

Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 56(12) (2025) 1593-1608 DOI: 10.22060/mej.2025.23562.7781

Investigation of the effect of welding current intensity on the morphology and microstructure of IN738LC superalloy weld metal by GTAW method

Reza Nazari, Islam RanjbarNoodeh ^(D) *

Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran.

ABSTRACT: Nickel-based superalloys, such as IN738LC, are widely used in high-temperature applications due to their excellent mechanical properties and corrosion resistance. However, welding these alloys presents challenges due to rapid solidification, which affects the dendritic microstructure of the weld metal. In this study, the effect of welding current intensity on the secondary dendrite arm spacing (SDAS) and cooling rate in Gas Tungsten Arc Welding (GTAW) of IN738LC was investigated through numerical modeling and experimental validation. A three-dimensional finite element heat transfer model was developed to predict the thermal distribution and cooling rates in the weld pool. Experimental welding was performed at three different current levels (95 A, 120 A, and 132 A), and the resulting microstructures were analyzed using metallographic techniques. The results showed that increasing the welding current leads to a significant reduction in the cooling rate and an increase in SDAS. A mathematical relationship between SDAS and the cooling rate was established, and the model predictions were validated with experimental measurements. The distance between the secondary dendritic arms was measured in different regions of the weld metal, and the constants a and n in the mathematical relationship between the distance between the secondary dendritic arms and the cooling rate were obtained, which were equal to 34.62 and 0.3, respectively.

1-Introduction

Gas Tungsten Arc Welding (GTAW) uses a nonconsumable tungsten electrode for joining materials [1], with shielding gas protecting the molten pool [2]. Nickel-based superalloys are important in industries like aerospace due to their high-temperature performance and corrosion resistance [3, 4]. However, their welding is complex due to secondary phase particles [5, 6].

Strengthening in these alloys relies on secondary-phase precipitation. IN-738LC, a nickel-based superalloy, resists creep, fatigue, and hot gas corrosion. High cooling rates in the weld metal prevent secondary phase precipitation [7], while in the heat-affected zone (HAZ), the coarsening of precipitates can reduce hardness [8].

Secondary dendrite arm spacing is a key microstructural feature in alloy solidification during welding and casting, influencing mechanical properties. Cooling rate during molten pool solidification is critical for dendrite arm spacing, but is difficult to measure directly [9], necessitating numerical prediction [10, 11].

In this study, the research focuses on understanding how the intensity of welding current affects the microstructure of IN738LC alloy welds made using the GTAW process.

Review History:

Received: Oct. 07, 2024 Revised: Jan. 27, 2025 Accepted: Mar. 08, 2025 Available Online: Mar. 18, 2025

Keywords:

Secondary Dendrite Arm Spacing Nickel-based Superalloys Finite Element Modeling Dendritic Microstructure Weld Pool

To do this, the researchers created welds using different current intensities and then used a combination of numerical modeling and experimental analysis to examine the resulting microstructures. A thermal model was developed to simulate the welding process and predict cooling rates, which were then compared with measurements of secondary dendrite arm spacing in the actual welds. Ultimately, this research provides insights into the relationship between welding parameters, particularly current intensity, and the resulting microstructure of the weld.

2- Experimental procedure

The experimental procedure involved several key steps to prepare and weld the IN738LC alloy samples. Initially, reference samples were prepared with specific dimensions (80 mm length, 50 mm width, and 5 mm thickness). These samples underwent cleaning and sanding to remove surface contaminants before the welding process.

Welding was performed using the GTAW method in a filler-less configuration. The welding process was automated and conducted in a single pass. Specific welding parameters were maintained, including a voltage of 10 V, a travel speed of 3.14 mm/s, and an arc efficiency of 0.6. Argon gas was used

*Corresponding author's email: islam ranjbar@aut.ac.ir

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

Fig. 1. Sample meshing scheme in simulation

as the shielding gas, with a flow rate of 15 Lit/min. Three samples were welded using different current intensities: 95A, 120A, and 132A.

Following the welding process, the samples were subjected to electro-etching to reveal their crystal structures. This involved using a chemical solution with a specific composition (H_2SO_4 , HNO_3 , and H_3PO_4) and applying a potential of 6V for 5 seconds. Finally, the etched samples were examined using optical microscopy to capture images of the weld microstructure, specifically focusing on the secondary dendrite arm spacing.

3- Numerical modeling

The numerical modeling in this research involved the development of a three-dimensional finite element thermal model using the ANSYS-APDL software. This model was designed to simulate the transient heat transfer phenomena occurring during the GTAW process. The governing equation for heat transfer, along with the boundary conditions, was implemented to predict the temperature distribution and cooling rates within the weldment. To account for heat losses, a combined heat transfer coefficient, incorporating both convective and radiative heat transfer, was applied to the model boundaries.

$$\frac{\partial}{\partial x}(K\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(K\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(K\frac{\partial T}{\partial z}) + \dot{Q} = \rho C_p \frac{\partial T}{\partial t}$$
(1)

The model geometry mirrored the dimensions of the experimental samples, and a finer mesh was used in the vicinity of the weld to capture the steep thermal gradients (Fig. 1). The heat input from the welding arc was modeled as a heat source with a specific distribution, and temperature-dependent material properties were incorporated to enhance

Fig. 2. The formation of equiaxed dendrites in the upper regions of the pool, shown in green, and the growth of columnar dendrites in regions close to the fusion line, shown in pink.

the accuracy of the simulations. The model was then used to simulate the welding process for the different current intensities used in the experiments, and the resulting temperature histories were analyzed to extract cooling rates and thermal gradients at various locations within the weld.

Eventually, by matching the cooling rate in the fusion line with the distance of SDAS in the same area, constants α and n in equation 2 were obtained.

$$d = \alpha(\varepsilon)^{-n} \tag{2}$$

4- Result and discussion

Fig. 2 exhibited that dendrites near the fusion line had a columnar structure with epitaxial growth, transitioning to an equiaxed structure in regions closer to the heat source, where higher thermal gradients prevailed. This microstructural variation was directly linked to the temperature distribution within the weld pool, as confirmed by numerical simulations, which showed the highest temperatures and cooling rates in the central region of the molten pool.

Analysis of the thermal profiles obtained from the simulations demonstrated variations in cooling rates corresponding to different welding currents. Specifically, higher welding currents led to increased heat input, resulting in slower cooling rates. The region adjacent to the fusion line, characterized as a mushy zone with temperatures between the solidus and liquidus temperatures of the alloy, was identified as critical for the nucleation and growth of columnar dendrites. Cooling rates within this region were therefore considered crucial in determining the secondary dendrite arm spacing. As shown in Fig. 3, the temperature-time curves correspond to the range of images taken for each sample.

By comparing the simulated cooling rates with the measured secondary dendrite arm spacing, a quantitative relationship between these parameters is established. This relationship was expressed through a power-law equation, and the constants in this equation were determined for the IN738LC alloy, and the constants a and n in the mathematical

Fig. 3. Temperature-time curves proportional to the range of images taken for each sample

relationship between the distance between the secondary dendritic arms and the cooling rate were obtained, which were equal to 34.62 and 0.3, respectively (Fig. 4). The results were further compared with findings from previous studies, demonstrating a reasonable agreement despite some variations, which could be attributed to differences in experimental conditions and measurement errors.

5- Conclusion

The main objective of this study was to investigate the effect of current intensity on the microstructure of the weld metal in IN738LC and its impact on the mechanical properties of the alloy. It was observed that changing the current intensity directly influenced the heat input, which, in turn, affected the cooling rate in different regions of the weld metal. Since the microstructure of the weld pool is highly dependent on the cooling rate during solidification, variations in heat input led to significant changes in the resulting weld structure. The key findings of this study are as follows:

Increasing the heat input by increasing the welding current results in a decrease in the cooling rate. For instance, when the heat input was 181 J/mm, the cooling rate was 682 K.S -1. However, when the heat input was increased to 229 J/mm, the cooling rate decreased to 522 K.S -1 in the same region of the weld.

Fig. 4. Diagram of SDAS according to the cooling rate

With the increase in heat input, there is also an increase in secondary dendrite arm spacing (SDAS). For example, with a heat input of 181 J/mm, the average SDAS was 4.9 μ m, while with a heat input of 230 J/mm, the average SDAS increased to 5.3 μ m.

In the weld pool, the grain structure transitions from

equiaxed to columnar as one gets closer to the fusion line. This is influenced by the cooling rate; higher cooling rates near the fusion line promote the growth of columnar dendrites, while lower cooling rates in the center of the weld pool lead to equiaxed grains.

References

- [1] G.V. Ramana, B. Yelamasetti, T.V. Vardhan, Study on weldability and effect of post heat treatment on mechanical and metallurgical properties of dissimilar AA 2025, AA 5083 and AA7075 GTAW weld joints, Materials Today: Proceedings, 46 (2021) 878-882.
- [2] E.A. Kihara, H.L. Costa, D. Ferreira Filho, Effect of the Shielding Gas and Heat Treatment in Inconel 625 Coatings Deposited by GMAW Process, Coatings, 14(4) (2024) 396.
- [3] D.K. Ganji, G. Rajyalakshmi, Influence of alloying compositions on the properties of nickel-based superalloys: a review, Recent Advances in Mechanical Engineering: Select Proceedings of NCAME 2019, (2020) 537-555.
- [4] C. Kästner, M. Neugebauer, K. Schricker, J.P. Bergmann, Strategies for increasing the productivity of pulsed laser cladding of hot-crack susceptible nickel-base superalloy

Inconel 738 LC, Journal of Manufacturing and Materials Processing, 4(3) (2020) 84.

- [5] A. International, Metals Handbook Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM, 1990.
- [6] M. Handbook, Welding, brazing, and soldering, (No Title), 6 (1993) 322.
- [7] S. Kou, Welding metallurgy, New Jersey, USA, 431(446) (2003) 223-225.
- [8] D. Dubé, A. Couture, Y. Carbonneau, M. Fiset, R. Angers, R. Tremblay, Secondary dendrite arm spacings in magnesium alloy AZ91D: from plaster moulding to laser remelting, International Journal of Cast Metals Research, 11(3) (1998) 139-144.
- [9] E. Bonifaz, Submodeling simulations in fusion welds, Journal of Multiscale Modelling, 4(04) (2012) 1250014.
- [10] L. Chen, Y. Wei, S. Qiu, W. Zhao, Macro-micro scale modeling and simulation of columnar grain evolution during gas tungsten arc welding of nickel-based alloy GH3039, Metallurgical and Materials Transactions A, 51 (2020) 887-896.
- [11] M.C. Flemings, Solidification processing, Metallurgical and Materials Transactions B, 5 (1974) 2121-2134.

نشریه مهندسی مکانیک امیر کبیر

بررسی تأثیر شدتجریان جوشکاری بر مورفولوژی و ریزساختار فلز جوش آلیاژ IN738LC به روش جوشکاری قوسی گاز تنگستن

رضا نظری، اسلام رنجبر نوده * 回

دانشکده مهندسی مواد و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران.

خلاصه: فاصله بازوهای ثانویه دندریتی یکی از مهم ترین ویژگیهای ریزساختاری در انجماد دندریتی آلیاژها، حین فرایندهای ریخته گری و جوشکاری است و تأثیر قابل توجهی بر سختی و استحکام کششی آلیاژ دارد. آلیاژ دارد. عامل اساسی مؤثر بر فاصله بازوی دندریت ثانویه، سرعت سرمایش حین انجماد حوضچه مذاب است و اندازه گیری عملی سرعت سرمایش فلز جوش در حین فرایند جوشکاری کاری بسیار دشوار است. از این رو باید از روشهای عددی برای پیش بینی آن، استفاده نمود. در این پژوهش، ابتدا فرایند جوشکاری کاری بسیار دشوار است. از این رو باید از روشهای عددی برای پیش بینی آن، استفاده نمود. در این پژوهش، ابتدا فرایند جوشکاری کاری بسیار دشوار است. از این رو باید از روشهای عددی برای پیش بینی آن، استفاده نمود. در این پژوهش، ابتدا سه نمونه سوپرآلیاژ TN738-LC این ترای کاه ۱۳۷ و ۲۱۰ آمپر تولید و یک مدل حرارتی المان محدود سه بعدی برای تحلیل جریان گرمای گذرا و محاسبه نرخ سرمایش در نقاط مختلف فلز جوش توسعه یافت. نتایج مدل با آزمایشهای تجربی صحهگذاری شد. نتایج نشان داد که نرخ سرمایش در نمونه ۹۵ آمپر در نزدیکی خط ذوب بین ۲۵۰ تا حمل با آزمایشهای تجربی صحهگذاری شد. نتایج نشان داد که نرخ سرمایش در نمونه ۹۵ آمپر در نزدیکی خط ذوب بین ۲۵۰ تا ۲۰۰ کلوین بر ثانیه و در نمونه ۹۵ آمپر در نزدیکی خط ذوب بین ۲۵۰ تا ۲۰۰ کلوین بر ثانیه و در نمونه ۱۳۲ آمپر بین ۲۶۰ تا ۲۰۰ کلوین بر ثانیه و در نمونه ۱۳۲ آمپر محمل ایز را ۲۲/۶۲ و ۳۰ شد که نرخ سرمایش در نقاط مختلف فلز بین ۲۰۶ تا ۲۰۰ کلوین بر ثانیه و در رابطه ریاضی بین فاصله بازوهای ثانویه دندریتی و سرعت سرمایش به دست آمد که به ترتیب برابر با ۱۶/۶۲ و ۳۰ شد. این مدل، ابزاری کارآمد برای پیش بینی ریزساختار و خواص مکانیکی در جوشکاری ارائه میدهد و میتواند و براس مکای فرانده میدهد و میتواند و خواص مکایی در جوشکاری ارائه می در استفاده از تصاوی میکروسکویی فاصله بازوهای ثانویه دندریتی در مناطق مختلف فلز برابر با ۲۶/۶۲ و ۳۰ شد. این مدل، ابزاری کارآمد برای پیش بینی ریزساختار و خواص مکایی در جوشکاری ارائه میدهد و میتواند رو بر بینی برابر با ۲۶/۶۲ و ۳۰ شد.

تاریخچه داوری: دریافت: ۱۴۰۳/۰۷/۱۶ بازنگری: ۱۴۰۳/۱۱/۰۸ پذیرش: ۱۴۰۳/۱۲/۱۸ ارائه آنلاین: ۱۴۰۳/۱۲/۲۸

کلمات کلیدی: فاصله بازوهای ثانویه دندریتی آلیاژ پایه نیکل مدلسازی المان محدود انجماد دندریتی حوضچه مذاب

۱ – مقدمه

جوشکاری قوسی گاز تنگستن یک فرایند جوشکاری قوسی و ذوبی است که در این فرایند از یک الکترود تنگستن غیرمصرفی بهمنظور ایجاد اتصال استفاده میشود[۱]. در این فرایند، گاز محافظ آرگون خالص یا ترکیبی از گازهای آرگون، CO_r و He، حوضچه مذاب را در برابر آلودگیهای جوی و اکسید شدن محافظت میکند[۲].

سوپرآلیاژ های پایه نیکل به دلیل عملکرد عالی در دمای کاری بالا و حفظ خواص مکانیکی و مقامت به خوردگی[۳] به طور گسترده در صنایع هوافضا، انرژی، دریا و هستهای[۴–۶] مورد استفاده قرار می گیرند. جوشکاری این آلیاژ، به دلیل حضور ذرات فاز ثانویه در ریزساختار، فرآیندی پیچیده و دشوار است که نیازمند ملاحظات خاصی میباشد.[۲, ۸]. مکانیزم اصلی استحکام دهی این آلیاژها فرایند رسوب دهی فاز ثانویه میباشد[ع, ۹]. IN738-LC نیز به عنوان یک سوپرآلیاژ پایه نیکل میتواند مقاومت در برابر خزش و خستگی و

همچنین چقرمگی و مقاومت در برابر خوردگی گاز داغ را تا ۰۰٬۰ دمای ذوب خود حفظ کند[۴]. فاز ثانویه در فلز جوش، به دلیل نرخ سرمایش بالا حین انجماد، فرصتی برای رسوبدهی ندارد. اندازه این فاز در فلز جوش در مقیاس نانومتر است. از سوی دیگر، در ناحیه متأثر از حرارت، ممکن است فرایند پیرسازی ادامه یابد و رسوبهای از قبل تشکیل شده در فلز پایه، درشت تر شوند و سختی این ناحیه کاهش یابد[۹].

فاصله بازوهای ثانویه دندریتی یکی از مهمترین ویژگی های ریزساختاری در انجماد دندریتی آلیاژها، حین فرآیندهای ریخته گری و جوشکاری است و تأثیر قابل توجهی بر خواص مکانیکی نظیر سختی و استحکام کششی آلیاژ دارد. عامل اساسی مؤثر بر فاصله بازوی دندریت ثانویه، سرعت سرمایش در زمان انجماد حوضچه مذاب است[۱۰]، از طرفی اندازه گیری دقیق سرعت سرمایش نقاط مختلف فلز جوش به صورت عملی در حین فرایند جوشکاری به دلیل ماهیت گذرا فرایند و اندازه کوچک حوضچه مذاب کاری بسیار دشوار است. همچنین، بهینهسازی تجربی متغیرهای فرآیند جوشکاری

^{*} نویسنده عهدهدار مکاتبات: islam_ranjbar@aut.ac.ir

مستلزم نمونهسازی و اندازهگیریهایی است که بسیار پرهزینه و زمان بر هستند.[۱۱]، از این رو باید از روشهای عددی برای پیش بینی آن استفاده نمود. مدلهای عددی به گونهای توسعه مییابند که رفتار مواد را پیش بینی کنند. با این حال، این مدل ها ابتدا باید اعتبار سنجی شوند. از این رو نتایج آزمایشات تجربی برای تایید مدل سازی عددی مورد استفاده قرار می گیرد.

به عنوان نمونه بونيفاز و همكاران[۵, ۱۲] يک مدل حرارتي المان محدود سه بعدی برای تولید پروفیل های جوش و تحلیل جریان گرمای گذرا، گرادیان های حرارتی در جوش قوسی گاز تنگستن سوپرآلیاژ ریخته گریIN-738 ایجاد کردند. خروجیهای شبیهسازی شامل نرخ سرمایش، گرادیان حرارتی بود که برای توصيف ساختارهای انجماد به کار گرفته شد. در پژوهشی ديگر چن و همكاران[١٣] با مدل سازى اجزاى محدود انجماد حوضچه مذاب آلياژ پايه نیکل ۳۰۳۹GH را مورد بررسی قرار دادند و نشان داد، حرارت ورودی بر ریزساختار حاصل تأثیر بسزایی دارد، در حالی که تأثیر کمی بر اندازه دانه ستونی در فلز جوش دارد. همچنین رشد رقابتی دانههای ستونی عمدتاً توسط جهت گرادیان دمایی تعیین می شود و ساختار دانه بندی فلز جوش در نهایت تمایل دارند تا بر خط ذوب عمود شوند [۱۳, ۱۴]. چودوری و همکاران [۱۵] نیز پس از بهینهسازی پارامترهای فرایند جوشکاری قوسی گاز تنگستن به بررسی ریز ساختار IN-825 پرداخت و نشان داد که با وجود دانههای هم محور در فلز پایه، امکان تشکیل دندریت های ستونی و هممحور در ناحیه خط ذوب فلز جوش وجود دارد. در این پژوهش همچنین با استفاده از مدلسازی شبکه عصبی مصنوعی نشان داده شد که ریزساختار فلز جوش بیشترین حساسیت را به شدت جریان جوشکاری و سپس به سرعت پیشروی فرايند دارد.

علیرغم مطالعات انجام شده بر روی متغیرهایی نظیر سرعت، در این پژوهش، اثر مستقیم متغیر شدت جریان بر مورفولوژی و ریزساختار فلز جوش مورد بررسی قرار گرفت. سه نمونه با سرعتهای پیشروی یکسان و گرمای ورودی متفاوت در نظر گرفته شد و با بهرهگیری از نتایج مدل صحهگذاری شده، یک مدل حرارتی المان محدود سهبعدی در محیط برنامهنویسی نرم افزار انسیس ^۱ طراحی و توسعه داده شد تا پروفیلهای حرارتی جوش را تولید کرده و جریان گرمای گذرا در ساختار فلز جوش را تحلیل نماید. در این راستا، میزان سرعت سرمایش در نقاط مختلف فلز جوش در مجاورت خط ذوب با استفاده از این مدل محاسبه گردید. خروجیهای این شبیهسازی، نرخهای سرمایش، گرادیان حرارتی (G) و نرخ رشد (R) بودند که به منظور توصیف

1. ANSYS-APDL

ساختارهای انجماد، در مراحل بعدی پژوهش به کار گرفته شدند. پس از اتمام شبیهسازی حرارتی، تصاویر میکروسکوپ نوری برای نمونههای تولید شده به دست آمد و مورد بررسی قرار گرفت. در این مرحله، فاصله بازوهای ثانویه دندریتی در مناطق مختلف فلز جوش سنجیده شد. همچنین ارتباط میان نتایج عددی و تجربی در مناطق مختلف فلز جوش بررسی شد.

۲- الگوسازی نظری و تجربی ۲- ۱- ساخت نمونه

آزمایش تجربی با نمونههای مشخص شده و یکسانی از سوپرآلیاژ ۸۰ mm صورت گرفت. نمونههای مرجع در ابعادی به طول ۱۸۲۵ LC و عرض ۵۰ mm و با ضخامت ۴ mm ۴ آماده گردید و قبل از جوشکاری نمونهها تمیزکاری و سنبادهزنی شد تا آلودگیهای سطحی رفع شود. از روش جوشکاری قوسی تنگستن گاز با جریان متناوب^۲ در حالت بدون فیلر برای تهیه نمونههای جوشکاری استفاده شد.

جوشکاری بدون فیلر در دانشگاه امیرکبیر به طور خودکار با یک پاس انجام شده است. در جدول ۱ متغیرهای مورد استفاده در جوشکاری بدون فیلر نمونهها ارائه شده است. در آزمایشها، ولتاژ ۱۰ ولت، سرعت mm/s فیلر نمونهها ارائه شده است. در نظر گرفته شد. همچنین گاز محافظ آرگون با دبی Lit/min و دمای ۱۰ درجه سانتی گراد مورد استفاده قرار گرفت.

۲-۲- دستگاه جوشکاری خودکار

شکل ۱ دستگاه جوشکاری خودکار بدون فیلر و قید و بندی که جهت انجام آزمایشهای عملی، استفاده شده است را در حین اجرای آزمایش نشان میدهد. لازم بذکر است که قید و بند به گونهای طراحی شده که قطعه مورد نظر با سطح زیرین تماس نداشته باشد و فقط ۵ میلیمتر از کنارهی قطعه با قید و بند درگیر است.

۲- ۳- فرايند الكترو اچ نمونهها

انجام فرایند الکترو اچ برای نمایان کردن ساختار کریستالی نمونهها انجام شد. برای انجام این فرایند از محلول با ترکیب شیمیایی ٪۲۲ _۴، H_vPO ٪ ۶۰۰ HNO_r و ٪۴۸ _۴, SO استفاده شد، همچنین فرایند الکترواچ با مقدار پتانسیل ۶ ولت و مدتزمان ۵ ثانیه صورت گرفت[۱۶].

حرارت ورودی (J/mm)	بازده	تعداد پاس	سرعت (mm/s)	ولتاژ (v)	جريان (A)	رديف
١٨١	• /۶	١	٣/١۴	١.	٩۵	١
۲۳۰	• /۶	١	٣/١۴	۱.	17.	٢
202	• /۶	١	٣/١۴	١.	١٣٢	٣

جدول ۱. متغیر های مورد استفاده در جوشکاری نمونه ها Table 1. Parameters used in welding samples

۲- ۴- رابطه فاصله بازوهای دندریتی ثانویه

با افزایش نرخ سرمایش که منجر به کاهش زمان انجماد می شود، ساختار سلولی ابتدا به دندریتی ستونی و در ادامه به دندریتی هم محور تغییر حالت می یابد. فاصله بین بازوهای دندریتی را به صورت تابعی از نرخ سرد شدن یا زمان انجماد می توان نشان داد[۵, ۹].

$$d = \alpha(\varepsilon)^{-n} \tag{(1)}$$

که در این رابطه، d فاصله بین بازوهای دندریتهای ثانویه، 3 نرخ سردشدن و a و n ثوابت رابطه هستند. نرخ سرمایش را میتوان به حاصل ضرب d و R تبدیل کرد که d برابر است با گرادیان دمایی بر حسب K/mm و R نشان دهنده سرعت انجماد یا به تعبیری سرعت پیشروی منبع حرارت بر حسب smm/s است. در نتیجه میتوان معادله ۱ را به شکل زیر بازنویسی کرد. در برخی منابع d را نیز با c_{λ} نشان می دهند[۱۴].

$$d = \alpha (G \times R)^{-n} \tag{(Y)}$$

معادله حاکم بر انتقال حرارت و شرایط مرزی آن در حالت گذرا در ذیل فهرست شده است. با این توضیح که در هنگام تحلیل ریاضی برای سادگی معادلات بهجای در نظر گرفتن ضریب انتقال حرارتی تابشی (h_r) و همرفتی (h) بهصورت جداگانه، از یک ضریب اتلاف حرارتی مؤثر که مجموع هر دوی آنهاست استفاده شده.

شکل ۱. دستگاه جوش خودکار بدون فیلر Fig. 1. Automatic welding machine

$$\frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial T}{\partial y} \right)$$

$$+ \frac{\partial}{\partial z} \left(K \frac{\partial T}{\partial z} \right) + \dot{Q} = \rho C_{p} \frac{\partial T}{\partial t}$$
(7)

در رابطه ۳، ρ جرم حجمی با واحد ³- km.m گرمای ویژه با واحد ¹- C_p ، km.m گرمای ویژه با واحد ¹- Km ، T دما، T دما، K هدایت حرارتی وابسته به دما با واحد ¹- Wm و آهنگ داخلی تولید گرما است (X راستای عرضی عمود بر خط جوش، Y راستای ضخامت پلیت، z راستای جوشکاری). اگر جوشکاری در امتداد محور X انجام شود، این رابطه را

شکل ۲. شماتیک مقادیر شرایط مرزی در شبیهسازی عددی

Fig. 2. Schematic of boundary condition values in numerical simulation

مى توان بصورت رابطه ۴ نوشت[۲۱].

$$\frac{\partial}{\partial x}\left(K\frac{\partial T}{\partial x}\right) + \dot{Q} = \rho C_{P} \frac{\partial T}{\partial t} \tag{(f)}$$

۲- ۶- شرایط مرزی

اندازه گیری دقیـق مقدار ضریب انتقـال حـرارت h بـدلیل وابسـته بـودن آن بـه متغیرهایی مثل سرعت جریان و صافی سطح بسیار دشوار است. اما برای تبادل حـرارت جـوش بـا هـوای آزاد و گـاز محـافظ، شرایط مرزی به صورتی در نظر گرفته شد که، ۵ سمتی از قطعه که با نگه دارنده قطعه تماسی نداشتند ضریب انتقال حرارت جابجایی به صورت آزاد مقداری برابر با ⁻⁻K⁻¹ ۲۰ در نظر گرفته شد و برای سطح زیرین که قطعه با آن در حال سرد شدن است، مقدار ضریب انتقال حرارت جابجایی اجباری برابر با مرابر با ⁻⁻K⁻¹ مورد استفاده قرار گرفت. همچنین در شکل ۲ مقدار بر با برابر با ضریب انتقال حرارت جابجایی به صورت آزاد و مقدار _۲ می نیز برابر با نیز برابر با ضریب انتقال حرارت جابجایی اجباری می باشد. شرایط مرزی در نمونه نیز از رابطه ۵ تبعیت می کند.

$$K\frac{\partial T}{\partial x} = h(T - T_{\infty}) \tag{(a)}$$

شکل ۳. شمای مش بندی نمونه در شبیه سازی Fig. 3. Simulation meshing scheme

۲– ۷– هندسه و مش بندی

در این پژوهش، نمونه بهصورت صفحهای با ضخامت ۵ میلیمتر، به طول ۸۰ و عرض ۵۰ میلیمتر مورداستفاده قرار گرفت. همان طور که در شکل ۳ نشان داده شده است، چون در نزدیکی خط مرکزی شیب حرارتی بالایی وجود دارد، از مشبندی ریزتری در آن ناحیه استفاده شد. در مدل نهایی ۱۶۰۶۵ گره و ۱۳۳۸۰ المان مورد استفاده قرار گرفت.

۲- ۸- مدلسازی منبع حرارتی

نحوه گستردگی قوس روی سطح قطعه، شیب دمایی محدودههای مختلف حوضچه و آهنگ خنک شدن نقاط مختلف جوش و منطقهٔ متأثر از حرارت را تغییر میدهد. سه عامل لازم برای مشخص کردن منبع گرما در مدل عبارتاند از: حرارت ورودی قوس، نحوهٔ گستردگی این گرما و سرعت حرکت منبع گرمایی؛ میزان حرارت ورودی به قطعه کار در واحد زمان برابر با حاصل ضرب ولتاژ و جریان در مقدار راندمان قوس است[۹].

$$Q = \eta E I \tag{(5)}$$

تغییر متغیرهایی مثل گاز محافظ، هندسهٔ الکترود، طول قوس، جنس فلز پایه و قطبیت میتواند روی مؤثر باشد. در بیشتر منابع برای راندمان جوشکاری قوسی گاز تنگستن مقادیری بین ۱/۵ الی ۱/۸ ارائه شده است. در این پژوهش با توجه به متغیرهای فرایند مقدار برابر ۶/۶در نظر گرفته شد. از معادل ۷ میتوان برای توزیع انرژی حرارتی قوس ساکن به صورت شار حرارتی سطحی استفاده کرد. رابطه به صورت متقارن شعاعی است و در ضمن شار حرارتی سطحی ارامی وان با توزیع گاوسی تقریب زد.

$$q_{s}(r) = \frac{3Q}{\pi r'^{2}} \exp(-3(\frac{r}{r'})^{2})$$
(Y)

Q انرژی حرارتی در واحد زمان و ۲ فاصله از مرکز منبع حرارتی است. پارامتر توزیع گاوسی است که شعاعی از قطعه است که تقریباً ٪۹۵ قوس به آن وارد میشود. در این پژوهش، مقدار برابر ۱/۸ میلیمتر(حدود نصف عرض حوضچه جوش) در نظر گرفته شد. در مورد خواص مواد و استفاده از خواص در شبیه سازی نیز این نکته در نظر گرفته شده است که در نرم افزار انسیس چنانچه خواص همراه با دما داده شود، آنالیز از دقت بالایی برخوردار خواهد بود. جدول ۲ خواص ظرفیت گرمایی و جدول ۳ هدایت حرارتی این آلیاژ در دماهای مختلف نشان می دهد[۲۲].

۳- نتایج و بحث ۳- ۱- هندسه حوضچه

در این بخش به تحلیل تصاویر متالوگرافی نمونههای تولید شده پرداخته می شود. در ساختار دانه بندی حوضچه جوش به دلیل وجود گرادیان دمایی و نرخ سرمایش به شدت بالا، ساختار دانه بندی کاملاً دندریتی شده و در هیچ کجا از فلز جوش دانه بندی سلولی مشاهده نشد. در شکل ۴ نشان می دهد که ساختار دندریتی تشکیل شده، در مناطق نزدیک به خط ذوب به صورت ستونی و رشد اپیتکسیال داشتند و در در مناطق نزدیک به منبع حرارت به دلیل وجود گرادیان دمایی بالاتر دانه های هم محور تشکیل شده است.

سه نمونه ۱، ۲ و ۳ که به ترتیب با سه شدت جریان ۹۵، ۱۲۰ و ۱۳۲ آمپر تولید شدند، توسط آزمون متالوگرافی تصویر برداری، و فاصله بازوهای

C (J/Kg K)	T (⁰ C)	C (J/Kg K)	T (⁰ C)	
۵۸۶	۶۴۸/۸۹	419	۲۱/۱۱	
۵۸۶	٧۶.	481	۹٣/٣٣	
۶۷.	AY1/11	۵۰۲	7 • 4/4	
۷۱۲	٩٨٣/٢٢	۵۲۳	810/08	
۷۱۲	17	544	478/84	
۷۱۲ ۱۳۰۰		۵۶۵	۵۳۷/۷۸	

جدول ۲. مقدار تغییرات ظرفیت گرمایی آلیاژ با دما [۲۲] Table 2 Changes in alloy heat capacity with temperatur

جدول ٣. مقدار تغييرات هدايت حرارتي آلياژ با دما [٢٢]

Table 3. Chang	es in alloy	thermal	conductivity	with	
temperature					

K (W/m ⁰ C)	T (⁰ C)	K (W/m ⁰ C)	Τ (⁰ C)
۲۳/۳۳	AY1/11	11/81	7.4
۲۹	17	10/08	310/08
۳.	17	۱۵/۵۵	478/84
VIT	۱۸۰۰	1 V/Y I	۵۳۷/۷۸
		١٩/٧٣	۶۴۸/۸۹
		۲۱/۴۵	78.

دندریتی ثانویه با استفاده از نرم افزار image-j اندازه گیری شد، شکل ۵ تصاویر دندریتهای ستونی تشکیل شده را نشان میدهد. در مناطقی نزدیک به خط ذوب که منطقه خمیری نام دارد، دندریت های ستونی تشکیل شده که در آن مناطق نواحی متناسب با تصاویر گرفته شده داده های مربوط به شبیه سازی عددی استخراج شد که بتوان نرخ سرمایش را متناسب با فاصله بازوهای دندریتی ثانویه به دست آورد.

در شبیه سازی مشخص شد که بالاترین دما متعلق به خط مرکزی

حوضچه مذاب است(شکل ۶)، در نتیجه بالاترین نرخ سرمایش نیز متعلق به این محدوده است. این موضوع علاوه بر اینکه در شبیه سازی قابل مشاهده است، ساختار دانه بندی و مورفولوژی حوضچه جوش در نمونه های تجربی نیز این موضوع را تأیید می کند. در مناطق نزدیک به خط ذوب که دور ترین نقطه به منبع حرارتی به حساب می آید، پایین ترین دما مشاهده می شود که پایین ترین نرخ سرمایش را نیز داراست.

منطقه خمیری شکل مجاور خط ذوب که دما در آن منطقه بین خطوط سالیدوس (۱۲۳۴ درجه سلسیوس) و لیکوئیدوس(۱۳۴۰ درجه سلسیوس) آلیاژ قرار دارد، ناحیهای است که تحت تبرید ترکیبی شدیدی به وجود آمده و دندریتهای ستونی در آن منطقه شروع به جوانهزنی و رشد میکنند. همچنین نرخ سرمایش در آن بازه دمایی و زمانی با فاصله بازوهای دندریتی ثانویه در آن ناحیه ارتباط دارد.

برای محاسبه نرخ سرمایش متناسب با دندریتهای ثانویه نیز، نرخ سرمایش در این بازه دمایی در نظر گرفته شده است، به این دلیل که در این آلیاژ که ساختار محلول جامد دارد از خط سالیدوس تا دمای محیط تحول فازی صورت نگرفته و ساختار ثابت است پس تنها زمانی که دما بر روی ریزساختار کریستالی نمونه تأثیر میگذارد، منطقه خمیری است و نرخ سرمایش آن منطقه هم بر روی ریزساختار تأثیر میگذارد. در شکل ۷ بخش قرمزرنگ قسمتی از حوضچه جوش را نشان میدهد که بازه دمایی در آن ناحیه بین خطوط سالیدوس و لیکوئیدوس است که مقدار نفوذ جوش را نشان میدهد و از آن نواحی جوانهزنی و رشد اپیتکسیال آغاز شده.

شکل ۴. تشکیل دندریت های هم محور در مناطق بالای حوضچه که با رنگ سبز نشان داده شده اند و رشد اپیتکسیال و رقابتی دندریتهای ستونی در مناطق نزدیک به خط ذوب که با رنگ صورتی نشان داده شده اند.

Fig. 4. The formation of equiaxed dendrites in the upper regions of the pool, shown in green, and the growth of columnar dendrites in regions close to the fusion line, shown in pink.

شکل ۵. ریزساختار تصویر برداری شده در آزمون متالوگرافی و تشکیل دندریت های ستونی در نزدیکی خط ذوب. الف) نمونه ۱ با ۹۵ آمپر، ب) نمونه ۲ با ۱۲۰ آمپر و ج) نمونه۳ با ۱۳۲ آمپر و ج) نمونه۳ با ۱۳۲ آمپر

شکل ۶. پروفیل دمایی مقطع جوش نمونه اول با شدت جریان ۹۵ آمپر از (الف) نمای ایزومتریک در حالت پایا از مرکز قطعه، (ب) نمای روبرو

Fig. 6. Temperature profile of the weld section of the first sample with a current intensity of 95 amps from (a) isometric view in steady state from the center of the part, (b) front view

شکل ۷. مناطق قرمز رنگ منطقه خمیری بین سالیدوس و لیکوئیدوس را برای ۳ نمونه (الف) ۹۰، (ب) ۱۲۰ و (ج) ۱۳۲ أمپر

Fig. 7. The red areas represent the mushy zone between solidus and liquidus for the 3 samples (a) 95, (b) 120 and (c) 132 amps.

۳- ۲- نرخ سرمایش

در شکل ۸ پس از شبیه سازی سه فرایند، منحنی های دما – زمان برای نقاط مورد نظر از حوضچه استخراج، و در بازه مورد نظر شیب خط منحنی محاسبه و نرخ سرمایش برای هر نقطه از هر نمونه محاسبه شد.

جدول ۴ نرخهای سرمایش محاسبه شده متناسب با فاصله بازوهای دندریتی ثانویه را نشان میدهد که میتوان با داشتن مقادیر نرخ سرمایش و اندازه گیری فاصله بازو دندریتهای ثانویه میتوان نمودار فاصله بازو دندریت های ثانویه را بر حسب نرخ سرمایش به دست آورد. در نهایت با برازش یک معادله توانی و تطبیق آن را رابطه ۱، ثوابت رابطه به دست خواهند آمد.

اکنون با داشتن دادههای بالا میتوان نمودار فاصله بازو دندریتهای ثانویه را بر حسب نرخ سرمایش رسم کرد و سپس با مماس کردن یک منحنی توانی میتوان ثوابت این آلیاژ خاص را در داخل رابطه ۱ قرار داد.

م با توجه به فرم کلی رابطه ۱ ، برای این آلیاژ به خصوص، مقدار ثوابت n و n به ترتیب ۲۴/۶۲ و ۲۰ به دست آمد. بونیفاز و همکاران برای n و n به ترتیب مقادیر ۵/ و ۲۳/۶۲ را به دست آوردند[۵]. و میتوان دید که منحنی محاسبه شده با داده های اندازه گیری شده به خوبی مطابقت دارد. با این حال کرمانپور و همکاران نیز مقادیر n و n را برای ریخته گری IN738-LC رمانپور و همکاران نیز مقادیر n و n را برای ریخته گری ۲۵-۱۸ و ۲۸ به ترتیب به ترتیب را با این حال کرمانپور و همکاران از با می دست آوردند[۱۷]. فرانک و همکاران [۸۸] به ترتیب به ترتیب ۲۵/۴۱ و ۲۵/۰ به دست آوردند[۱۷]. فرانک و همکاران [۸۸] به ترتیب ۲۹ می داده های دندریتی ثانویه ثوابت n و n را با ترتیب به و ۳۸ را با و ۳۸ به داده های دندریتی ثانویه شوابت n و n را با ترتیب برای رابطه فاصله بازوهای دندریتی ثانویه ثوابت n و n را با ترتیب پژوهش های پیشین آورده شده است.

مشاهده می شود که با افزایش شدتجریان در فرایند نرخ سرمایش

کاهش می یابد. هنگامی که شدتجریان افزایش داده می شود، اساساً مقدار انرژی که توسط قوس منتقل می شود بالا رفته و این افزایش انرژی منجر به انتقال گرمای ورودی بالاتر به فلز جوش می شود. گرمای ورودی بالاتر به این معنی است که گرمای بیشتری در منطقه جوش تولید می شود و این بالا رفتن دما برای سرد شدن زمان بیشتری لازم دارد. همچنین با جریان جوشکاری بالاتر، فلز پایه و حوضچه جوش برای مدت طولانی تری در دمای بالاتر باقی میماند. در نتیجه، فلز مذاب برای کاهش دما و انجماد زمان بيشترى نياز دارد. علاوه بر خود فلز جوش، حرارت توليد شده توسط قوس نيز بر فلز پایه مجاور تأثیر می گذارد. با جریان های جوشکاری بالاتر و قرار گرفتن در معرض حرارت به مدت طولانی، فلز جوش و ناحیه اطراف آن دارای نرخ سرمایش کمتری هستند که میتواند ریزساختار ناحیه متأثر از حرارت را بیشتر تحت تأثیر قرار دهد. این پژوهش با تغییراتی در شرایط آزمایش توسط محققان دیگر، برای همین آلیاژ مورد بررسی قرار گرفت و با در نظر گرفتن اینکه اندازهگیری فاصله بازوهای دندریت ثانویه میتواند دارای خطای قابل توجهی باشد، ولی محاسبه ثوابت در مقایسه با پژوهشهای پیشین مورد قبول است.

۴- نتیجهگیری

هدف اصلی این پژوهش بررسی تأثیر شدتجریان بر روی ریزساختار فلز جوش IN738-LC و تأثیرات آن در خواص مکانیکی این فلز بود. مشاهده شد که با تغییر شدتجریان در فرایند میزان گرمای ورودی نیز دستخوش تغییر میشود که این تغییر در میزان گرمای ورودی بر روی نرخ سرمایش

جدول ۴. نرخ های سرمایش محاسبه شده متناسب با فاصله بازوهای دندریتی ثانویه

Table 4. Calculated cooling r	tes proportional to SDASs
-------------------------------	---------------------------

۹۵ آمپر		آمپر	17.	۱۳۲ آمپر	
SDAS (µm)	G×R (K/s)	SDAS (µm)	G×R (K/s)	SDAS (µm)	G×R (K/s)
۵/۲	۶۱۵/۷۳	۵/۵	۵.۴/۱۱	۶/٣	۲۷۲/۳۷
۵/۲	<i>۶</i> እ۲/۲۹	۵/۵	۵۲۲/۵۰	۶/ ۱	$TTV/\Lambda T$
۴/۵	٧٨٥/٣۴	۵/۱	۶۲۳/۸۰		

به ۶۸۲ K.s⁻¹ رسید. اما با افزایش گرمای ورودی به ⁻⁻۶۸۲ K.s ، نرخ سرمایش در همان ناحیه از جوش دوم به ۵۲۲ K.s⁻¹ کاهش یافت.

۲- در ادامه مشاهده شد که با افزایش مقدار گرمای ورودی یا در اصل مقدار شدتجریان در فرایند، مقدار فاصله بازوهای ثانویه دندریتی نیز افزایش مییابد. در اصل با بالا رفتن میزان گرمای ورودی ساختار دانهبندی نمونه درشتتر خواهد شد. به عنوان مثال با مقدار گرمای ورودی (J/mm) ۱۸۱ درشتین مقدار فاصله بازوهای ثانویه دندریتی برابر (μm) ۴/۹ شد و با مقدار

شکل ۹. نمودار فاصله بازوهای دندریتی ثانویه بر حسب نرخ سرمایش.

Fig. 9. Diagram of SDASs as a function of cooling rate

نقاط مختلف فلز جوش تأثیر مستقیم می گذارد که ریزساختار حوضچه جوش نیز مستقیماً وابسته به نرخ سرمایش در حین انجماد است. اهم نتایج به دست آمده از این پژوهش به شرح زیر است:

۱- افزایش گرمای ورودی (Q_{in})، که ناشی از افزایش شدت جریان در فرآیند است، منجر به کاهش محسوس نرخ سرمایش می شود. به عبارت دیگر، هرچه میزان گرمای ورودی بیشتر باشد، نرخ سرمایش کاهش می یابد. برای نمونه، در شرایطی که گرمای ورودی ^۱-۱۸۱ J.mm بود، نرخ سرمایش the Shielding Gas and Heat Treatment in Inconel 625 Coatings Deposited by GMAW Process, Coatings, 14(4) (2024) 396.

- [3] D.K. Ganji, G. Rajyalakshmi, Influence of alloying compositions on the properties of nickel-based superalloys: a review, Recent Advances in Mechanical Engineering: Select Proceedings of NCAME 2019, (2020) 537-555.
- [4] C. Kästner, M. Neugebauer, K. Schricker, J.P. Bergmann, Strategies for increasing the productivity of pulsed laser cladding of hot-crack susceptible nickel-base superalloy Inconel 738 LC, Journal of Manufacturing and Materials Processing, 4(3) (2020) 84.
- [5] E. Bonifaz, J. Conde, A. Czekanski, Determination of secondary dendrite arm spacing for IN-738LC gastungsten-arc-welds, Journal of Multiscale Modelling, 10(04) (2019) 1850012.
- [6] S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, A.T. Clare, Powder Bed Fusion of nickel-based superalloys: A review, International Journal of Machine Tools and Manufacture, 165 (2021) 103729.
- [7] A. International, Metals Handbook Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM, 1990.
- [8] M. Handbook, Welding, brazing, and soldering, (No Title), 6 (1993) 322.
- [9] S. Kou, Welding metallurgy, New Jersey, USA, 431(446) (2003) 223-225.
- [10] D. Dubé, A. Couture, Y. Carbonneau, M. Fiset, R. Angers, R. Tremblay, Secondary dendrite arm spacings in magnesium alloy AZ91D: from plaster moulding to laser remelting, International Journal of Cast Metals Research, 11(3) (1998) 139-144.
- [11] E. Bonifaz, Submodeling simulations in fusion welds, Journal of Multiscale Modelling, 4(04) (2012) 1250014.
- [12] E. Bonifaz, N. Richards, Modeling cast IN-738 superalloy gas tungsten arc welds, Acta Materialia, 57(6) (2009) 1785-1794.
- [13] L. Chen, Y. Wei, S. Qiu, W. Zhao, Macro-micro scale

گرمای ورودی (J/mm) ۲۳۰ میانگین مقدار فاصله بازوهای ثانویه دندریتی برابر (µm) ۵/۳ شد.

۳- در نمونههای تجربی ساخته شده نمایان شد که با نزدیک شدن به خط ذوب در حوضچه، ساختار دانه از دانهبندی محوری به ستونی تغییر می کند و بالعکس که این خود اثرپذیر از نرخ سرمایش در هندسه حوضچه است.

۵- فهرست علائم

علائم انگلیسی

- J/kg.K گرمای ویژه، C_p
- $\,\mu{
 m m}\,$ فاصله بازوهای دندریتی ثانویه، d
 - G گرادیان دمایی، k/mm
 - ضریب انتقال حرارت همرفتی h
 - ضريب انتقال حرارت تابشي hr
 - I شدتجريان، A
- W/m2K هدایت حرارتی وابسته به دما، K
 - J/mm گرمای ورودی، Q
 - Q آهنگ داخلي توليد گرما،
 - mm/s، سرعت حركت جبهه انجماد R
 - t زمان، s
 - K دما، T
 - V اختلاف پتانسیل، E
 - mm/s سرعت در راستای خط جوش، V_x

علائم يونانى

- a ضریب تناسب ε نرخ سرمایش، K/s η راندمان
 - $\mathrm{kg/m^3}$ چگالى، ho

منابع

- G.V. Ramana, B. Yelamasetti, T.V. Vardhan, Study on weldability and effect of post heat treatment on mechanical and metallurgical properties of dissimilar AA 2025, AA 5083 and AA7075 GTAW weld joints, Materials Today: Proceedings, 46 (2021) 878-882.
- [2] E.A. Kihara, H.L. Costa, D. Ferreira Filho, Effect of

dendrite arm spacing for IN738LC investment castings, Metallurgical and Materials Transactions A, 42 (2011) 1847-1853.

- [19] B. Lim, H. Chen, Z. Chen, N. Haghdadi, X. Liao, S. Primig, S.S. Babu, A.J. Breen, S.P. Ringer, Microstructureproperty gradients in Ni-based superalloy (Inconel 738) additively manufactured via electron beam powder bed fusion, Additive Manufacturing, 46 (2021) 102121.
- [20] A.B. Hardness, Standard Test Method for Microindentation Hardness of Materials, ASTM Committee: West Conshohocken, PA, USA, 384 (1999) 399.
- [21] "Investigation of Measurement and Calculation of Residual Stresses in Welded Structures Using the Hole-Drilling Strain Gauge Technique and Finite Element Method," Ministry of Science, Research, and Technology
 Amirkabir University of Technology (Tehran Polytechnic) - Faculty of Mechanical Engineering, 2008. (in persian)
- [22] N. Tabrizi, P. Raisi, A.M. Kalagar, M. Cheraghzadeh, A. Ranjbarnoodeh, Investigation of the susceptibility to strain-aging cracking in TIG-welded IN738LC superalloy without filler metal using numerical modeling, Metallurgical Engineering, 24(4) (2021) 286-297.

modeling and simulation of columnar grain evolution during gas tungsten arc welding of nickel-based alloy GH3039, Metallurgical and Materials Transactions A, 51 (2020) 887-896.

- [14] M.C. Flemings, Solidification processing, Metallurgical and Materials Transactions B, 5 (1974) 2121-2134.
- [15] B. Choudhury, M. Chandrasekaran, D. Devarasiddappa, Development of ANN modelling for estimation of weld strength and integrated optimization for GTAW of Inconel 825 sheets used in aero engine components, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (2020) 1-16.
- [16] O. Ojo, N. Richards, M. Chaturvedi, Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy, Metallurgical and materials transactions A, 37 (2006) 421-433.
- [17] A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, P. Davami, Directional solidification of Ni base superalloy IN738LC to improve creep properties, Materials science and technology, 16(5) (2000) 579-586.
- [18]Franke MM, Hilbinger RM, Konrad CH, Glatzel U, Singer RF, Numerical determination of secondary

چگونه به این مقاله ارجاع دهیم R. Nazari, I. RanjbarNoodeh, Investigation of the effect of welding current intensity on the morphology and microstructure of IN738LC superalloy weld metal by GTAW method, Amirkabir J. Mech Eng., 56(12) (2025) 1593-1608.

DOI: <u>10.22060/mej.2025.23562.7781</u>