rate (η), batch size,
and number of epochs are adjusted iteratively until optimal
values are found. Finally, the model’s performance is tested
on a separate test set to ensure it does not overfit the validation
data. The proposed architecture achieved 98.6% accuracy
after 50 iterations, demonstrating improved performance
over existing models for kidney stone classification.

The network is trained using the Adam optimizer, with
a batch size of 64 and an initial learning rate of 0.0001. The
learning rate decreases by a factor of 0.1 every 30 epochs.
Validation is conducted on a separate dataset every 100
iterations, and the process includes logging details and
visualizing progress to monitor performance. The runtime
environment is configured to automatically choose between
CPU and GPU for optimal efficiency. These settings facilitate
efficient and effective neural network training, promoting
robust learning and generalization. Fig. 7 presents the training
and validation accuracy for each epoch of the proposed GCN-
DNN model, providing insight into its performance.

The confusion matrix in Fig. 8 illustrates the performance
of the proposed GCN-DNN model for kidney stone detection,
achieving an impressive accuracy of 98.6% using a Graph
Convolutional Network (GCN). This highlights the model’s
exceptional capability to deliver highly accurate results.

The confusion matrix[17] reveals that the model
accurately predicts kidney stone images as true positives
(TP) and correctly identifies normal images as true negatives
(TN). However, it occasionally misclassifies kidney stone
images as normal (false negatives, FN) and normal images as
kidney stones (false positives, FP). To evaluate the model’s
performance, we use several metrics: precision (TP / (TP +
FP)), recall (TP / (TP + FN)), and the F1 score (2 × precision
× recall / (precision + recall)). Note that the formula for
accuracy in the original text is incorrect; it should be (TP +
TN) / (TP + TN + FP + FN). These metrics are crucial for
assessing the model’s effectiveness. Accuracy measures the
overall rate at which the model correctly predicts both normal
and kidney stone cases, while recall evaluates the model’s
ability to identify all true positive cases. The F1 score, being
the harmonic mean of precision and recall, balances these two
measures.

In our evaluation with 346 test cases, the model achieved
98.6% accuracy and 99% sensitivity. We tested the model on
an unbalanced dataset comprising 790 kidney stone scans and
1009 normal scans. Fig. 9 presents both the receiver operating
characteristic (ROC) curve[18] and the precision-recall (PR)
curve[18]. The PR curve is generally more informative for
datasets with an unbalanced distribution, as it better reflects
the model’s performance on the minority class. Conversely,
ROC curves are more suitable for balanced datasets.

3- 3- Comparison with Standard Methods
In this section, we evaluate the performance of our proposed

GCN-DNN model against traditional deep learning models,
including xResNet-50 [14], DELM [20], Urinary [19], and
DKN [21], as well as the standard graph convolutional network
(GCN) model with MLP. Table 1 presents a comparative
analysis based on metrics such as accuracy, sensitivity,
specificity, precision, F1 score, and testing time. The standard
GCN model, designed for graph data classification, achieved
an accuracy of 80%. While this accuracy may suffice for some
applications, it is considered relatively low for this particular
problem, which involves a complex and challenging dataset.
This suboptimal performance highlights the limitations of

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

364

Fig. 7. Training, validation accuracy, and loss of the proposed model.

Fig. 7. Training, validation accuracy, and loss of the proposed model.

Fig. 8. Confusion matrix derived from the test data

Fig. 8. Confusion matrix derived from the test data.

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

365

the standard GCN model in extracting deeper features or
establishing more intricate connections between data points.
To enhance accuracy and overall performance, we employed
a GCN-DNN hybrid model. This approach combines the
strengths of GCNs for extracting graph-structured features
and deep neural networks (DNNs) for learning more complex
nonlinear patterns. By replacing the MLP with the GCN-
DNN architecture, the model achieves better generalization
and accuracy, providing a more robust evaluation of complex

datasets. This combination leverages the advantages of both
GCN and DNN architectures, addressing the limitations of
the standard model.

As fully specified in Table 1, The GCN-DNN model
achieves the highest accuracy of 98.6%, surpassing all other
models. It converges more rapidly, requiring only 50 runs,
and demonstrates the highest sensitivity at 99% and an F1
score of 98.7%. Although its specificity of 97.5% is slightly
lower than DKN’s 98.9%, the GCN-DNN model’s accuracy

(a) (b)

Fig. 9. (a) ROC curve and (b) Precision-Recall (PR) curve for classification performance.

Fig. 9. (a) ROC curve and (b) Precision-Recall (PR) curve for classification performance.

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep
learning-based methods.

Algorithm1. Preprocessing, Training, and Validation of a CNN Model for Classification

Step Description

Input Training and test Features and labels.

Output Trained CNN model.

1. Initialization Clear workspace and load data files.

2. Preprocessing Shuffle data,input Features [200 × 32], normalize to [0, 1], and convert labels to
categories.

3. Data Split Split training data into 80% training and 20% validation sets.
4. CNN Definition Define CNN with input, convolutional, pooling, dropout, and fully connected layers.
5. Training Setup Config. optimizer (Adam), learning rate, epochs (30), and validation monitoring.
6. Training Train the CNN using train Network with prepared data and options.

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep learning-based methods.

Model Accuracy Epochs Sensitivity Specificity Precision F1-
Score Test time

Urinary[19] 88% - 86% 90% 89.6% 86.5% -

DELM[20] 94.4% 50 94.6% 93.3% 92.5% 93.9% -

xResNet-50 [14] 96.8% 200 95% 97% 97% 96% 1.3 Sec

DKN[21] 98.5% 150 98.1% 98.9% 99% 98.6% 1.5 Sec

GCN-Standard
 (proposed) 80.06% 200 80% 81% 82% 81% 1.06 Sec

GCN-Enhanced
(proposed) 98.6% 50 99% 97.5% 97.8% 98.7% 0.93 Sec

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

366

is comparable to DKN’s 99%. Notably, the GCN-DNN
model also boasts the shortest testing time of 0.93 seconds,
showcasing its computational efficiency. Overall, the GCN-
DNN model outperforms benchmark models in terms of
accuracy, F1 score, and computational efficiency, making it
a promising choice for real-time applications in biomedical
engineering.

This section discusses the Ablation Study [22] and
time complexity [23] analysis, which are essential for
understanding and improving the model’s performance. The
Ablation Study involves modifying or removing components
of a model to evaluate their impact on performance, helping
to identify critical elements and optimize the model by
eliminating unnecessary parts. Various modifications were
made, and the model’s accuracy was assessed at each
stage. Table 2 compares the baseline model’s performance
with these modifications, which included removing layers
(convolutional, dropout, batch normalization), reducing
neuron units in fully connected layers, and adjusting
hyperparameters like dropout rate, epochs, optimizers, and
learning rate.

The results indicated that removing normalization
and convolutional layers significantly reduced accuracy,
highlighting their critical role in network convergence. The
Adam optimizer with a learning rate of 1e-4 proved to be
the most effective. Increasing epochs to 50 slightly improved
accuracy but also raised training time. Removing dropout

layers caused overfitting, emphasizing their importance
in prevention. These insights aid in optimizing network
architecture and assessing model strengths and weaknesses.

Next, the time complexity of the learning algorithm
is analyzed based on layers, neurons, input size, and other
parameters. Training time complexity depends on iterations,
dataset size, layer count, and parameters, with deeper networks
requiring more calculations. In CNNs, time complexity
is influenced by convolution operations, filter sizes, and
computation methods for each layer. Table 3 outlines the
time complexity for convolutional, fully connected, and max-
pooling layers, demonstrating that increased layer numbers
and complexity lead to longer processing times. This table
illustrates the impact of each network component on overall
performance.

4- Conclusion
This research introduces a deep learning model based

on graph convolutional networks (GCNs) to enhance image
feature extraction. By converting image feature vectors
into graph nodes and applying GCNs with a message-
passing algorithm, this approach captures more detailed
and comprehensive features from images. This technique
significantly improves the traditional methods of image
analysis by effectively handling complex details crucial for
accurate interpretation. The model was tested on publicly
available CT scans for kidney stone detection, achieving an

Table 2. Ablation Study for the proposed method.
Table 2. Ablation Study for the proposed method

Changes Made Model
Accuracy (%)

Change from Base
Model Description

Removed one convolution layer 95.3 -3.3 Reduced number of filters,
accuracy drop.

Removed dropout layers 97.2 -1.4 Slight increase in overfitting.

Removed normalization layers 93.8 -4.8 Negative impact on convergence
and accuracy.

Reduced number of neurons 96.1 -2.5 Reduced model capacity, and
accuracy drop.

Changed dropout rate to 0.5 97.8 -0.8 Slight improvement in
preventing overfitting.

Changed dropout rate to 0.1 96.8 -1.8 Slight increase in overfitting.

Used SGD optimizer 96.4 -2.2 Slower convergence and
accuracy drop.

Learning rate set to 1e-3 97.5 -1.1 Learning rate 1e-3

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

367

impressive accuracy of 98.6%. This performance surpasses
existing state-of-the-art methods, especially in detecting
stones of varying sizes, including small ones. Such precision
is vital in medical diagnostics, where accurate and timely
detection can significantly impact patient outcomes. The
primary advantage of using GCNs lies in their ability to
perform convolution operations on graph nodes, capturing
both local and global structural information. This not only
enhances feature extraction but also preserves intricate details
and variations within images. The capability to identify fine
details is particularly beneficial in medical imaging, where
such precision can be crucial for diagnosis.

References
[1] 	Alelign, T. and B. Petros, Kidney stone disease: an update

on current concepts. Advances in urology, 2018. 2018(1):
p. 3068365.

[2] 	Kolhe, M., et al., Advances in data and information
sciences. Lecture Notes in Networks and Systems, 2017.
39.

[3] 	Zhang, S., et al., Graph convolutional networks: a
comprehensive review. Computational Social Networks,

2019. 6(1): p. 1-23.
[4] 	Ren, H., et al., Graph convolutional networks in language

and vision: A survey. Knowledge-Based Systems, 2022.
251: p. 109250.

[5] 	Rahman, M.M. and R. Marculescu. G-CASCADE:
Efficient cascaded graph convolutional decoding for 2D
medical image segmentation. in Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer
Vision. 2024.

[6] 	Song, T.-A., et al. Graph convolutional neural networks
for Alzheimer’s disease classification. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI
2019). 2019. IEEE.

[7] 	Brisbane, W., M.R. Bailey, and M.D. Sorensen, An
overview of kidney stone imaging techniques. Nature
Reviews Urology, 2016. 13(11): p. 654-662.

[8] 	Hu, S., et al. Towards quantification of kidney stones
using X-ray dark-field tomography. In 2017 IEEE 14th
International Symposium on Biomedical Imaging (ISBI
2017). 2017. IEEE.

[9] 	Lee, J.-G., et al., Deep learning in medical imaging:

Table 3. Time Complexity of CNN Layers.
Table 3. Time Complexity of CNN Layers

Layer Output Size Time Complexity Layer
Output

Size
Time Complexity

Image Input Layer 200x32x1 O(1) Conv2D (3, 512) 25x4x512 O(3*3*256*512*25*4)

Conv2D (3, 64) 200x32x64 O(3*3*1*64*200*32) Conv2D (3, 512) 25x4x512 O(3*3*512*512*25*4)

Conv2D (3, 64) 200x32x64 O(3*3*64*64*200*32)
Max Pooling

(2x2)
12x2x512 O(12*2*512)

Max Pooling (2x2) 100x16x64 O(100*16*64) Dropout 12x2x512 O(1)

Dropout 100x16x64 O(1)
Fully Connected

(256)
256 O(12*2*512*256)

Conv2D (3, 128) 100x16x128 O(3*3*64*128*100*16) Dropout 256 O(1)

Conv2D (3, 128) 100x16x128 O(3*3*128*128*100*16)
Fully Connected

(128)
128 O(256*128)

Max Pooling (2x2) 50x8x128 O(50*8*128) Dropout 128 O(1)

Dropout 50x8x128 O(1)
Fully Connected

(64)
64 O(128*64)

Conv2D (3, 256) 50x8x256 O(3*3*128*256*50*8) Dropout 64 O(1)

Conv2D (3, 256) 50x8x256 O(3*3*256*256*50*8)
Fully Connected

(2)
2 O(64*2)

Max Pooling (2x2) 25x4x256 O(25*4*256) SoftMax 2 O(2)

Dropout 25x4x256 O(1)
Classification

Layer
2 O(1)

A. Asgari et al., AUT J. Elec. Eng., 57(2) (Special Issue) (2025) 355-368, DOI: 10.22060/eej.2025.23497.5618

368

general overview. Korean journal of radiology, 2017.
18(4): p. 570-584.

[10] Suzuki, K., Overview of deep learning in medical
imaging. Radiological physics and technology, 2017.
10(3): p. 257-273.

[11] Nithya, A., et al., Kidney disease detection and
segmentation using artificial neural network and multi-
kernel k-means clustering for ultrasound images.
Measurement, 2020. 149: p. 106952.

[12] Wu, Y. and Z. Yi, Automated detection of kidney
abnormalities using multi-feature fusion convolutional
neural networks. Knowledge-Based Systems, 2020. 200:
p. 105873.

[13] Thein, N., et al. A comparison of three preprocessing
techniques for kidney stone segmentation in CT
scan images. In 2018 11th Biomedical Engineering
International Conference (BMEiCON). 2018. IEEE.

[14] Yildirim, K., et al., Deep learning model for automated
kidney stone detection using coronal CT images.
Computers in biology and medicine, 2021. 135: p.
104569.

[15] Yan, C. and N. Razmjooy, Kidney stone detection
using an optimized Deep Believe network by fractional
coronavirus herd immunity optimizer. Biomedical Signal
Processing and Control, 2023. 86: p. 104951.

[16] Weberruss, J., L. Kleeman, and T. Drummond.

ORB feature extraction and matching in hardware. In
Australasian conference on robotics and automation. 2015.

[17] Patro, V.M. and M.R. Patra, Augmenting weighted
average with confusion matrix to enhance classification
accuracy. Transactions on Machine Learning and
Artificial Intelligence, 2014. 2(4): p. 77-91.

[18] Fan, J., S. Upadhye, and A. Worster, Understanding
receiver operating characteristic (ROC) curves. Canadian
Journal of Emergency Medicine, 2006. 8(1): p. 19-20.

[19] Parakh, A., et al., Urinary stone detection on CT images
using deep convolutional neural networks: evaluation
of model performance and generalization. Radiology:
Artificial Intelligence, 2019. 1(4): p. e180066.

[20] Rehman, A., et al., HCDP-DELM: Heterogeneous
chronic disease prediction with temporal perspective
enabled deep extreme learning machine. Knowledge-
Based Systems, 2024. 284: p. 111316.

[21] Patro, K.K., et al., Application of Kronecker
convolutions in deep learning technique for automated
detection of kidney stones with coronal CT images.
Information Sciences, 2023. 640: p. 119005.

[22] Meyes, R., et al., Ablation studies in artificial neural
networks. arXiv preprint arXiv:1901.08644, 2019.

[23] Shah, B. and H. Bhavsar, Time complexity in deep
learning models. Procedia Computer Science, 2022. 215:
p. 202-210.

HOW TO CITE THIS ARTICLE
A. Asgari, H. Ebrahimnezhad, M. H. Sedaaghi. Kidney Stones CT Images
Classification using Graph Convolutional Network. AUT J. Elec. Eng., 57(2) (Special
Issue) (2025) 355-368.
DOI: 10.22060/eej.2025.23497.5618

https://dx.doi.org/10.22060/eej.2025.23497.5618

