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ABSTRACT: Kidney stones are solid crystals made of minerals and salts that form within the kidney, 
often creating a sharp, hard mass. These stones can block urine flow as they move into the urinary 
tract, making early detection crucial. Although deep neural networks (DNNs) have been used to 
diagnose kidney stones with some success, they still face performance and standardization issues. A 
new approach combines graph convolutional networks (GCNs) with DNNs to address these challenges. 
This method extracts orb features from images, converts them into graphs, and embeds nodes using a 
graph convolutional network, which includes a message-passing layer and node feature aggregation. 
The GCN updates node properties, enhancing efficiency and performance when integrated into a deep 
network. This approach enables more comprehensive and precise feature extraction from images, 
improving kidney stone diagnosis. The study highlights GCNs’ potential in analyzing medical images 
for diagnosing kidney stones. The proposed architecture was tested using publicly available CT scan 
images and demonstrated outstanding accuracy, correctly identifying kidney stones or healthy conditions 
in 98.6% of cases. It outperformed other advanced techniques, especially in detecting stones of various 
sizes, including very small ones, proving its effectiveness in medical image analysis.
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1- Introduction
Kidney stones are hard mineral and salt deposits that form 

within the kidneys. They can cause severe pain and potentially 
block urine flow, leading to kidney damage if left untreated. 
Traditional methods for diagnosing kidney stones, such as 
ultrasound, CT scans, and X-rays, rely heavily on medical 
imaging techniques, but interpreting these images can be 
complex and time-consuming. Often, the process requires the 
expertise of specialist radiologists [1]. However, the advent 
of deep learning has significantly transformed medical image 
analysis. Convolutional neural networks (CNNs), a type of 
deep learning model, have proven highly effective in image 
classification and object recognition, enabling accurate 
disease diagnosis, including kidney stone detection, by 
learning intricate patterns from large datasets [2].

A newer class of neural networks, known as graph 
convolutional networks (GCNs), operates on graph-structured 
data and excels in modeling spatial relationships within 
medical images. This ability to represent complex structures 
and relationships within the data can enhance diagnostic 
accuracy, offering a promising alternative or complement 
to traditional CNNs in medical imaging tasks. By capturing 
the connections between different kidney segments or stone 
features, GCNs provide valuable insights into kidney stone 

formation and distribution. The integration of deep learning 
models like CNNs and GCNs into kidney stone diagnosis 
offers the potential to improve both accuracy and speed 
while reducing radiologists’ workload, ultimately expediting 
patient treatment [3].

As deep learning technologies continue to evolve, GCNs, 
in particular, hold great promise for advancing the diagnosis 
of renal pathologies. With their ability to learn from large 
and diverse datasets, these models are well-positioned to 
generalize to new data, making them invaluable tools in the 
future of medical image analysis. This progress is expected to 
result in improved diagnostic accuracy and better healthcare 
outcomes for patients [4-6].

The integration of computer vision and deep learning into 
medical imaging has significantly enhanced the capabilities 
of diagnostic tools. Deep learning models have shown 
great success in various tasks, such as image segmentation, 
classification, and lesion detection when applied to medical 
imaging techniques like MRI, CT scans[7], and X-rays[8]. 
Fig. 1 shows examples of renal CT scans, including normal 
images and images with kidney stones. These advancements 
have improved diagnostic accuracy and reliability, aiding 
physicians in diagnosing and managing various medical 
conditions. Recent progress in artificial intelligence, 
particularly through deep neural networks (DNNs), has yielded 
significant achievements in interpreting medical images and 
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biological signals[9]. These sophisticated algorithms have 
proven valuable across many medical applications, including 
the urology field, where deep learning is increasingly used for 
the automated identification of urinary tract stones[10].

This study combines Graph Convolutional Networks 
(GCNs) for node feature embedding and Deep Neural 
Networks (DNNs) for final learning. GCNs update nodes by 
incorporating information from neighboring nodes, integrating 
both local and neighboring data. This approach applies to 
various graph-structured data, such as social networks and 
protein interactions. The refined node features from GCNs 
are then processed by the DNN to identify complex patterns, 
making the two-step method more effective at capturing node 
characteristics.

Several studies have explored different deep-learning 
approaches to improve the classification and detection of 
urinary tract stones. Nithya et al.[11], in 2020 achieved a 
93.45% accuracy rate in classifying stone cases by using 
GLCM feature extraction models and analyzing 100 samples, 
despite the dataset being considered small. Wu et al[12]. In 
2020 utilized a multi-feature fusion neural network, combined 
with Inception-V3, to achieve a 94.67% accuracy rate when 
analyzing ultrasound data. However, the complexity of 
the model presented challenges for practical application. 
Other studies, such as those by in 2018 Thein et al[13]. and 
Cui et al. also focused on kidney stone segmentation and 
classification, achieving varying degrees of accuracy. Each 
study highlighted limitations related to dataset size, model 
complexity, and generalizability. For instance, Yildirim et 
al[14]. In 2021 used the XResNet-50 method with a SoftMax 
classifier to achieve a 96.82% accuracy rate but noted the 
model’s complexity as a potential barrier to practical use. In 
2023, Chaohua Yan et al[15]. introduced an optimized Deep 
Belief Network (DBN) using a fractional coronavirus herd 
immunity optimizer (FO-CHIO). This method combines deep 
learning and meta-heuristics to create a customized DBN 
tailored for kidney stone detection. The approach is based 
on a fractional version of the coronavirus herd immunity 
enhancer, aiming to deliver an efficient and reliable detection 
system. Simulations demonstrate that the proposed DBN/
FO-CHIO approach outperforms other studied methods, 
achieving an accuracy of 97.98%.

The current research aims to leverage Graph Convolutional 
Networks (GCNs) and deep neural networks to reduce missed 
kidney stone diagnoses in CT scans and minimize human 
error, particularly in emergency settings where specialist 
radiologists may not be available. The increasing availability 
of data has facilitated the integration of deep learning in 
medical applications, and graph-based techniques have 
shown promise in optimizing data usage for image analysis. 
This study proposes a novel model that combines GCNs 
with DNNs for the automated classification of kidney stones 
using CT imaging. The innovative model seeks to enhance 
the classification accuracy of kidney stones by utilizing 
features from coronary CT scans, offering a powerful tool for 
healthcare providers to make precise diagnoses and improve 
patient outcomes. Experiments were conducted to assess the 
impact of combining graph convolutional networks (GCN) 
with deep learning on improving recognition accuracy, 
specifically by integrating GCN with convolutional neural 
networks (CNN). This approach leverages the capabilities of 
GCNs in modeling relationships between elements and the 
strengths of CNNs in extracting visual features and, resulting 
in more comprehensive feature extraction and a deeper 
understanding of the data. The combined method outperforms 
the use of either technique individually and proves effective 
in addressing various problems and processing structured 
data. The goal of this model is to assist radiologists in the 
precise identification of kidney stones. Key contributions of 
this study include:
•	 Dataset Preparation: A dataset of CT scan images 

focusing on coronary arteries is compiled. From these 
images, a region of interest (ROI), specifically targeting 
kidney areas, is isolated to improve the accuracy of 
detecting kidney stones.

•	 Feature Extraction: A feature extraction algorithm 
processes each image, creating a feature matrix that 
encapsulates critical image attributes.

•	 Image-to-Graph Conversion: The feature vectors are 
transformed into graph nodes, converting images into 
graph structures based on extracted features.

•	 Graph Convolutional Network (GCN) Processing: The 
GCN analyzes the graph nodes to generate embeddings, 
ensuring accurate feature recognition, including the 

 
  (a)                                                                                                (b)  

Fig. 1. Sample CT images: (a) kidney stone, and (b) healthy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Sample CT images: (a) kidney stone, and (b) healthy.
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identification of small kidney stones.
•	 Deep Neural Network Classification: The deep neural 

network classifies the embedded features, facilitating the 
recognition and classification process.

•	 Effectiveness Evaluation: An in-depth analysis evaluates 
the performance of the GCN combined with deep learning 
approaches, verifying its efficacy in enhancing diagnostic 
precision.
The remainder of the paper is structured as follows: 

Section 2 outlines the problem statement and details the 
proposed methodology. Section 3 provides the results along 
with their analysis. Lastly, Section 4 offers the conclusion.

2- Proposed method 
This research explores a method for classifying kidney 

stones in CT images using a combination of a graph 
convolutional network (GCN) and a deep neural network 
(DNN). The process begins with the preprocessing and 
cropping of CT images to focus on significant areas. The 
ORB (Oriented FAST and Rotated BRIEF) feature extractor 

is then used to identify and extract distinct points in each 
image, which are treated as nodes in a graph, resulting in 
a separate graph for each image. A GCN is employed to 
embed these nodes, refining each node’s representation 
based on its neighbors, to capture spatial relationships and 
dependencies within the image. The refined graphs, enriched 
with contextual information from the GCN, are then input 
into a DNN to complete the training process. This integrated 
approach of GCN and DNN allows the model to effectively 
learn and classify the presence of kidney stones in CT images 
by combining graph-based and neural network techniques.

2- 1- Pre-processing
This research aims to develop a framework to reduce 

the oversight of kidney stone cases by physicians during 
CT scan evaluations. The proposed model utilizes Graph 
Convolutional Networks (GCNs) to detect kidney stones in 
low-contrast coronary CT scans, combining advanced deep 
learning with radiographic image processing. As shown 
in Fig. 2, The methodology involves five key phases: data 

 
Fig. 2. Overall steps of the proposed method for kidney stone CT image classification. 

a) standard model of GCN.  b) Enhanced model of GCN. 
 

 

 

 

 

 

 

 

 

Fig. 2. Overall steps of the proposed method for kidney stone CT image classification. a) standard model 
of GCN.  b) Enhanced model of GCN.
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acquisition, data preparation, image-to-graph conversion, 
application of the GCN, and image classification.

The dataset is compiled by sourcing images and 
standardizing their dimensions to an average size. To increase 
data variability and improve machine learning model 
performance, the images are synthetically modified through 
rotations (5 and 10 degrees) and translations (horizontal 
and vertical shifts). These augmentation techniques help the 
model recognize features from different angles and reduce 
orientation bias.  The images are then preprocessed through 
resizing, rotation, translation, and trimming. Trimming 
removes border areas to focus on the kidney region, 
enhancing the precision and depth of analysis. This targeted 
approach reduces noise, improves algorithm effectiveness, 
and increases the accuracy and reliability of image analysis, 
particularly crucial in medical imaging. Fig. 3 depicts the pre-
processing stage, highlighting the kidney region.

2- 2- ORB Feature Extraction
In medical image processing, algorithms like ORB 

(Oriented FAST and Rotated BRIEF) [16] improve diagnostic 
efficiency by focusing on key image points, such as edges, 
where brightness and contrast change significantly. This 
targeted approach reduces unnecessary pixel processing, 
enhancing detection accuracy for critical areas like kidney 
stones and speeding up analysis.

The study did not use deep feature extraction due to 
challenges in interpreting complex image-derived concepts. 
Although deep learning can identify intricate patterns, the 
abstract nature of deep features makes it difficult to correlate 
them with specific image elements, limiting their practical 
application in analyzing CT images of kidney stones. For 
the present study, the use of the ORB feature extractor is as 
follows, after locating the kidney region in the images, we 
employ the ORB feature extractor, a robust image processing 
and machine vision technique, to extract features. ORB 
identifies and describes key points in images, which are 
distinct points characterized by significant changes in color 
intensity or texture. These key points, along with their 
descriptors, are crucial for image analysis and matching. 

In Eq. (1), The FAST algorithm, which detects points with 
substantial color intensity differences from their surroundings, 

is used to identify these key points. If the number of points 
within a circular area around a potentially key point P with 
intensity changes greater than a threshold t compared to P’s 
intensity exceeds a certain number, P is recognized as a key 
point.

( )
( )

( ) n N P
True if Intensity p k

FAST P
False otherwise

∈

 ≥= 


∑
 (1)

In this equation, ( )Intensity p  represents the color 
intensity at point p , and n  denotes one of its neighboring 
points. The variable t  is the threshold for color intensity 
change, and k  indicates the number of neighboring 
points. Descriptors are characteristic attributes that offer 
supplementary details regarding salient points within an 
image. The ORB (Oriented FAST and Rotated BRIEF) 
algorithm enhances the BRIEF (Binary Robust Independent 
Elementary Features) descriptors to ensure they are invariant to 
rotational transformations. BRIEF encodes the characteristics 
of these salient points in a binary format. These descriptors 
are derived by evaluating the color intensity differences at 
various sampled locations surrounding the salient points. 
According to Eq. (2), The outcome of these evaluations is 
encoded as a binary vector consisting of 0s and 1s. For each 
salient point, the color intensity is compared between pairs of 
sampled points in its vicinity. If the color intensity at the first 
sampled point  

1  p exceeds that of the second sampled point 
 

2  p , a value of 1 is assigned to the corresponding position in 
the binary vector; conversely, if the intensity at  

1  p  is less 
than or equal to that at 2 p ,a value of 0 is assigned.

1 ( ) ( )
( )

0
i jif I p I p

BRIEF P
otherwise

>
= 


 (2)

In this equation, ( )iI p is the color intensity of point i p  
and j p of another point in the sampled area.

 
   (a)                                                                                                       (b) 

Fig. 3. Image preprocessing reduces noise by using image cropping, which removes excess information by 
focusing on the kidney region. (a) kidney stone images cropped, (b) normal images cropped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Image preprocessing reduces noise by using image cropping, which removes excess information by 
focusing on the kidney region. (a) kidney stone images cropped, (b) normal images cropped.
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BRIEF descriptors are not particularly robust against 
image rotation; therefore, ORB incorporates an additional 
step to enhance feature rotation invariance. This step involves 
computing an orientation for each key point to ensure that 
the descriptors remain consistent despite image rotations. 
An angle is determined for each key point, which defines 
the orientation of the descriptor. This angle is then applied 
to the BRIEF descriptors to make them resistant to rotational 
transformations.

The process of feature extraction using ORB is as 
follows: initially, the FAST algorithm is employed to detect 
key points within the image. Subsequently, the orientation 
angle for each key point is computed. Following this, BRIEF 
is utilized to generate a binary descriptor for each key point. 
These descriptors are constructed based on the intensity 
values at sampled locations around each key point. Finally, 
the descriptors are rotated in accordance with the computed 
orientation angle to achieve rotational invariance. The optimal 
threshold for identifying key points with the FAST algorithm 
was determined through various experiments, in such a way 
that it provided the highest accuracy in identifying features 
and small kidney stones, and the overall performance of the 
algorithm remained resistant to threshold changes

2- 3- Image to graph With Features
In this study, ORB features are extracted from the image 

using the FAST algorithm to detect key points with sharp 
intensity changes, followed by the BRIEF algorithm to 
describe these points. ORB is effective under varying lighting 
conditions and image rotation. Each key point is treated as 
a node in a graph, and connections are formed based on the 
distances between nodes within a certain area, modeling 
spatial relationships and enhancing the understanding of the 
image’s structure. After extracting features from images using 
the ORB algorithm, a 200 32×  feature matrix is obtained for 
each image. Each 1 32×  feature vector is treated as a node, 
and a graph with 200 nodes is constructed for each image by 
connecting nodes based on a similarity threshold set at 200. 
This process is applied to all images, resulting in a unique 
graph for each, as illustrated in Fig. 4. The graph-based 

representation preserves local and global image information, 
enables flexible comparison, and captures complex spatial 
relationships, facilitating the application of graph algorithms 
and analysis techniques to visual data.

Empirical testing established a similarity threshold of 
200 as the most effective option after evaluating various 
values. This threshold was selected based on tests across 
multiple datasets, optimizing graph density and connectivity, 
which enhanced the Graph Convolutional Network (GCN) 
model’s learning and prediction accuracy. While adaptive 
thresholds were considered, they were excluded due to higher 
computational complexity and instability. Thus, a threshold of 
200 was confirmed as optimal for improving graph structure 
and GCN performance.

2- 4- Graph convolution network for node embedding
Graph Convolutional Networks (GCNs) are neural 

networks tailored for graph-structured data, excelling in 
tasks like node classification, link prediction, and graph 
classification. They work by embedding nodes to capture 
their properties and inter-node relationships. GCNs extend 
the convolution operation from grid-like structures to graphs 
through message passing, where nodes share attribute 
information with neighbors, followed by aggregation and 
update steps to refine node representations. As shown in 
Eq. (3), The effectiveness of a GCN layer can be described 
mathematically, typically through a formulation that captures 
how node representations are transformed through these 
steps. This mathematical expression encapsulates the process 
of information propagation and aggregation across the graph, 
leading to the learning of meaningful node embeddings.
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where ( )lH is the matrix of node features at layer l , with 
dimensions lN F× , where N  is the number of nodes, and 

lF   is the number of features at layer l . A = A + I Is the 
adjacency matrix of the graph with added self-loops, where 

  
(a) (b) 

Fig. 4. (a) ORB Feature Extraction, (b) Feature to graph 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) ORB Feature Extraction, (b) Feature to graph
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A  is the original adjacency matrix and I  is the identity 
matrix. D  is the diagonal degree matrix of A , with entries 

ii ijj
=∑D A . ( )lW  the learnable weight matrix at layer l

, with dimensions 1l lF F +× . σ is an activation function, such 
as ReLU or a sigmoid function. The formula is derived from 
spectral graph theory, where the convolution operation on a 
graph within the spectral domain is defined using the graph 
Laplacian. The normalization term 

1 1( ) ( )
2 2( )

− −
D A D  , ensures that 

the node features are normalized, preventing the unbounded 
growth of features across layers.  The stages of the graph 
convolution network (GCN) layer in the study are:

Message Passing: In the message passing phase, which 
is specified by Eq. (4), each node  i  sends its current feature 
vector ( )l

ih  to its immediate neighbors. This process can 
be conceptualized as a node disseminating its information 
throughout the graph. By including self-loops in the adjacency 
matrix A , each node also takes into account its own features.
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where ( )iℵ  denotes the set of neighbors of node i .
Aggregation Phase: During the aggregation phase, 

according to Eq. (5), each node collects and combines 
the messages it has received from its neighboring nodes. 
This process typically involves summing or averaging the 
messages. To ensure that nodes with varying numbers of 
connections (degrees) contribute fairly to the overall sum, 
a normalization by 

1
2

−
D  is applied. This normalization step 

is crucial for maintaining the integrity of the aggregated 
information, regardless of the node’s degree of connectivity 
within the network.
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This step captures the local structure of the graph by 
combining information from neighboring nodes.

Update Phase: In the update phase, according to Eq. (6), 

the aggregated information is transformed using a learnable 
weight matrix ( )lW . This transformation is followed by the 
application of a nonlinear activation function σ , which 
generates updated node features ( 1)l

i
+h . This process allows 

the model to learn complex patterns and relationships within 
the graph structure.
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This transformation allows the network to learn complex 
patterns in the data by applying nonlinearities and tuning 
the parameters of ( )lW . Graph Convolutional Networks 
(GCNs) typically consist of several layers, with the output 
of each layer serving as the input for the subsequent layer. 
This hierarchical structure enables the network to learn 
representations of the graph that capture both local and global 
structural information.

In the study, Graph Convolutional Networks (GCNs) 
are utilized to enhance image analysis by transforming 
image features into graph nodes. Initially, image features are 
extracted using the ORB feature extractor, producing high-
dimensional vectors that capture local patterns. These features 
are then used to construct a graph where each feature point is 
a node, and edges are established based on spatial proximity 
or feature similarity, forming an adjacency matrix. The GCNs 
process this graph through multiple layers, refining the node 
features by integrating information from neighboring nodes. 
This process enhances the representation of each node by 
considering the broader image context.

Through the iterative process of message passing, 
aggregation, and non-linear activation in GCNs, the 
embeddings of the nodes are continually refined, 
incorporating both local and global contextual information. 
This refined representation significantly improves the 
performance of image-related tasks such as segmentation, 
classification, and object recognition. GCNs thus offer a 
robust framework for capturing intricate relationships within 
image data, making them highly effective for complex image 
analysis tasks.  Fig. 5 shows the graph convolution network 
used in embedding nodes. This procedure is conducted over 
multiple iterations to enhance the positioning of nodes within 

 
Fig. 5. Features of each node are updated in every message-passing layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Features of each node are updated in every message-passing layers.
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the graph, taking into account the broader context of their 
neighborhood. Subsequent to the update of the graph nodes, a 
200 32×  matrix is generated for each image, which serves as 
a representation of the image features extracted through the 
graph convolution network.

In graph convolutional networks (GCNs), selecting the 
right adjacency matrix, including inner loops, is crucial for 
effective feature propagation and model performance. This 
choice allows nodes to update their attributes using both 
their own and neighbors’ characteristics, enhancing pattern 
recognition accuracy. Normalization helps prevent feature 
accumulation across layers, but in sparse graphs, it can lead to 
information loss, while in dense graphs, it may overemphasize 
central nodes. Thus, choosing suitable normalization methods 
and adjacency matrices based on the graph’s structure is 
essential for optimizing GCN performance.

In the standard Graph Convolutional Network (GCN) 
workflow, after the node embedding stage, the learned 
embeddings are typically passed to a downstream model 
for task-specific learning. Initially, a Multilayer Perceptron 
(MLP) with three fully connected layers of 256, 128, and 
64 neurons is used. The MLP processes these embeddings 
to perform classification or regression tasks, with training 
done using backpropagation and an appropriate loss function. 
However, the results from this approach often fall short of 
expectations. This underperformance is likely due to the 
MLP’s inability to leverage the rich structural and topological 
information embedded in the node features, as it treats features 
independently and lacks the capacity to capture complex 
patterns inherent in the graph data. To improve performance, 
the MLP is replaced with a convolutional network, which 
is better equipped to process the spatial and hierarchical 
relationships in the embeddings. Convolutional layers, by 
design, are adept at identifying local patterns and maintaining 
feature correlations, making them more effective in extracting 

meaningful representations from the node embeddings. 
This approach leads to significantly better results, as the 
convolutional network can exploit the structural properties of 
the embeddings, enhancing task-specific learning. This shift 
highlights the importance of selecting the right downstream 
architecture to complement the embeddings produced by 
GCNs, especially for tasks where the graph’s inherent 
structure plays a crucial role in determining the outcome.

2- 5- Deep Neural Network 
In the subsequent phase, the extracted features from each 

image are fed into a Deep Neural Network for the feature 
training process. This network consists of several key 
components designed for efficient learning and classification, 
including convolutional layers with Leaky ReLU activation, 
normalization layers, max-pooling layers, fully connected 
layers, and dropout layers. The initial six convolutional layers 
are crucial for extracting and refining high-level features from 
the images, with batch normalization applied after each layer 
to stabilize and accelerate training. MaxPooling layers then 
reduce the spatial dimensions of the feature maps, helping to 
decrease computational load and control overfitting.

To further enhance generalization and prevent overfitting, 
dropout layers are used, randomly omitting a portion of input 
units during training. The fully connected layers follow, with 
one dense layer using Leaky ReLU for high-level reasoning, 
and another final fully connected layer responsible for 
generating class scores. These scores are passed through a 
SoftMax layer, which normalizes them into probabilities for 
classification. The classification layer then interprets these 
probabilities to predict the final class, assigning labels to 
the input data and playing a critical role in loss calculation 
during training. Fig. 6 illustrates the architecture of the deep 
network used for training, incorporating features extracted 
from the graph convolutional network. As shown in Fig. 

 

Fig. 6. Architecture of the proposed CNN network 
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6, a convolutional neural network (CNN) is defined for 
classification. It begins with an input layer designed to process 
the feature matrix obtained from the graph convolutional 
network. The network comprises four convolutional blocks, 
each with convolutional layer that use 3*3 filters, followed by 
batch normalization, a Leaky ReLU activation (0.01), and a 
max-pooling layer that halves the spatial dimensions. These 
blocks progressively increase the number of filters from 64 to 
512, allowing the network to extract more complex features at 
each stage. Dropout layers, with a dropout rate of 20 percent, 
are included after each block to mitigate overfitting. After 
feature extraction, the network transitions to fully connected 
layers with sizes gradually reducing from 256 to 64 neurons, 
each followed by Leaky ReLU activation and dropout 
layers. The final fully connected layer maps the features to 
the number of output classes. A SoftMax layer converts the 
outputs into probabilities, and a classification layer computes 
the loss for classification. This architecture effectively 
combines feature extraction, nonlinearity, dimensionality 
reduction, and regularization to build a robust model for 
image classification tasks.

The deep learning model’s training process involves 
feeding image features through convolutional, normalization, 
pooling, and fully connected layers, with dropout layers to 
prevent overfitting. The network’s weights are adjusted using 
the Adam optimizer to minimize the loss, typically cross-
entropy, which measures the difference between predicted 
probabilities and actual labels. This architecture effectively 
processes and refines image features, enabling the network 
to learn complex patterns and achieve accurate image 
classification, with the final SoftMax layer generating class 
probabilities for classification.

The combination of Graph Convolutional Networks 
(GCNs) and Deep Neural Networks (DNNs) significantly 
enhances the model’s ability to process complex data, 
especially in contexts where both relational graph data and 
image-based patterns need to be analyzed together. GCNs 

are designed to efficiently extract and propagate information 
from graph-structured data by learning from the connectivity 
between nodes (i.e., entities in the graph) and their neighbors. 
This allows GCNs to capture both the inherent structure of 
the graph and the interactions between entities, providing 
a comprehensive feature matrix that encodes essential 
structural relationships and node-specific information. When 
these graph-derived features are passed as inputs into a 
Convolutional Neural Network (CNN), the fusion of GCN 
and CNN capabilities is powerful. The CNN’s hierarchical 
layers excel in recognizing spatial patterns and capturing 
complex, multi-level features in images or other structured 
data. By feeding the feature-rich output of a GCN into the 
CNN, the model benefits from the GCN’s ability to preserve 
the graph’s topological information, which is crucial for tasks 
like node classification, graph classification, or any task 
involving data with inherent structure. 

Moreover, the synergy between GCN and CNN plays a 
pivotal role in improving the model’s capacity to understand 
both the structural dependencies and the local patterns in 
the data. The GCN provides a solid foundation by encoding 
the relationships between entities in a graph, while the CNN 
further enhances this information through its powerful 
feature extraction and abstraction capabilities. The end result 
is a model that can simultaneously capture relational patterns 
(from the graph) and local, spatial patterns (from the CNN), 
which is essential for tasks requiring a deeper understanding 
of both graph structures and complex, spatial relationships.

As specified in Algorithm 1, a convolutional neural 
network (CNN) model is designed to classify images into 
two classes. First, the input data, including features obtained 
from the convolutional graph network and the training and 
test labels, is loaded and preprocessed. This process involves 
randomizing the data, normalizing the pixel values to the 
interval [0, 1], and converting the labels into a categorized 
format. Next, the training data is split into two parts: 
training and validation. The CNN model is constructed with 

Algorithm 1. Preprocessing, Training, and Validation of a CNN Model for Classification
Algorithm1. Preprocessing, Training, and Validation of a CNN Model for Classification 

Step Description 

Input Training and test Features and labels. 

Output Trained CNN model. 

1. Initialization Clear workspace and load data files. 

2. Preprocessing Shuffle data,input Features [200 × 32], normalize to [0, 1], and convert labels to 
categories. 

3. Data Split Split training data into 80% training and 20% validation sets. 
4. CNN Definition Define CNN with input, convolutional, pooling, dropout, and fully connected layers. 
5. Training Setup Config. optimizer (Adam), learning rate, epochs (30), and validation monitoring. 
6. Training Train the CNN using train Network with prepared data and options. 

 

 

 

 

 

 

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep learning-based methods. 

Model Accuracy Epochs Sensitivity Specificity Precision F1-
Score Test time 

Urinary[19] 88% - 86% 90% 89.6% 86.5% - 

DELM[20] 94.4% 50 94.6% 93.3% 92.5% 93.9% - 

xResNet-50 [14] 96.8% 200 95% 97% 97% 96% 1.3 Sec 

DKN[21] 98.5% 150 98.1% 98.9% 99% 98.6% 1.5 Sec 

GCN-Standard 
 (proposed) 80.06% 200 80% 81% 82% 81% 1.06 Sec 

GCN-Enhanced 
(proposed) 98.6% 50 99% 97.5% 97.8% 98.7% 0.93 Sec 
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convolutional layers for feature extraction, normalization 
layers for stability, activation layers for nonlinear learning, 
and aggregation and dropout layers to reduce complexity and 
prevent overfitting. The training configuration includes the 
Adam optimizer, a fine-tuned learning rate, and continuous 
evaluation of the validation data. Finally, the trained model is 
capable of classifying new data with high accuracy.

3- Results & Discussions
We developed the proposed model using the MATLAB 

2023b programming environment. The simulation ran on a 
system with an Intel i7 processor, 48 GB of DDR4 RAM, 
and an NVIDIA RTX 3080 GPU. The dataset contains 1799 
CT scans of kidneys: 790 scans with kidney stones and 
1009 scans of healthy kidneys. We divided the data into two 
subsets for testing: 90% for training and 10% for validation. 
Additionally, the experimental dataset included 346 CT scans, 
with 165 images showing kidney stones and 181 depicting 
healthy kidneys.

3- 1- Dataset
The dataset was prepared by Yildirim et al [14] following 

approval from the Ethics Committee of Firat University, 
Turkey. It includes 500 non-contrast computed tomography 
(NCCT) scans from 433 patients aged 18 to 80, divided 
into two groups, 278 with kidney stones and 165 healthy 
individuals. The CT scans were independently reviewed 
and labeled by a radiologist and a urologist to confirm the 
presence or absence of stones. The scans were taken using a 
120 kV CT protocol with an automatic current range of 100-
200 mA and a slice thickness of 5 mm. The dataset comprises 
a total of 1,799 images, with 790 depicting kidney stones and 
1,009 showing healthy kidney tissue. To maintain a balanced 
dataset, data augmentation techniques were used to adjust the 
ratio of stone-containing to normal images. The data was then 
split into training and testing sets, with the training directory 
containing 1,453 images (625 with stones and 828 without 
stones) and the testing directory containing 346 images 
(165 with stones and 181 without stones). To minimize 
bias, participants in the training set were not included in 
the testing set, ensuring distinct groups for each phase. The 
images were saved in PNG format and used for evaluating 
the performance of the graph convolutional network (GCN) 
algorithm combined with a deep neural network (DNN).

3- 2- Setting hyperparameters
During the training and validation phases of a deep 

learning model, hyperparameters are fine-tuned to enhance 
performance. Initially, the model is trained on a training 
dataset, and its performance is evaluated on a validation 
dataset. Hyperparameters such as learning rate (η), batch size, 
and number of epochs are adjusted iteratively until optimal 
values are found. Finally, the model’s performance is tested 
on a separate test set to ensure it does not overfit the validation 
data. The proposed architecture achieved 98.6% accuracy 
after 50 iterations, demonstrating improved performance 
over existing models for kidney stone classification.

The network is trained using the Adam optimizer, with 
a batch size of 64 and an initial learning rate of 0.0001. The 
learning rate decreases by a factor of 0.1 every 30 epochs. 
Validation is conducted on a separate dataset every 100 
iterations, and the process includes logging details and 
visualizing progress to monitor performance. The runtime 
environment is configured to automatically choose between 
CPU and GPU for optimal efficiency. These settings facilitate 
efficient and effective neural network training, promoting 
robust learning and generalization. Fig. 7 presents the training 
and validation accuracy for each epoch of the proposed GCN-
DNN model, providing insight into its performance.

The confusion matrix in Fig. 8 illustrates the performance 
of the proposed GCN-DNN model for kidney stone detection, 
achieving an impressive accuracy of 98.6% using a Graph 
Convolutional Network (GCN). This highlights the model’s 
exceptional capability to deliver highly accurate results.

The confusion matrix[17] reveals that the model 
accurately predicts kidney stone images as true positives 
(TP) and correctly identifies normal images as true negatives 
(TN). However, it occasionally misclassifies kidney stone 
images as normal (false negatives, FN) and normal images as 
kidney stones (false positives, FP). To evaluate the model’s 
performance, we use several metrics: precision (TP / (TP + 
FP)), recall (TP / (TP + FN)), and the F1 score (2 × precision 
× recall / (precision + recall)). Note that the formula for 
accuracy in the original text is incorrect; it should be (TP + 
TN) / (TP + TN + FP + FN). These metrics are crucial for 
assessing the model’s effectiveness. Accuracy measures the 
overall rate at which the model correctly predicts both normal 
and kidney stone cases, while recall evaluates the model’s 
ability to identify all true positive cases. The F1 score, being 
the harmonic mean of precision and recall, balances these two 
measures.

In our evaluation with 346 test cases, the model achieved 
98.6% accuracy and 99% sensitivity. We tested the model on 
an unbalanced dataset comprising 790 kidney stone scans and 
1009 normal scans. Fig. 9 presents both the receiver operating 
characteristic (ROC) curve[18] and the precision-recall (PR) 
curve[18]. The PR curve is generally more informative for 
datasets with an unbalanced distribution, as it better reflects 
the model’s performance on the minority class. Conversely, 
ROC curves are more suitable for balanced datasets.

3- 3- Comparison with Standard Methods
In this section, we evaluate the performance of our proposed 

GCN-DNN model against traditional deep learning models, 
including xResNet-50 [14], DELM [20], Urinary [19], and 
DKN [21], as well as the standard graph convolutional network 
(GCN) model with MLP. Table 1 presents a comparative 
analysis based on metrics such as accuracy, sensitivity, 
specificity, precision, F1 score, and testing time. The standard 
GCN model, designed for graph data classification, achieved 
an accuracy of 80%. While this accuracy may suffice for some 
applications, it is considered relatively low for this particular 
problem, which involves a complex and challenging dataset. 
This suboptimal performance highlights the limitations of 
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Fig. 7. Training, validation accuracy, and loss of the proposed model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Training, validation accuracy, and loss of the proposed model.

 
Fig. 8. Confusion matrix derived from the test data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Confusion matrix derived from the test data.
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the standard GCN model in extracting deeper features or 
establishing more intricate connections between data points. 
To enhance accuracy and overall performance, we employed 
a GCN-DNN hybrid model. This approach combines the 
strengths of GCNs for extracting graph-structured features 
and deep neural networks (DNNs) for learning more complex 
nonlinear patterns. By replacing the MLP with the GCN-
DNN architecture, the model achieves better generalization 
and accuracy, providing a more robust evaluation of complex 

datasets. This combination leverages the advantages of both 
GCN and DNN architectures, addressing the limitations of 
the standard model.

As fully specified in Table 1,  The GCN-DNN model 
achieves the highest accuracy of 98.6%, surpassing all other 
models. It converges more rapidly, requiring only 50 runs, 
and demonstrates the highest sensitivity at 99% and an F1 
score of 98.7%. Although its specificity of 97.5% is slightly 
lower than DKN’s 98.9%, the GCN-DNN model’s accuracy 

  
(a) (b) 

Fig. 9. (a) ROC curve and (b) Precision-Recall (PR) curve for classification performance. 

 

 

 

 

 

 

 

 

 

Fig. 9. (a) ROC curve and (b) Precision-Recall (PR) curve for classification performance.

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep 
learning-based methods.

Algorithm1. Preprocessing, Training, and Validation of a CNN Model for Classification 

Step Description 

Input Training and test Features and labels. 

Output Trained CNN model. 

1. Initialization Clear workspace and load data files. 

2. Preprocessing Shuffle data,input Features [200 × 32], normalize to [0, 1], and convert labels to 
categories. 

3. Data Split Split training data into 80% training and 20% validation sets. 
4. CNN Definition Define CNN with input, convolutional, pooling, dropout, and fully connected layers. 
5. Training Setup Config. optimizer (Adam), learning rate, epochs (30), and validation monitoring. 
6. Training Train the CNN using train Network with prepared data and options. 

 

 

 

 

 

 

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep learning-based methods. 

Model Accuracy Epochs Sensitivity Specificity Precision F1-
Score Test time 

Urinary[19] 88% - 86% 90% 89.6% 86.5% - 

DELM[20] 94.4% 50 94.6% 93.3% 92.5% 93.9% - 

xResNet-50 [14] 96.8% 200 95% 97% 97% 96% 1.3 Sec 

DKN[21] 98.5% 150 98.1% 98.9% 99% 98.6% 1.5 Sec 

GCN-Standard 
 (proposed) 80.06% 200 80% 81% 82% 81% 1.06 Sec 

GCN-Enhanced 
(proposed) 98.6% 50 99% 97.5% 97.8% 98.7% 0.93 Sec 
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is comparable to DKN’s 99%. Notably, the GCN-DNN 
model also boasts the shortest testing time of 0.93 seconds, 
showcasing its computational efficiency. Overall, the GCN-
DNN model outperforms benchmark models in terms of 
accuracy, F1 score, and computational efficiency, making it 
a promising choice for real-time applications in biomedical 
engineering.

This section discusses the Ablation Study [22] and 
time complexity [23] analysis, which are essential for 
understanding and improving the model’s performance. The 
Ablation Study involves modifying or removing components 
of a model to evaluate their impact on performance, helping 
to identify critical elements and optimize the model by 
eliminating unnecessary parts. Various modifications were 
made, and the model’s accuracy was assessed at each 
stage. Table 2 compares the baseline model’s performance 
with these modifications, which included removing layers 
(convolutional, dropout, batch normalization), reducing 
neuron units in fully connected layers, and adjusting 
hyperparameters like dropout rate, epochs, optimizers, and 
learning rate.

The results indicated that removing normalization 
and convolutional layers significantly reduced accuracy, 
highlighting their critical role in network convergence. The 
Adam optimizer with a learning rate of 1e-4 proved to be 
the most effective. Increasing epochs to 50 slightly improved 
accuracy but also raised training time. Removing dropout 

layers caused overfitting, emphasizing their importance 
in prevention. These insights aid in optimizing network 
architecture and assessing model strengths and weaknesses.

Next, the time complexity of the learning algorithm 
is analyzed based on layers, neurons, input size, and other 
parameters. Training time complexity depends on iterations, 
dataset size, layer count, and parameters, with deeper networks 
requiring more calculations. In CNNs, time complexity 
is influenced by convolution operations, filter sizes, and 
computation methods for each layer. Table 3 outlines the 
time complexity for convolutional, fully connected, and max-
pooling layers, demonstrating that increased layer numbers 
and complexity lead to longer processing times. This table 
illustrates the impact of each network component on overall 
performance.

4- Conclusion
This research introduces a deep learning model based 

on graph convolutional networks (GCNs) to enhance image 
feature extraction. By converting image feature vectors 
into graph nodes and applying GCNs with a message-
passing algorithm, this approach captures more detailed 
and comprehensive features from images. This technique 
significantly improves the traditional methods of image 
analysis by effectively handling complex details crucial for 
accurate interpretation. The model was tested on publicly 
available CT scans for kidney stone detection, achieving an 

Table 2. Ablation Study for the proposed method.
Table 2. Ablation Study for the proposed method 

Changes Made Model 
Accuracy (%) 

Change from Base 
Model Description 

Removed one convolution layer 95.3 -3.3 Reduced number of filters, 
accuracy drop. 

Removed dropout layers 97.2 -1.4 Slight increase in overfitting. 

Removed normalization layers 93.8 -4.8 Negative impact on convergence 
and accuracy. 

Reduced number of neurons 96.1 -2.5 Reduced model capacity, and 
accuracy drop. 

Changed dropout rate to 0.5 97.8 -0.8 Slight improvement in 
preventing overfitting. 

Changed dropout rate to 0.1 96.8 -1.8 Slight increase in overfitting. 

Used SGD optimizer 96.4 -2.2 Slower convergence and 
accuracy drop. 

Learning rate set to 1e-3 97.5 -1.1 Learning rate 1e-3 
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impressive accuracy of 98.6%. This performance surpasses 
existing state-of-the-art methods, especially in detecting 
stones of varying sizes, including small ones. Such precision 
is vital in medical diagnostics, where accurate and timely 
detection can significantly impact patient outcomes. The 
primary advantage of using GCNs lies in their ability to 
perform convolution operations on graph nodes, capturing 
both local and global structural information. This not only 
enhances feature extraction but also preserves intricate details 
and variations within images. The capability to identify fine 
details is particularly beneficial in medical imaging, where 
such precision can be crucial for diagnosis.
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