
تعداد نشریات | 8 |
تعداد شمارهها | 417 |
تعداد مقالات | 5,494 |
تعداد مشاهده مقاله | 6,135,782 |
تعداد دریافت فایل اصل مقاله | 5,380,584 |
بررسی عددی شرایط آسایش حرارتی انسان در یک اتاق مجهز به سامانه سرمایشی سقفی تابشی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 56، شماره 10، 1403، صفحه 1399-1428 اصل مقاله (2.56 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23738.7808 | ||
نویسندگان | ||
محمد علیپور دهسری؛ امین حقیقی پشتیری* | ||
دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
در این مطالعه، شرایط سرمایش و آسایش حرارتی در اتاقی شامل انسان و مجهز به سامانه سرمایش سقفی تابشی، بهصورت عددی بررسی شده است. شبیهسازیها برای گرمترین روز میانگین 10 سال اخیر تهران و در چهار جهت جغرافیایی انجام شد. از مدلهای k-ε با رینولدز پایین، مختصات گسسته و ریتریسینگ برای تحلیل جریان هوا، تشعشع و تابش خورشید استفاده شد و شرایط آسایش حرارتی با مدل فنگر ارزیابی گردید. نتایج نشان داد که در اتاق با دیوار خارجی غربی، بیشترین بار سرمایی در ساعت 14 رخ میدهد و دمای سقف باید حدود °C12 تنظیم شود، که در صورت استفاده از شیشه شفاف، این دما باید به °C7 کاهش یافته و 27 درصد بار سرمایی بیشتری نیاز است. شیشه پوششدار موجب بهبود شاخص پیاموی و کاهش نارضایتی شد؛ در دیوار غربی، پیاموی از 0/5 به0/32 و نارضایتی از 10/2 به 7/1 درصد کاهش یافت. نارضایتی ناشی از اختلاف دمای عمودی کمتر از 3 درصد بود، اما برای کف گرم در دیوارهای شرقی و غربی با شیشه شفاف به 25/1 و 25/5 درصد رسید. نارضایتی ناشی از نرخ کوران نیز در تمامی حالات کمتر از 10 درصد بود. | ||
کلیدواژهها | ||
سرمایش سقفی؛ تابش خورشیدی؛ آسایش حرارتی؛ حضور انسان | ||
عنوان مقاله [English] | ||
Numerical investigation of thermal comfort conditions for a human in a room equipped with a ceiling radiant cooling system | ||
نویسندگان [English] | ||
Mohammad Alipour Dehsari؛ Amin Haghighi Poshtiri | ||
University of Guilan, Rasht, Iran | ||
چکیده [English] | ||
In this study, the cooling conditions and thermal comfort in a room occupied by humans and equipped with a radiant ceiling cooling system were numerically investigated. The simulations were conducted for the hottest day of the average 10-year period in Tehran and in four geographical orientations. Low-Reynolds k-ε models, discrete ordinates, and ray tracing were used to analyze airflow, radiation, and solar radiation, and thermal comfort conditions were evaluated using the Fanger model. The results showed that in the room with a western external wall, the maximum cooling load occurs at 14:00, and the ceiling temperature should be set at approximately 12°C. However, when using clear glass, this temperature must be reduced to 7°C, requiring 27% more cooling load. Coated glass improved the PMV index and reduced dissatisfaction; in the western wall, PMV decreased from 0.5 to 0.32, and dissatisfaction decreased from 10.2% to 7.1%. Dissatisfaction due to vertical temperature differences was less than 3%, but for warm floors in eastern and western walls with clear glass, it reached 25.1% and 25.5%, respectively. Dissatisfaction due to the draft rate was less than 10% in all cases. | ||
کلیدواژهها [English] | ||
Radiant Cooling Ceiling, Solar Radiation, Thermal Comfort, Human Presence | ||
مراجع | ||
[1] J. Miriel, L. Serres, A. Trombe, Radiant ceiling panel heating–cooling systems: experimental and simulated study of the performances, thermal comfort and energy consumptions, Applied Thermal Engineering, 22(16) (2002) 1861-1873. [2] A. Handbook, HVAC systems and equipment, chapter, 1996. [3] P.O. Fanger, Thermal comfort. Analysis and applications in environmental engineering, (1970). [4] Z. Tian, J.A. Love, A field study of occupant thermal comfort and thermal environments with radiant slab cooling, Building and Environment, 43(10) (2008) 1658-1670. [5] R.A. Memon, S. Chirarattananon, P. Vangtook, Thermal comfort assessment and application of radiant cooling: A case study, Building and Environment, 43 (2008) 1185-1196. [6] T. Catalina, J. Virgone, F. Kuznik, Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling, Building and Environment, 44 (2009) 1740-1750. [7] R. Li, T. Yoshidomi, R. Ooka, B.W. Olesen, Field evaluation of performance of radiant heating/cooling ceilingpanel system, Energy and Buildings, 86 (2015) 58-65. [8] L. Su, N. Li, X. Zhang, Y. Sun, J. Qian, Heat transfer and cooling characteristics of concrete ceiling radiant cooling panel, Applied Thermal Engineering, 84 (2015) 170-179. [9] Y. Khan, V.R. Khare, J. Mathur, M. Bhandari, Performance evaluation of radiant cooling system integrated with airsystem under different operational strategies, Energy and Buildings, 97 (2015) 118-128. [10] N.N. Ziarani, A. Haghighi, Anticipating an efficient relative humidity in a room under direct solar radiation and equipped by radiant cooling panel system, International Journal of Refrigeration, 98 (2019) 98-108. [11] P. Valdiserri, S. Cesari, M. Coccagna, P. Romio, S. Mazzacane, Experimental data and simulations of performance and thermal comfort in a patient room equipped with radiant ceiling panels, Buildings, 10(12) (2020) 235. [12] M. Amini, R. Maddahian, S. Saemi, Numerical investigation of a new method to control the condensation problem in ceiling radiant cooling panels, Journal of Building Engineering, 32 (2020) 101707. [13] M. Ye, A.A. Serageldin, A. Radwan, H. Sato, K. Nagano, Thermal performance of ceiling radiant cooling panel with a segmented and concave surface: Laboratory analysis, Applied Thermal Engineering, 196 (2021) 117280. [14] W. Liao, C. Wen, Y. Luo, J. Peng, N. Li, Influence of different building transparent envelopes on energy consumption and thermal environment of radiant ceiling heating and cooling systems, Energy and Buildings, 255 (2022) 111702. [15] J. Skovajsa, P. Drabek, S. Sehnalek, M. Zalesak, Design and experimental evaluation of phase change material based cooling ceiling system, Applied Thermal Engineering, 205 (2022) 118011. [16] A. Aryal, P. Chaiwiwatworakul, S. Chirarattananon, An experimental study of thermal performance of the radiant ceiling cooling in office building in Thailand, Energy and Buildings, 283 (2023) 112849. [17] J.-S. Choi, G.-J. Jung, K.-N. Rhee, Cooling performance evaluation of a fan-assisted ceiling radiant cooling panel system, Energy and Buildings, 281 (2023) 112760. [18] O. Malikova, Ensuring microclimate parameters in the room using radiant ceiling panel cooling systems, in: E3S Web of Conferences, EDP Sciences, 2023, pp. 08012. [19] W. Jin, Y. Wang, C. Wang, L. Jia, D. Moon, S. Song, A novel cooling capacity prediction model for open-type cooling radiant ceiling, Journal of Building Engineering, 74 (2023) 106846. [20] M.-S. Shin, S.-Y. Kim, K.-N. Rhee, Cooling capacity evaluation of ceiling radiant cooling panels using thermoelectric module, Energy and Buildings, 323 (2024) 114760. [21] P. Sang-Hoon, C.W. June, Evaluation of Nominal Cooling Capacity of Ceiling Radiant Panels Under Varying Building Boundary Conditions, Journal of Building Engineering, (2024) 111723. [22] J. Li, Z. Nie, Y. Liu, L. Wang, Y. Hao, Evaluation of propagation characteristics using the human body as an antenna, Sensors, 17(12) (2017) 2878. [23] M. Mehrabian, J. Mahmoudimehr, Numerical Simulation of a Biogas-fueled Solid Oxide Fuel Cell and the Investigation of the Influence of Operating Conditions, Amirkabir Journal of Mechanical Engineering, 55(7) (2023) 895-916. [24] K. ABE, T. Kondoh, Y. Nagano, A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows - 1. Flow field calculations, Int J Heat Mass Transfer, 37 (1994) 139-151. [25] Y. Hashimoto, Numerical study on airflow in an office room with a displacement ventilation system., in: Building Simulation 2005 Proceedings, 2005, pp. 381–387. [26] H.B. Awbi, Calculation of convective heat transfer coefficients of room surfaces for natural convection, Energy and Buildings, 28 (1998) 219-227. [27] S. Mazumder, Application of a variance reduction technique to Surface-to-Surface Monte Carlo radiation exchange calculations, International Journal of Heat and Mass Transfer, 131 (2019) 424-431. [28] ISO, International Standard 7730. Ergonomics of the thermal environment- Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD Indices and local thermal comfort criteria, International Organization for Standardization, Geneva, 2005. [29] J. Palyvos, A survey of wind convection coefficient correlations for building envelope energy systems’ modeling, Applied thermal engineering, 28(8-9) (2008) 801-808. [30] J.A. Clarke, Energy Simulation in Building Design, 2nd ed., Routledge, London, UK., 2007. [31] C.-M. Lai, Y.-P. Lin, Energy saving evaluation of the ventilated BIPV walls, Energies, 4(6) (2011) 948-959. [32] S. Oubenmoh, A. Allouhi, A.A. Mssad, R. Saadani, T. Kousksou, M. Rahmoune, M. Bentaleb, Some particular design considerations for optimum utilization of under floor heating systems, Case studies in thermal engineering, 12 (2018) 423-432. [33] J. Samimi, Estimation of height-dependent solar irradiation and application to the solar climate of Iran, Solar Energy, 52(5) (1994) 401-409. [34] P.O. Fanger, Analysis and Applications in Environmental Engineering, Danish Technical Press, Copenhagen, 1970. [35] M.L. Gennusa, A. Nucara, G. Rizzo, G. Scaccianoce, The calculation of the mean radiant temperature of a subject exposed to the solar radiation—a generalised algorithm, Building and Environment, 40 (2005) 367-375. [36] G. Cannistraro, G. Franzitta, C. Giaconia, G. Rizzo, Algorithms for the calculation of the view factors between human body and rectangular surfaces in parallelepiped environments, Energy and Buildings, 19(1) (1992) 51-60. [37] G. Rizzo, G. Franzitta, G. Cannistraro, Algorithms for the calculation of the mean projected area factors of seated and standing persons, Energy and Buildings, 17 (1991) 221-230. [38] ASHRAE, Ashrae Handbook HVAC Applications. , 1989. [39] I. Iso, International standard 7726, thermal environment-instruments and method for measuring physical quantities, International Standard Organization, Geneva, (1998). [40] ISO, International Standard 7730, Ergonomics of the thermal environment- Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD Indices and local thermal comfort criteria, in, International Organization for Standardization, Geneva, 2005. [41] R. Karadag, The investigation of relation between radiative and convective heat transfer coefficient at the ceiling in a cooled ceiling room, Energy Conservation and Management, 50 (2009) 1-5. [42] J. Xamán, J. Arce, G. Álvarez, Y. Chávez, Laminar and turbulent natural convection combined with surface thermal radiation in a square cavity with a glass wall, International Journal of Thermal Sciences, 47(12) (2008) 1630-1638. | ||
آمار تعداد مشاهده مقاله: 195 تعداد دریافت فایل اصل مقاله: 169 |