
تعداد نشریات | 8 |
تعداد شمارهها | 414 |
تعداد مقالات | 5,478 |
تعداد مشاهده مقاله | 6,010,491 |
تعداد دریافت فایل اصل مقاله | 5,299,925 |
اثرات سرعت بارگذاری و جهت انتشار ترک بر چقرمگی شکست بین لایهای در کامپوزیتهای پایه پلیمری: یک مطالعه تحلیلی و تجربی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 56، شماره 11، بهمن 1403، صفحه 1575-1590 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23731.7806 | ||
نویسندگان | ||
علیرضا سرتیپی؛ احمدرضا قاسمی* | ||
دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران. | ||
چکیده | ||
در این تحقیق اثرات جهت انتشار ترک و سرعت بارگذاری در مود اول شکست بر روی چقرمگی شکست به شکل تحلیلی و تجربی مطالعه شده است. در مود اول بازشوندگی دهانه ترک چیدمان الیاف در دو حالت متفاوت بررسی شده و انتشار ترک در جهت موازی با الیاف و عمود بر جهت الیاف آزمایش شده است. برای انجام آزمونهای خمش سه نقطهای، نمونههای آزمایشی مطابق با استاندارد طراحی و ساخته شدند. هدف از انجام آزمایش بارگذاری و اندازه گیری چقرمگی شکست در جهات مختلف انتشار و رشد ترک نسبت به زاویه الیاف میباشد. علاوه بر این، مجموعهای از نمونههای تیر یک سر گیردار دو لبه با اعمال تغییر زاویه بارگذاری نسبت به راستای فیکسچر مورد بررسی قرار گرفتند. درصد تغییرات چقرمگی شکست بین لایهای در آزمایشهای یک سر گیردار دولبه و خمش سه نقطهای عرضی و خمش سه نقطهای طولی به ترتیب 5/67%، 6/5 % و 3/93% میباشد. این تغییرات نشان میدهد که تفاوت بین چقرمگی شکست در منطقه رشد ترک برای نمونههای آزمایش یک سرگیردار دولبه نسبت به نمونههای خمش سه نقطهای به دلیل ضخامت نمونهها مقدار کمتری دارد. نتایج نشان میدهد چقرمگی شکست بین لایهای، هنگامی که ترک به موازات الیاف رشد میکند بسیار بیشتر از زمانی است که ترک در جهت عمود بر الیاف رشد مینماید. در ادامه دلایل فیزیکی این نتایج تجربی مورد بحث قرارگرفته است. | ||
کلیدواژهها | ||
چقرمگی شکست؛ ترک عرضی؛ شکست بین لایهای؛ خمش سه نقطهای؛ کامپوزیت پایه پلیمری | ||
عنوان مقاله [English] | ||
Load Acceleration and Crack Propagation Direction on Interlaminar Fracture Toughness In Polymer Matrix Composites: A Theoretical and Experimental Approaches | ||
نویسندگان [English] | ||
Ali Reza Sartipi؛ Ahmad Reza Ghasemi | ||
University of Kashan | ||
چکیده [English] | ||
In this research, the effects of crack propagation and load speed in the first failure mode on failure toughness have been studied analytically and experimentally. In the first mode, the opening of the crack opening of the fiber layout was examined in two different modes and the release of the crack was tested in a direction parallel to the fibers and perpendicular to the direction of the fibers. To perform three-point bending tests, test samples are designed and built according to the standard. The purpose of the rate of speed has been evaluated by changing the loading angle relative to the fixture line. The percentage changes in interlaminar fracture toughness in double cantilever beam and transverse three-point bending and longitudinal three-point bending tests are 5/67%, 6/5%, and 3/93%, respectively. These changes indicate that the difference between fracture toughness in the crack growth region for double cantilever beam test specimens is smaller than that for three-point bending specimens due to the thickness of the specimens. The results show that interlayer failure toughness is much greater when the crack grows parallel to the fibers than when the crack grows perpendicular to the fibers. The physical reasons for these experimental results are discussed below. | ||
کلیدواژهها [English] | ||
Fracture Toughness, Transverse Crack, Interlaminar Fracture, Three Point Bending (TPB), Polymer Matrix Composites (PMCs) | ||
مراجع | ||
[1] ISO, Standard 15024, Fibre-reinforced Plastic Composites - Determination of Mode I Interlaminar Fracture Toughness, G1C, for Unidirectionally Reinforced Materials, ISO, Geneva, Switzerland, (2001). [2] ASTM, D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West Conshohocken, PA, USA, (2013). [3] S.T. Pinho, P. Robinson, L. Iannucci, Developing a four-point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites, Composites Science and Technology, 69(7-8) (2009) 1303-1309. [4] ASTM, E1922-04(15), Standard Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, USA, (2015). [5] A. Pupurs, M.S. Loukil, E. Marklund, J. Varna, D. Mattsson, Transverse crack initiation in thin-ply laminates subjected to tensile loading at low and cryogenic temperatures, Mechanics of Composite Materials, 59 (2024) 1049-1064. [6] I.G. García, J. Justo, A. Simon, V. Mantič, Experimental study of the size effect on transverse cracking in cross-ply laminates and comparison with the main theoretical models, Mechanics of Materials, 128 (2019) 24-37. [7] X.Y. Miao, X. Chen, Structural transverse cracking mechanisms of trailing edge regions in composite wind turbine blades, Composite Structures, 308 (2023) 116680. [8] T. Miyakoshi, T. Atsumi, K. Kosugi, A. Hosoi, T. Tsuda, H. Kawada, Evaluation of very high cycle fatigue properties for transverse crack initiation in cross‐ply carbon fiber‐reinforced plastic laminates, Fatigue & Fracture of Engineering Materials & Structures, 45 (2022) 2403-2414. [9] T. Xiang, W. Chen, Impact analysis of transverse isotropic freezing expansion in surrounding rock and variation of freezing front on cracks initiation, Computers and Geotechnics, 174 (2024) 106623. [10] T. Guo, K. Liu, R. Song, Crack propagation characteristics and fracture toughness analysis of rock-based layered material with pre-existing crack under semi-circular bending, Theoretical and Applied Fracture Mechanics, 119 (2022) 103295. [11] M. Kashtalyan, I.G. García, V. Mantič, Coupled stress and energy criterion for multiple matrix cracking in cross-ply composite laminates, International Journal of Solids and Structures, 139 (2018) 189-99. [12] J.W. Kim, J.M. Gardner, G. Sauti, R.A. Wincheski, B.D. Jensen, K.E. Wise, E.J. Siochi, Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness, Composites Part A: Applied Science and Manufacturing, 167 (2023) 107449. [13] X. Yan, X. Guo, Y. Gao, Y. Lin, N. Zhang, Q. Zhao, Mode-II fracture toughness and crack propagation of pultruded carbon Fiber-Epoxy composites, Engineering Fracture Mechanics, 279 (2023) 109042. [14] P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A continuum damage model for composite laminates: Part I–Constitutive model, Mechanics of Materials, 39(10) (2007) 897-908. [15] E.J. Barbero, F.A. Cosso, X. Martinez, Identification of fracture toughness for discrete damage mechanics analysis of glass-epoxy laminates, Applied Composite Materials, 21 (2014) 633-650. [16] J. León-Becerra, M.Á. Hidalgo-Salazar, O.A. González-Estrada, Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites, The International Journal of Advanced Manufacturing Technology, 126 (2023) 2617-2631. [17] J.C. Sosa, S. Phaneendra, J.J. Munoz, Modelling of mixed damage on fibre reinforced composite laminates subjected to low velocity impact, International Journal of Damage Mechanics, 22(3) (2013) 356-374. [18] S.M. Lee, A comparison of fracture toughness of matrix controlled failure modes: delamination and transverse cracking, Journal of Composite Materials, 20(2) (1986) 185-196. [19] A.C. Garg, Intralaminar and interlaminar fracture in graphite/epoxy laminates, Engineering Fracture Mechanics, 23(4) (1986) 719-733. [20] X. Huang, J.W. Gillespie Jr, R.F. Eduljee, Effect of temperature on the transverse cracking behavior of cross-ply composite laminates, Composites Part B: Engineering, 28(4) (1997) 419-424. [21] K.D. Cowley, P.W. Beaumont, The interlaminar and intralaminar fracture toughness of carbon-fibre/polymer composites: The effect of temperature, Composites Science and Technology, 57(11) (1997) 1433-1444. [22] P.J. Hine, B. Brew, R.A. Duckett, I.M. Ward, The fracture behaviour of carbon fibre reinforced poly (ether etherketone), Composites Science and Technology, 33(1) (1988) 35-71. [23] P.J. Hine, B. Brew, R.A. Duckett, I.M. Ward, Failure mechanisms in continuous carbon-fibre reinforced PEEK composites, Composites Science and Technology, 35(1) (1989) 31-51. [24] P.J. Hine, B. Brew, R.A. Duckett, I.M. Ward, Failure mechanisms in carbon-fibre-reinforced poly (ether sulphone), Composites Science and Technology, 43(1) (1992) 37-47. [25] M.W. Czabaj, J.G. Ratcliffe, Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite, Composites Science and Technology, 89 (2013) 15-23. [26] A. Blázquez, M.L. Velasco, P. Caballos, F. París, Characterization by fracture mechanics of intra and interlaminar damage in composite laminates, Engineering Fracture Mechanics, 315 (2025) 110812. [27] J. Wang, Z. Liu, J. Li, X. Liu, Y. Shen, Z. Zhang, X. Wang, X. Chen, Exploring the influence of specimen types on the intralaminar fracture behavior of fiber-reinforced polymer matrix composites, Theoretical and Applied Fracture Mechanics, 134 (2024) 104684. [28] J. Xiang, P. Cheng, K. Wang, Y. Wu, Y. Rao, Y. Peng, Interlaminar and translaminar fracture toughness of 3D‐printed continuous fiber reinforced composites: A review and prospect, Polymer Composites, 45(5) (2024) 3883-3900. [29] J. Fisher, M.W. Czabaj, A new test for characterization of interlaminar tensile strength of tape-laminate composites, Composites Part A: Applied Science and Manufacturing, 176 (2024) 107868. [30] F. Ramezani, R.J. Carbas, E.A. Marques, A.M. Ferreira, L.F. da Silva, A study of the fracture mechanisms of hybrid carbon fiber reinforced polymer laminates reinforced by thin‐ply, Polymer Composites, 44(3) (2023) 1672-1683. [31] R. Rutar, J. Serra, Q. Bausiere, C. Bouvet, Experimental characterization of tensile and compressive translaminar fracture toughness coupling multi-physics measurements, Engineering Fracture Mechanics, 291 (2023) 109568. [32] M. Saeedifar, H. Hosseini Toudeshky, The effect of interlaminar and intralaminar damage mechanisms on the quasi-static indentation strength of composite laminates, Applied Composite Materials, 30(3) (2023) 871-886. [33] S.A. Safipour, M. Heshmati, Investigation of Interlaminar Mode-I Fracture Toughness of Corrugated Composite Plates, Amirkabir J. Mech Eng, 54(2) (2022) 415-432. (In Persian). | ||
آمار تعداد مشاهده مقاله: 199 تعداد دریافت فایل اصل مقاله: 126 |