
تعداد نشریات | 8 |
تعداد شمارهها | 414 |
تعداد مقالات | 5,478 |
تعداد مشاهده مقاله | 6,010,394 |
تعداد دریافت فایل اصل مقاله | 5,299,921 |
اثر تنش پسماند بر عمر خستگی پرچرخه پیستون پوشش داده شده | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 6، دوره 56، شماره 12، 1403، صفحه 1691-1708 اصل مقاله (1.63 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23823.7817 | ||
نویسنده | ||
حجت عاشوری* | ||
دانشکده مهندسی مکانیک، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
پیستون قلب یک موتور است که تحت بارگذاری حرارتی و مکانیکی قرار دارد. خستگی ناشی از تنشهای ترمومکانیکی نقش موثری در ایجاد آسیب و کاهش عمر خستگی پیستون دارد. هدف این پژوهش ارزیابی اثر تنش پسماند بر عمر خستگی پرچرخه پیستون پوشش داده شده موتور XU7JP/L3 است. در این پژوهش، تحلیل عمر خستگی پرچرخه پیستون با استفاده از روش اجزای محدود و نرمافزار انسیس به منظور پیشبینی دما و تنش و سپس عمر خستگی پرچرخه با استفاده از تئوری گودمن و نرمافزارانسیس انکددیزاین انجام شده است. نتایج تحلیل ترمومکانیکی نشان داد که سیستم پوشش حائل حرارتی باعث کاهش تنش در پیستون در حدود 9 مگاپاسکال یا 10 درصد میشود. نتایج تحلیل اجزای محدود نشان داد که تنش و تعداد سیکلهای گسیختگی در ناحیه بالای پین پیستون بحرانی هستند. عمر خستگی پرچرخه پیستون بدون پوشش و پوشش داده شده بترتیب 108*2/51 و 108*3/415 سیکل پیشبینی گردید. نتایج تحلیل عمر خستگی پرچرخه نشان داد که تعداد سیکلهای گسیختگی پیستون پوشش داده شده حدود 36 درصد بیشتر از پیستون پوشش داده نشده است. باتوجه به نتایج تحلیل عمر خستگی پرچرخه، درنظر نگرفتن اثر تنش پسماند باعث میشود که تعداد سیکلهای گسیختگی حدود 6/4 درصد بیشتر از میزان مجاز تخمین زده شود. بنابراین لازم است اثر تنش پسماند در تحلیل ترمومکانیکی و عمر خستگی پرچرخه پیستون پوشش داده شده درنظر گرفته شود. | ||
کلیدواژهها | ||
پیستون؛ تحلیل اجزای محدود؛ عمر خستگی پرچرخه و تنش پسماند | ||
عنوان مقاله [English] | ||
Effect of residual stress on high cycle fatigue life of coated piston | ||
نویسندگان [English] | ||
Hojjat Ashouri | ||
Department of Mechanical Engineering, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran | ||
چکیده [English] | ||
The piston is the heart of the engine that undergoes thermal and mechanical loading. Fatigue due to thermo-mechanical stresses plays an effective role in causing damage and reducing piston fatigue life. This study aims to evaluate the effect of residual stress on the high cycle fatigue (HCF) life for the XU7JP/L3 engine-coated piston. In this paper, HCF life analysis of the piston is performed by using the finite element method and ANSYS software to predict the temperature and stresses, and then HCF life by using Goodman theory and ANSYS nCode Design Life software. The numerical results showed that the temperature maximum occur at the piston crown center. The obtained thermo-mechanical analysis results proved that the thermal barrier coating system reduces the stress distribution in the piston by about 9 MPa or 10%. The results of finite element analysis (FEA) indicated that the stress and number of cycles to failure have the most critical values at the upper portion of the piston pin. The high cycle fatigue life of the uncoated and coated piston predicted 2.51*108 and 3.415*108 cycles, respectively. The HCF life results showed that the number of cycles of failure for the coated piston is approximately 36% higher than for the uncoated- piston. According to the fatigue life analysis results, neglecting the residual stress effect led to estimating about 6.4% higher than the limit. The results of finite element analysis showed that the residual stress is significant which is not negligible. Therefore, it is necessary to consider the residual stress effect in the thermo-mechanical analysis and HCF life of the coated piston. Thermo-mechanical analysis and HCF life results are compared with experimentally damaged pistons to evaluate the results appropriately. It has been shown that the critical identified area matches well with the area of failure in the experimental sample. | ||
کلیدواژهها [English] | ||
Piston, Finite Element Analysis, High Cycle Fatigue Life, Residual Stress | ||
مراجع | ||
[1] A.K. Soni, S.S. Godara, R. Gade, V. Brenia, R.S. Shekhawat, K.K. Saxena, R. Rajendra Prasad, Modelling and thermal analysis for automobile piston using ANSYS, International Journal on Interactive Design and Manufacturing, 17 (2023) 2473–2487. [2] W. Wang, Y. Lu, Z. Li, H. Lai, Simulations of engine knock flow field and wave-induced fatigue of a downsized gasoline engine, International Journal of Engine Research, 22(2) (2019)1-15. [3] M. Najafi, H. Dastani, M. Abedini, Stress analysis and fatigue life assessment of a piston in an upgraded engine, Journal of Failure Analysis and Prevention, 19(2) (2019) 402-404. [4] P. Baldissera, C. Delprete C, Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating, SAE International Journal Engines, 12(1) (2019) 1-12. [5] Y. Yin, Z. Wu, Z. Hu, Q. Long, W. Ding, M. Li, X. Han, Q. Liu, L. Li, Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement. SAE Technical Paper NO.2021-01-0229, (2021). [6] Z. Yao, Z. Qian, Thermal analysis of nano ceramic coated piston used in natural gas engine, Journal of Alloys and Compounds, 768 (2018) 441-450. [7] S. Prakash, M. Prabhahar, O.P. Niyas, S. Faris, C. Vyshnav, Thermal barrier coating on IC engine piston to improve efficiency using dual fuel, Materials Today: Proceedings, 33(1) (2020) 919-924. [8] S. Saravanan, C. Ramesh Kumar, A. Pugazhendhi, K. Brindhadevi, Role of thermal barrier coating and porous medium combustor for a diesel engine: An experimental study, Fuel, 280 (2020) 1-7. [9] Y. Paik, C.R. Sahu, K.K. Pandey, S.K. Barik, S. Murugan, D. Debasish, Effect of Thermal Barrier Coating on Performance and Emissions of a DI Diesel Engine, SAE Technical Paper NO.2019-32-0526, (2019). [10] M. Pang, X.H. Zhang, Q.X. Liu, Y.X. Fu, G. Liu, W.D. Tan, Effect of preheating temperature of the substrate on residual stress of Mo/8YSZ functionally gradient thermal barrier coatings prepared by plasma spraying, Surface and Coatings Technology, 385 (2020) 1-13. [11] P. Ramaswamy, K. Vattappara, S.A. Gomes, K.T. Pasupuleti, Residual stress analysis on functionally graded 8% Y2O3-ZrO2 and NiCrAlY thermal barrier coatings. Materials Today: Proceedings, 66 (2022) 1638–1644. [12] M. Nouby, K. Ghazaly, A. Abd El-Gwwad, Evaluation of gasoline engine piston with various coating materials using finite element method, International Journal of Automotive Engineering, 9(2) (2019) 2942-2948. [13] Y. Yao, K. Hu, R. Li, Enhanced high-temperature thermal fatigue property of aluminum alloy piston with Nano PYSZ thermal barrier coatings, Journal of Alloys and Compounds, 790 (2019) 466-479. [14] Z. Yao, W. Li, Microstructure and thermal analysis of APS nano PYSZ coated aluminum alloy piston, Journal of Alloys and Compounds, 812 (2019) 1-11. [15] L.G. Tan, G.L. Li, C. Tao, P.F. Feng, Study on fatigue life prediction of thermal barrier coatings for high-power engine pistons, Engineering Failure Analysis, 138 (2022) 1-12. [16] Y. Liu, G. Jing, H. Liu, W. Zhang, M. Han, S. Xiao, Z. Zhang, Failure analysis and design improvements of steel piston for a high-power marine diesel engine, Engineering Failure Analysis, 142 (2022) 1-19. [17] N. Dagar, R. Sharma, M.L. Rinawa, S. Gupta, V. Chaudhary, P. Gupta, Design and analysis of piston using aluminum alloy and composites in Solidworks and Ansys. Materials Today: Proceedings, 67 (2022) 784-791. [18] A. Bhatt, J. Gandolfo, K. Vedpathak, C. Jiang, E. ordan, B. Lawler, B. Gainey, Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine, SAE Technical Paper No.2023-01-1617, (2023). [19] Y. Du, C. Fei, Z. Qian, S. Zhu, Z. Shu, K. Zho, Simulation analysis of thermal insulation performance of diesel engine piston based on PEO and La2Zr2O7 thermal barrier coating, Case Studies in Thermal Engineering, 59 (2024) 1-16. [20] B.N. Pathak, A. Chandra, A. Kumar, A.K. Mishra, A. Saxena, B. Kandpal, Study on wear behaviour of aluminium-based piston alloy using different coatings, Materials Today: Proceedings, 72 (2023) 1-10. [21] A.K. Sahu, S. Chakkamadathil, S. Das, Integrated Simulation Methodology to Predict Engine Head, Block, and Piston Temperatures, SAE Technical Paper No.2024-26-0315, (2024). [22] W. Wang, Y. Lu, Z. Li, H. Lai, Simulations of engine knock flow field and wave-induced fatigue of a downsized gasoline engine, International Journal of Engine Research, 22(2) (2019) 1-15. [23] M. Shariati, H. Hatamic, M. Damghani Nourid, Experimental investigations on the softening and ratcheting behaviors of steel cylindrical shell under cyclic axial loading, Journal of Computational & Applied Research in Mechanical Engineering, 2(2) (2013) 11-22. [24] M. Shariati, H. Hatami, H. Torabi, H.R. Epakchi, Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading, Structural Engineering and Mechanics, 44 (6) (2012) 753-762. [25] M Shariati, H. Hatami, H.R. Eipakchi, H. Yarahmadi, H. Torabi, M. Shariati, Experimental and numerical investigations on softening behavior of POM under cyclic strain-controlled loading, Polymer-Plastics Technology and Engineering, 50 (15) (2011) 1576-1582. [26] H. Hatami, M. Shariati, Numerical and experimental investigation of SS304L cylindrical shell with cutout under uniaxial cyclic loading, Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 43(2) (2019) 139-153. [27] K. Mollenhauer, H. Tschoeke, Handbook of Diesel Engines. Springer Heidelberg Dordrecht London New York, 2010. [28] H. Golbakhshi, M. Namjoo, M. Dowlati, F. Khoshnam, Evaluating the coupled thermo-mechanical stresses for an aluminum alloy piston used in a gasoline engine XU7, The Journal of Engine Research, 42 (2016) 33-41. [29] C.R. Ferguson, A.T. Kirkpatrick AT, Internal combustion engines: applied thermo-sciences. John Wiley & Sons, 2015. [30] S.G. Pandian, S.P. Rengarajan, T.P. Babu, V. Natarajan, H. Kanagasabesan, Thermal and Structural Analysis of Functionally Graded NiCrAlY/YSZ/Al2O3 Coated Piston, SAE International Paper No.2015-01-9081, (2015). [31] J.B. Heywood JB, Internal combustion engine fundamentals. McGraw-Hill Education, 2018. [32] N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in components, Materials and Design, 35 (2012) 572-588. [33] Y.L. Lee, J. Pan, R.B. Hathaway, M.E. Barkey, Fatigue Testing and Analysis: Theory and Practice. Elsevier Butterworth-Heinemann, 2005. [34] E. Mancaruso, L. Sequino, Vaglieco BM. Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine to Set-Up a 1d Model of Heat Transfer in Transient Conditions, SAE Technical Paper No. 2019-24-0182, (2019). [35] M. Ranjbar-Far, Numerical simulation of thermo-layered systems behavior, application to the Case of thermal barrier systems. PhD Thesis. University of Limoges. Limoges Cedex. France, 2011. [36] G.H. Farrahi, M. Rezvani Rad, M. Azadi, Coating thickness effect on stress distribution of coated cylinder head considering residual stress, The Journal of Engine Research, 26 (2012) 49-57. [37] H. Ashouri, Effect of residual stress in low cycle fatigue for coated exhaust manifold, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 14(2) (2022) 5-16. [38] H. Ashouri, A. Afshari, Effect of oil gallery on the piston thermo-mechanical stresses. Journal of New Applied and Computational Findings in Mechanical Systems, 3(3) (2023) 1-14. [39] F.S. Silva, Fatigue on engine pistons – A compendium of case studies, Journal of Engineering Failure Analysis, 13 (2006) 480-492. | ||
آمار تعداد مشاهده مقاله: 131 تعداد دریافت فایل اصل مقاله: 101 |