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ABSTRACT: Integrated Guidance and Control (IGC) is a method devised in a framework in which 
guidance and control are considered integrated within, and unified rather than independent of each other. 
The advantage of IGCs is their ability to use interactions between guidance and control subsystems. 
This methodology is employed, intended to increase the performance of the Flying Vehicle by taking 
advantage of the synergy between the two processes of guidance and control. This article describes the 
process of designing and simulating the performance of the online model predictive controller, which 
was devised in order to guide the Flying Vehicle in a three-dimensional scenario to minimize the time 
to collision as well as the miss distance to the target. As for the controller design, an online predictive 
model is devised. In general, the controller model can be implemented in two ways: online (implicit) and 
offline (explicit). In the implementation of the online type, the optimization problem of the control cost 
function is solved online in each time step, and the solution to this problem will determine the optimal 
control signal. According to the simulations, it was shown that the use of the proposed controller and the 
application of the integrated guidance and control model led to smaller values for the Flying Vehicle-
target miss distance and the time to collision as compared to those from the PID and LQR controllers.
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1- Introduction
Guidance, navigation, and control functions are critical 

to all forms of air and space vehicles, including missiles. In 
practice, these functions work together in series to maneuver 
a vehicle. It is now common to develop guidance completely 
separate from control (autopilot) and vice versa. Almost all 
textbooks and technical articles on this topic have dealt with 
it [1].

Some more advanced guidance algorithms not only 
achieve interception, but also control the interception angle 
of the missile upon impact. However, all these algorithms are 
rooted in the collision triangle concept, which minimizes the 
change of line of sight between the interceptor and the target, 
and may suffer from instability at the end of the task. In a 
multi-loop structure, steering is generated using engagement 
kinematics while the autopilot stabilizes the body dynamics 
and follows the acceleration provided by the steering.

Unlike the conventional three-loop autopilot structure, 
Integrated Guidance and Control (IGC) is an integrated 
framework in which guidance and control are considered to 
be integrated within rather than independent of each other.

The advantage of IGC is its ability to use interactions 
between command and control subsystems. IGC intends to 
increase the performance of the missile by taking advantage 
of the synergy between the guidance and control processes. 

Depending on the structure of the IGC, some provide 
additional feedback paths in the flight control system, while 
others require less. Putting G&C into a single IGC system 
improves its optimization potential. Because optimization of 
parameters can be done directly. Cost functions include key 
performance parameters such as missile and target relative 
speed of approach, line-of-sight angle, impact angle, and 
many parameters not readily available to autopilots are now 
directly available. In the conventional approach, the guidance 
law has no knowledge of the amount of spin or acceleration 
applied to the missile; instead, guidance only knows the 
relative position and speed of engagement. As the range-
target decreases, small changes in geometry result in large 
acceleration commands that can exceed the performance 
range of the autopilot. In addition, the autopilot cannot adjust 
itself based on relative engagement kinematics, as it does 
not receive this information. As a result, conventional G&C 
systems rely on making the autopilot time constant as small 
as possible to improve stability. The autopilot time constant 
designs the distance from miss to target in conventional G&C 
systems[2].

The integrated guidance and control (IGC) framework 
combines the objectives of guidance and control systems to 
leverage their synergy. The primary merits of this approach 
include reduced time to collision, improved trajectory 
tracking, and better stability under dynamic conditions. These 
merits are quantitatively evaluated in terms of minimized 
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miss distance, shorter interception time (t), and smoother 
control inputs, as detailed in the results section.

One of the main approaches to IGC using SMC was 
presented in 2010 by Harrell and Balakrishnan using 
terminal second-order sliding mode control[3].  by Harrell 
and Balakrishnan using terminal second-order sliding mode 
(TSM) control.  In 2019, Wang et al proposed an integrated 
guidance and control method with limited impact angle 
for the missile to achieve omnidirectional attack capability 
[4]. To improve the ability to damage the target, He et al 
[5]. designed an integrated guidance and control law with 
impact angle constraint to deal with the problem of tracking 
unknown maneuvering targets. To deal with the limitations of 
stimulus saturation in real systems, Ma et al in [6] investigated 
an integrated control law using dynamic level control, 
feedforward control and adaptive neural network. And 
Michel and Stechel thoroughly investigated the sliding mode 
control for the integrated plane model [7]. In 2020, Tian et al. 
presented a unified model to avoid practical problems such 
as the field of view limitation, and solved the field limitation 
by converting output to input saturation [8]. In 2021, Sinha 
et al presented an integrated guidance and control model 
with limited time. In this research, due to the simplicity of 
the design, sliding mode control is used, while a non-linear 
finite time disturbance observer is used to estimate the 
target maneuver [9]. In 2022, Lee proposed a unified model 
for hypersonic homing missiles. In this design, high-speed 
targets are hit with proper accuracy by using the sliding model 
controller, and by using the Monte Carlo method, the non-hit 
distance was reduced to the minimum[10].  In 2023 Xiaohui 
Liang et al investigated the nonlinear integrated missile 
guidance and control system with external uncertainties and 
disturbances and proposed a new adaptive neural network 
(NN) control scheme with the help of estimates obtained 
by NN and disturbance observer (DOB). In this paper, the 
weight learning rule NN and DOB are updated according to 
the tracking and estimation errors. Under the operation of the 
proposed adaptive NN rules, a good tracking characteristic 
and guidance effects can be obtained for the integrated missile 
guidance and control (IGC) system. Finally, the simulation 
results of two different scenarios show the correctness of 
the designs. It is worth mentioning that the missile tracking 
process shows a smoother trajectory and a shorter distance can 
be achieved with the proposed NN adaptive control approach 
[11]. Xiangyu et al. 2024 investigates the integrated guidance 
and control (IGC) law design problem with impact angle and 
general field of view (FOV) constraints. First, the IGC model 
for non-maneuvering moving target tracking is parameterized 
by state-dependent coefficient matrices. The nominal IGC 
law for target interception with the desired impact angle is 
obtained by solving the state-dependent Riccati equation. 
Second, since the relative degrees of general FOV constraints 
exceed one according to the IGC model, high-order control 
barrier functions are constructed. Satisfying the FOV 
constraints is equivalent to ensuring that the hypersurface 
sets defined by the barrier functions are constant, which 
translate into dependent constraints on the control input. The 

nominal IGC law is modified in a minimally invasive way 
by quadratic programming. Then, the proposed method is 
extended to the case of maneuvering target tracking using a 
relative coordinate framework. Finally, numerical simulations 
are performed to confirm the effectiveness of the proposed 
method [12]. 

Missile guidance and control have been widely studied using 
various control strategies, including classical proportional 
navigation, optimal control techniques, and nonlinear robust 
control approaches. While classical methods such as PID 
controllers offer simplicity and ease of implementation, they 
often fail to provide accurate interception in complex and 
dynamic engagement scenarios. Linear Quadratic Regulator 
(LQR) controllers offer an improvement by optimizing control 
inputs based on a quadratic cost function; however, their 
performance is heavily dependent on linearization, making 
them less effective in handling nonlinear missile dynamics 
and rapid target maneuvers. Recent advances in nonlinear 
control techniques, such as sliding mode control (SMC) and 
adaptive control, have addressed some of these limitations by 
enhancing robustness against uncertainties. However, these 
methods still face challenges in achieving an optimal trade-
off between guidance accuracy, computational efficiency, 
and real-time adaptability. Model Predictive Control (MPC) 
has emerged as a powerful approach for handling complex 
dynamic systems by solving an optimization problem at 
each time step while considering system constraints. Despite 
its advantages, the application of MPC in real-time missile 
guidance remains an open challenge due to the computational 
burden and the need for fast optimization routines. This study 
aims to bridge these gaps by developing an online MPC-
based integrated guidance and control (IGC) framework for 
missile-target engagements. Unlike conventional approaches 
that treat guidance and control separately, the proposed 
method integrates both processes into a unified framework, 
leveraging the predictive capability of MPC to dynamically 
adjust control inputs in real-time. The key contributions of 
this work include:

1. Development of a real-time implementable online MPC 
framework for missile guidance and control.

2. Comparison with conventional PID and LQR controllers 
to highlight improvements in miss distance, time to impact, 
and trajectory optimization.

3. Comprehensive simulation results in a short-range 
air defense scenario, demonstrating the effectiveness of the 
proposed approach in minimizing interception time while 
maintaining optimal control effort. 

The remainder of this paper is organized as follows: 
Section 2 presents the mathematical modeling of the missile-
target engagement. Section 3 details the proposed control 
strategies, including PID, LQR, and MPC-based IGC. Section 
4 discusses simulation results and a comparative performance 
evaluation, followed by conclusions in Section 5.

2- Mathematical modeling
A missile-target engagement scenario involves a missile 

trying to intercept a target by changing course. During docking 
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guidance, sensors inside the rocket are used to guide until 
impact. The initial conditions of this scenario include three 
main assumptions. 1: Middle path guidance is successful. 
Two: The speed of the missile and the target are close to each 
other. Three: In order to intercept and completely destroy the 
target, the impact angle of the missile and the target is limited. 
The geometry of this conflict scenario is shown in Fig. 1.

The general purpose of this article will be to design a 
suitable controller for accurate target tracking. Therefore, the 
problem of missile-target engagement is discussed, which 
includes all the topics required for accurate modeling, including 
engagement kinematics, missile dynamics, and integrated 
guidance and control model. In Fig. 1 (o-xyz) represents the 
inertial coordinate system. ( M M M T T TM x y z ,T x y z− − ) is 
the coordinate system of the velocity of the missile and the 
target, (R) is the range of the target missile. ( M TV V ) is the 
velocity of the missile and target, ( M Mθ ϕ ) and ( T Tθ ϕ ) is 
the angle of the missile and the target relative to the velocity 
coordinates and line of sight coordinate system, ( L Lθ ϕ ) is the 
elevation angle and the side angle[13].
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In Eq. (1 to 3) ( mR m ma ,a ,aθ φ ) represents the acceleration 

components of the missile, and ( tR t ta ,a ,aθ φ ) represents the 
target acceleration components. Also, θ is the angle of the 
flight path  .Since the acceleration of the rocket is usually 
provided by the aerodynamic force in the final guidance 
section, the relationship between the acceleration of the 
rocket and the aerodynamic force should be considered more. 
The aerodynamic force on the rocket is calculated in the 
speed coordinate system as Eq. (4 to 7).
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In Eq. (4 to 7), ( mz mya ,a ) are the acceleration of 
the rocket along the coordinate system of the velocity. (m) 
indicates the mass of the missile, ( ρ ) air density, (Y ,Z ) 
upward and lateral forces, ( 2

m
1q V
2
ρ= ) dynamic pressure, 

(S) aerodynamic reference area of the missile, (α ) angle of 
attack, ( β ) lateral slip angle, ( x y zδ δ δ ) deflection angles of 
rocket wings, and ( y

z z zc c c
δβ α ) partial derivatives of lift force 

coefficient, ( y
z z zc c c

δβ α )The partial derivatives will be the 
lateral force coefficient.

By combining Eq. (2, 3, 6 and 7), the line of sight angle 
equations become Eq. (8 and 9.)
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In Eq. (8 and 9), parameters 1M  and 2M  are defined as 
relations 10 and 11.
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In Eq. (8 to 11), parameters ( vϕ ) are ballistic angle, ( vγ
) rotation angle, ( L Ld dθ φ

) are approximate errors of  Lθ  and 
Lφ  .Kinematic equations of flight path angle and ballistic 

angle are shown as equations 12 and 13.
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The kinematic and dynamic equations of the rocket 
rotating around the center of mass in three-dimensional space 
are given as Eq. (14-16).
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In Eq. (14 to 16), x( )ω  is the angular velocity of the 
turning channel, y( )ω  is the angular velocity of the deviation 
channel, z( )ω  is the angular velocity of the upward channel.

The equations of the dynamic state of the missile are 
obtained as Eq. (17).

(11) L V
2

L

sin cos( )M
mRcos
  




 

 

(12) v v

m

Y cos Z sin mg cos
mV

    
 

(13) v v
v

m

Y sin Z cos
mV cos
 


 

 

 

(14) 

x y

v
z

m m

tan cos tan sin
g cos cosY

mV cos V cos

      
 

 

  

  

(15) v
x y

m

Z mg cos sinsin cos
mV

      
  

(16) 

v x y

v v

m
v

m

cos sec sin sec
Y (tan sin tan ) Z tan cos

mV
cos cos tan g

V

    
    

  

 
 





 

(17) 

y z x
x z y

x x
yz x

y x z
y y

x y z
z y x

z z

J J M
J J

MJ J
J J

J J M
J J

  

  

  

 
 


   

 
  


 

 

(18) 

x

y

z

a
x x x x x

y y y y
a

z z z z

M qSL( m m m )

M qSL( m m )

M qSL( m m )







  

 

 

   
  
  


 

(17)

In Eq. (17), x( J )  is the moment of inertia of the turning 
channel, yJ  is the moment of inertia of the deflection 
channel, zJ  is the moment of inertia of the vertical channel. 
Also x y z( M ,M ,M )  is defined as Eq. (18).
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In Eq. (18), (L) reference length, ( x
x x xm ,m ,mα β δ ) 

partial derivatives of rotation channel moment coefficient, (
y

y ym ,mδβ ) partial derivatives of deflection channel moment 
coefficient, ( z zm ,mα δ ) is the partial derivatives of the torque 
coefficient of the Faraz channel.

By combining relations 8 and 9 and 14 to 18, the three-
dimensional equation of integrated missile guidance and 
control can be written as eq. (19) [13].
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 are defined, and id ( i 1 ,2 ,3 )=   

shows the approximate errors of the system.
In Eq. (19), the matrices ib   and if  are shown as relations 

(20) to (25).
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3- Controller design
The missile hits the target when R (the distance between 

the missile and the target) approaches hitR  (the minimum 
distance between the missile and the target). The goal of the 
controller design in this article is to make the angles Lθ  
and Lφ  converge to their reference values Lfθ and Lfφ , 
respectively, and also make the distance between the missile 
and the approach hitR .

Backtracking method is used to solve the problem. And 
the control input (u) will be calculated by the Higher-order 
continuous sliding mode control. The backsteping approach 
states that a virtual control signal named 2dx  is designed at 
first. This signal is the desired behavior of the state variable 

2x  , and its design is such that the state variable 0x  tends 
to zero. So, the desired behavior of 2x  is obtained in such a 
way that the first goal of the control problem is established. 
In the next step, we design the virtual control signal 3dx . 
This signal is the reference signal of state variable 3x  and 
it is designed in such a way that if 3x  follows it, 2x  also 
follows 2dx  and as a result 0x  will also tend to zero. In the 
last stage, the real control input u is designed in such a way 
that it converges 3x  to 3dx , and as a result, the control loop 
is completed. By doing this, the second goal of the control 
problem (zeroing the distance between the missile and the 
target (R) will be established.

Two virtual control signals are obtained by the 
backtracking method, but the real control signal, which is the 
main goal of this article, will be calculated from the Higher-
order continuous sliding mode control. To calculate virtual 
signals, we will have relations (26) and (27).
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In Eqs (26 and 27), the coefficients c, 1K  , and 2K  
are fixed and will be obtained with the help of optimization 
methods of PSO along with the variables related to the real 
controller. Also, the controller block diagram of the article is 
drawn in Fig. 2.

3- 1- PID controller design
The PID controller, a standard in classical control theory, 

improves system performance by adjusting the proportional 
( pK ), integral ( iT ), and derivative ( dT ) gains. These 
adjustments help control steady-state error and output 
fluctuations in response to a step input. To evaluate the 
proposed controller in this paper, a basic PID controller is 
first designed. In the system, the rocket’s output is angular 
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velocities, which should approach zero. Thus, the tracking 
error is defined by Eq. (28).
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The general form of the PID controller is as Eq. (29):

(24) 

y

z
2

YZ

qSY g cos
mV cos V cos
qSZ gf cos sin
mV V

F g cos cos tan
mV V


 

 

  

 
  
 
    
 
  
  

 

(25) 

y z x x
z y

x x

z x x
x z

3 y y

x y z
y x

z z

J J qSL( m m )
J J

J J qSLm
f J J

J J qSLm
J J

 





  

 

 

  
 

 
  

  
   
 
 

 

 

(26) 

1 0 1S x cx  

1
2d 1 1 1 1 1x ( cb ) ( x cf K tanh( S ))    

(27) 
2 2 2dS x x  

1
3d 2 2 2 2x (b ) ( f K tanh( S ))   

 

(28) T T
x y z x y ze 0 , , , ,               

 

(29) 
p i d

deu K e T edt T
dt

       

 

 

(30) 

p crK 0.6K 

d crT 0.125P 

i crT 0.5P 

 

(29)

Ziegler-Nichols method is used to obtain the values of (
pK ), ( iT ) and ( dT ) gains in relation to (29). For this purpose, 

the system should be linearized first. And then by frequency 
analysis, PID controller gains are obtained from Eq. (30)[15].
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The values of crK  and crP  can be calculated from Eq. 
(31).
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In relation (31), the parameter Gm is the phase margin and 
cgw  is the frequency where the phase margin is measured, 

and the system phase will be -180.

3- 2- LQR controller design
The 2nd-order linear regulator or LQR controller attempts 

to minimize the objective function (32).
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In Eq. (32), the parameter ft  denotes the final time. Also, 
Q and R are two weight matrices that are obtained through 
optimization. The equation for the control input associated 
with this objective function is obtained as given in Eq. (33) 
[15].
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where B is the matrix multiplier for the control input in 
the linearized system, and  K(t)  is obtained from Eq. (34) 
below.
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where A is the matrix multiplier for 
the state vector in the linearized system. 

( 1)0 ( ) ( ) ( ) ( ) ( )T TK t Q K t BR B K t K t A A K t−= + − + +

3- 3- Design of predictive model controller
In most control projects where the use of predictive model 

control is considered a necessity, the linear type predictive 
model controller option is preferred. In particular, in industrial 
projects, due to the need for high speed and reliability along 
with cost considerations, this type of controller has been 
almost the only option for designers[16].  In general, the pre-
linear model controller can be implemented in two ways: 
online (implicit) and offline (explicit). In the implementation 
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of the online type, the optimization problem of the control cost 
function is solved online in each time step, and the solution to 
this problem will determine the optimal control order. But in 
the offline method, the optimization problem is solved once 
for all possible values of the state vector, and the optimal 
solution is calculated as an explicit function of the variables 
of the state vector and loaded into the controller memory. At 
each time step, then, the controller will determine the value of 
this function based on the values of the state variables to issue 
the control commands.

As such, the time required to perform control calculations 
is reduced, hence making it possible to implement the devised 
controller on the control hardware with limited processing 
volume.

3- 3- 1- Designing an online predictive model controller
We start the design of the predictive model controller by 

linearizing the open-loop equations of the system. Although 
it is possible to obtain linearized state equations by using 
Jacobians of the nonlinear equations, the method of trimming 
nonlinear equations is more appropriate for problems with 
a high degree of nonlinearity due to the availability of the 
necessary tools in MATLAB and for better approximation. 
The difference in the results of these two different linearization 
methods will be seen in the comparison of the controller 
performance in the implied linear forecast model and the 
nonlinear forecast model based on the Matlab f-mincon 
solver. Assuming that the disturbances (target acceleration) 
are zero, the standard form of the linearized state equations of 
the open-loop system is expressed as follows [15].
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The output equation of the system is expressed as follows.
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The numerical values of the above matrices are available 
in the relevant MATLAB file, and their mention has been 
avoided in order to avoid confusion.

The predictive model controller is usually implemented 
as a discrete-time in control systems. Therefore, we express 
the state equations in the form of discrete-time state space 
equations using the zeroth-order retainer and the sampling 
time sT . Hence, the discrete-time equations appear as:
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Relations (37) and (38) express the model based on which 
the predictive model controller is developed. Therefore, this 

model is called a control-oriented model. To consider the 
constraint related to the rate of acceleration changes in the 
control equations, and also due to the effect of integration 
on the controller to reduce the steady state error, the control 
input at present time step will be a combination of the control 
input from the previous step and the increase in the input, i.e 

 ( ) ( ) ( )1u k u k u k= − + ∆  
and the control input  ( )1u k −  

is augmented to the state vector as indicated in Eq. (39).
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This new control-oriented model is called the augmented 
model. The output equations of the augmented model can be 
expressed as follows.
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By defining pN  and cN  As prediction and control 
horizons, respectively, the input and output equations of 
the prediction model can be calculated using the following 
equation. )40(    a ay k C x k 
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In the equation of the above forecasting model, the Y 
vector can be taken to be of the form given in Eq. (42) as:
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the ΔU vector taken as shown in Eq. (43)
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and matrix A taken from Eq. (44) as:
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and the matrix ϕ is obtained from Eq. (45) as: 
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3- 3- 2- Definition of the constrained optimization problem 
of predictive model control

The method of predictive model control strategy is 
based on the use of a function of inputs and outputs (or state 
variables) called the performance function, which should 
be optimized in the prediction horizon while satisfying the 
constraints of the problem. The state variables in the future 
time are calculated using the predictive model and the 
system conditions in the present time ( ) ( )( )|a ax k k x k=  
as the initial conditions. By solving the stated optimization 
problem, the sequence of control inputs is obtained as 

( ) ( )1| ,  , |
T

h h cU a k k a k N k− ∆ = ∆ … ∆ +  . Then, based 
on the descending horizon control rule, the first input of this 
sequence is applied to the control system, and the same process 
is repeated again in the next time steps.

The cost function in the predictive model control is usually 
chosen as a linear function or a quadratic function. Although 
solving the first-order equation requires less computational 
effort than solving the second-order equation, the existence 
of the overall minimum value is not guaranteed in this 
method. Therefore, the cost function is chosen in the form 
of a quadratic function, so that owing to the convexity of this 
function, the existence of a local minimum point is equivalent 
to the existence of a global minimum point (a necessary and 
sufficient condition for optimality). The cost function for the 
pursuit problem is defined as follows [15]:
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In the cost function of the investigated problem, Q is a positive 
definite symmetric matrix and R is a positive scalar. Also, 

( ) , , ,| ( | ) ( | ) ( | )
T

r d r d h dr k i k x k i k v k i k v k i k + = + + + 
.  The reference vector is pertinent to the prediction window 
and expresses the controller’s expectation of the behavior of 
the reference vector in future times. The values of elements 
of this vector in reference to the prediction window are 
considered constant and equal to the values of the reference 
signal at the sampling moment k . At times, it is possible 
to predict the changes of the controller’s reference signals in 
advance, which is called “foreseeing” the reference signal in 
the control of the predictive model. Anticipating the reference 
signal actually means a more accurate definition of control 
expectations in the future, and it significantly improves 
system performance, especially in plants with fast dynamics. 

The matrix form of the cost function can be expressed as 
follows [15].
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The Q̂ and R̂  are positive definite matrices. Substitution 
of Eq. (41) in Eq. (47) results in:  
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The expression ˆˆ ˆ2 c cN NTH R Qφ φ × = + ∈    in the above 
equation, is a symmetric positive definite matrix and the 
column vector  ( ) ( )( ) ˆˆ 2 1 cNT T T TM x k u k F Ref Qφ = − − ∈    
, and the scaler

( ) ( ) ( ) ( )( )ˆ 2ˆ1 1
TT T T T T TN Ref QRef x k u k F Q F x k u k Ref   = + − − − ∈       

varies with time.

To implement the problem constraints, the control input 
vector is rewritten in the form:
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With the help of Eq. (49), the problem constraints for 

the duration of the prediction window can be obtained as 
described below. 
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The constraints on the changes in the control input vector 

is given as:
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and the constraints on the output vector are stated as:
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It should be noted that the increase in value of the input 
signal after the control horizon is considered zero, and hence, 
the control input value remains constant. In summary, the 
system constraints based on the changes in the control input 
for the duration of the prediction window can be expressed 
as follows.
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In the above inequality, the values are expressed as matrix 
blocks. Each of the blocks can be calculated according to the 
following relations.
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By defining 
Ä

TT T T
U U YG G G G =    and Ä

TT T T
U U YW W W W =  

, the optimization problem of the online predictive model 
control for adaptive speed control system is finally expressed 
as shown in Eq. (55) below.

                                      (53) 

 

 

, ΔU

I
G

I
 

  
 

,  YG


 

  
 

                                                              (54) 

 
 

1,Δ

1,Δ

1
1

min
U

U max
U

G u k U
W

G u k U
  

     
  , Δ

Δ
Δ

min

U max

UW
U

 
  
 

 

 
 
 

 

Y
1

Y
1

min

Y
max

x k
F

u k
W

x k
F

u k

  
             

 

 

 

 

(55) 

 

. .  Δs t G U W  

(56) 

 

(57) 

 

Δ ΔΔ
U U

U U

Y Y

G W
G U W
G W

   
      
      

2,Δ

2,Δ
 U

U
U

G
G

G
 

  
 

Δ
ˆ1m ˆin Δ ˆΔ Δ

2
T

U
J U H U M U N    

 

   ˆ1Δ , Δ Δ Δ Δ
2

ˆT TU U H U M U G U W    

   

 
Δ

Δ
ˆ

min Δ ,λ

1min Δ Δ Δˆ Δ
2

U

T T

U

d U

U H U M U G U W





 

    
 

(55)

3- 3- 3- Solving the constrained optimization problem
Due to the fact that the cost function in problem (55) is 

quadratic convex and the constraints of the problem are all 
affine, the optimization problem is quadratic programming. 
Considering that the term N ̂ has no role in the calculation 
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of the gradient of the cost function, we can ignore this term 
in further calculations. The Lagrangian of the cost function 
and the constraints of the optimization problem are defined 
as follows [15].
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In the above relation, λ is the vector of Lagrangian 
coefficients. The dual of the original quadratic programming 
problem is defined as follows.
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Therefore, the dual problem is expressed as follows.
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For any arbitrary λ, the above Lagrangian function is 
convex. Therefore, the necessary and sufficient condition for 
optimality is that the value of the gradient of the Lagrangian 
function at the minimum point is zero.
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Considering that ˆ ˆ 0TH H= 

, the matrix ˆ ˆ 0TH H= 

  is 
invertible. Therefore, we can write:
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By placing this value in the dual problem, we have:
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To calculate the vector of optimal Lagrange coefficients, 
we calculate the gradient of the above relationship and obtain 
its roots.
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If we don’t have any redundant constraints in the main 
problem, the matrix G will be of full row order, and considering 
that the matrix Ĥ  is of full order, we can calculate the vector 
of optimal Lagrange coefficients as follows.
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By inserting the value of λ* in (63), the vector of the 
string of optimal control changes during the control window 
is obtained as:
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It should be noted that in the definition of the matrix 
M, the information of the generalized state vector ( )ax t  
and the reference signal vector are included. The W matrix 
also depends on the generalized state vector. The values of 
these matrices are changed in each time step according to the 
changes of state vectors and reference signals, and create a 
new vector of optimal changes of control commands during 
the control horizon. In this formulation, it is assumed that 
the control commands will remain unchanged in the interval 
between the control horizon and the prediction horizon, and 
therefore, the value of the control input is considered constant 
in this time interval.

In the descent horizon control strategy, the controller only 
applies the first array of the optimal control command vector 
in the control horizon to the system at each sampling time. 
Therefore, the control input for sampling time k will be equal to:
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3.3.3.1 KKT conditions for optimality
Considering that the optimization problem is of the 

second-order programming type, the first-order KKT 
conditions determine the necessary and sufficient conditions 
for the existence of the overall optimal solution. These 
conditions are used to solve the problem numerically.

Necessary condition for optimality:

                                          (66) 

 
 

                                                                        (67) 

 

 

                                                                              (68) 
 

 

                                                                     (69) 
 

 

                                                  (70) 

 

 

(71) 

 

                               . .    Δ 0s t G U W   

 

(72) 

 

. .    Δ 0s t G U W   

 

 

                                                                          (73) 

 

 

 * * * *Δ , ΔU 0ˆ ˆT T TU H M G     

 Δ 0i i iG U W  

0i 

Δ 0G U W 

 Δ ,λ J(ΔU)U 

   
ΔU ΔU

min Δ ,λ minJ ΔUU 

    
ΔU ΔU

0

max min Δ ,λ min J ΔU
i

U


 



 
0

max  
i

d







(66)

Complementary redundant condition:
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Feasibility condition of the dual problem:
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Feasibility condition of the primal problem:
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3.3.3.1 Numerical solution of the problem of quadratic 
programming of linear predictive model control

Algorithms for solving optimal problems of the quadratic 
programming type usually calculate the optimal point of the 
objective function by checking the optimality conditions of 
KKT and minimizing the difference between the value of the 
initial problem and the dual problem through repetition. In this 
section, the method of this calculation is briefly explained.

Obviously, each vector ÄU  in the set of possible solutions 
is an upper bound for the optimal value of the cost function  
( )J U∆  and this implies * *J( ) J ( )U J U∆ ≥ = ∆  . Now, we 

have to find a lower bound for this problem. Considering 
that the Lagrangian of the primal problem assumes that all 
Lagrangian coefficients are non-negative and the constraints 
of the problem are expressed in the form of an inequality, 
the inequality  ( ) 0T G U Wλ ∆ − ≤  is always maintained and 
therefore we have:
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By minimizing the sides, we will have this inequality:
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The above relation gives ( )
U

min ,U λ
∆

∆
 
as a lower bound 

for the primal problem. The best lower bound is obtained by 
maximizing the profit function ( )

U
min ,U λ
∆

∆
 
through the 

variables of the dual problem.
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By defining the new cost function as ( ) ( )
U

d ,min U λλ
∆

= ∆
, the dual problem is defined as follows.
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The latter problem is unconstrained, and its optimal point 
is *λ . Solving the dual problem always provides the largest 
lower bound of the primal problem, which is called the weak 
duality property. Let *f and *d  be the optimal values of the 
primal and dual problems, respectively. As stated, it is always 
noted that  * *d f≤   , and hence we call  * *d fε = −   as the 
Duality gap. If the Duality gap is equal to zero, it is said that 
there is a Strong duality.

Each possible solution, such as U∆   within the set of 
possible solutions, provides new information about the 
upper bound of the primal problem, and more precisely, 

( )*f f U≤ ∆  . If we can find a feasible solution such as λ  
for the dual problem  ( ) *d Jλ ≤ , We will be able to form an 
interval for the location of the optimal value of the primal 
problem where the inequalities  ( ) ( )*d J J Uλ ≤ ≤ ∆    hold. 
Therefore, without knowing the exact value of *J  and only 
knowing the value of the duality gap, it is possible to see how 
far the point obtained is suboptimal.

Algorithms normally solve the primal and dual problems 
in an iterative manner and form a string of possible solutions, 
such as { }

0,1,
,k k k

U λ
= …

∆ 

 
for the primal and dual problems to the 

point where the stopping condition desiredε ε<  is established. 
In quadratic convex programming problems, the feasibility 
of the solution indicates a strong duality. This means that the 
desired duality gap can be chosen arbitrarily small.

3- 3- 4- KKT conditions for optimality
All the constraints that have been defined in the problem 

so far are hard constraints, which means that the controller 
should not violate them under any circumstances. Hard 
constraints that are defined on state variables or system 
output sometimes cause the problem of infeasibility of the 
solution. For example, unmodeled perturbations may drive 
outputs outside the range of feasible solutions. Therefore, 
there will be no defined control command to bring the 
outputs back within the allowed range at the next time step. 
For this reason, the constraints imposed on the output (and 
state variables) are usually relaxed. By defining the variable ε 
and the vector M, the constraints of the output vector can be 
softened as follows.
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In recent relations, 0iM ≥   is the value related to the 
degree of softening of the  thi adverb of the output. Also, in 
order to reduce the amount of deviation of the outputs from 
their allowed values, the term 2ρε  is added to the objective 
function to penalize the violation of the output constraints (
ρ  is an arbitrary large enough positive number). Therefore, 
ε   will play the role of a new independent variable in the 
optimization problem [17].

This method can be used to soften control input constraints 
or control input changes. In the problems of tracking the 
reference vector by the controller with the property of 
integration, it is usually recommended that the output 
constraints are selected as soft as possible, and the control 
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input constraints or control input changes are also softened.

3- 3- 5- Setting the controller parameters of the forecast model
One of the characteristics of the predictive model 

controller compared to other control approaches is the 
multiplicity of adjustable parameters in this type of controller. 
Although this feature gives the designer more freedom to 
better adjust the behavior of the controller, sometimes it 
becomes a big challenge for him to properly set the controller 
parameters. Because at the time of adjusting the controller 
parameters, the compromise between the conflicting goals 
of stability, agility, tracking accuracy, and controller speed 
is inevitable, taking into account the limitation of computing 
volume and controller memory. It is important to emphasize 
that the optimality of the control command provided by the 
predictive model controller is completely dependent on the 
control parameters’ setting, and if these parameters are not set 
properly, the controller will not provide optimal performance.

During many years of development and application of 
the predictive model controller in industrial applications, 
general rules have been developed to set the parameters of 
this type of controller. For example, in the articles related to 
the adjustment of the controlling parameters of the predictive 
model, it is recommended that the prediction horizon be 
chosen to be large enough to include the effective part of 
the process dynamics. Specifically, for a stable open-loop 
system, it has been said that 80-90% of the request time of 
the system’s open-loop response to the step input can be a 
reasonable value for the length of the prediction window. 
Regarding the control horizon, 10-20% of the length of the 
prediction window is recommended in, but choosing a control 
horizon between 3 and 5 is an empirical rule recommended in 
the control literature [17].

In the predictive control implementation, the following 
parameters were used:

Prediction Horizon (P): 10 steps, capturing the relevant 
system dynamics for the engagement scenario.

Control Horizon (C): 3 steps, ensuring computational 
efficiency while maintaining control accuracy.

Runtime: The MATLAB implementation required 
approximately 0.2 seconds per control cycle.

These parameters were selected to optimize the trade-off 
between computational demands and control performance.

3- 3- 6- Setting the controller parameters of the forecast model
In this paper, the predictive control toolbox of MATLAB 

has been used to implement the online predictive model 
controller. This toolbox, while providing the facilities needed 
to design the implicit predictive model controller with 
reference signal prediction capability, eliminates the need 
to build a predictive model from the control-oriented model. 
For this purpose, it is sufficient to create an object of the 
predictive control class using the open-loop dynamic model 
of the system and change the methods and features presented 
in this class based on the needs of the problem.

3- 3- 7- Controller stability analysis and solution feasibility 
condition

In general, the stability of the predictive model controller 
is not guaranteed in advance. Furthermore, the controller may 
direct the state variables to a part of the state space where 
no optimal response satisfying the constraints of the problem 
can be computed in finite time. Therefore, the controller of 
the predictive model can be implemented when the stability 
and the condition of the existence of the solution in the entire 
problem space are examined.

The stability of the predictive model controller feedback 
loop has been investigated by several researchers. Most of the 
approaches to prove the stability of  predictive model control 
are essentially dependent on the arguments of Kirtshi and 
Gilbert, which show that under some conditions, the optimal 
objective function is actually a Lyapunov function. In these 
types of controllers, stability is generally a complex function 
of various adjustable parameters such as pN  ، P  ، cN  ، , and 
R . If a short control horizon is selected, the controller can 
easily become unstable. To avoid this situation, the prediction 
horizon can be considered very large (and ideally infinite). It 
is clear that such a choice will lead to a growing increase in 
the processing volume of the controller.

Another way to ensure the stability of the controller for an 
arbitrary prediction horizon is to apply the Terminal constraint 
on the last state vector in the prediction horizon. In this way, 
we will ensure that the state vector will converge to a certain 
vector at the end of the prediction horizon. The drawback of 
the mentioned method is that the equality condition of the 
Terminal constraint may cause inefficiency of the controller 
operation [18]. In addition, in order for such an approach 
to be possible, the open-loop system must be achievable in 
addition to sustainability [19]. As it was shown earlier, the 
system studied in this research is not fully controllable, and 
therefore all the state space vectors are not accessible in this 
problem  this method cannot be used to ensure the stability of 
the controller.

However, it has been shown that the stability of the 
controller with a limited prediction horizon is also possible in 
the absence of stability guarantees. Specifically, it is proved 
in that a closed-loop control system with predictive model 
controller is asymptotically globally stable if and only if 
the associated optimization problem is feasible. Therefore, 
by showing that the constrained optimization problem is 
possible in any situation, we can implicitly prove the stability 
of the controller.

4- Simulations and results
After completing the design of the used controllers, the 

performance of the designed controllers is investigated in this 
section. The parameters of the missile and the values of the 
initial parameters of the missile and target engagement, and 
the initial conditions in all these simulations are the same and 
according to Table 1.
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4- 1- Linear equations of missile motion and interception in 
three-dimensional space

For a nonlinear system, consider the general Eq. (75):
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To obtain the linear system x Ax Bu= +   corresponding 
to the nonlinear system (75), we use relations (76):
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In relation (76), 0x  and 0u  are the operating points of 
linearization. According to this relationship, to find the two 
matrices  A and  B , we must find the partial derivatives of 
  f  with respect to  x and  u  at the operating point (i.e., the 
Jacobian matrix), respectively.

We  now define a new linear system as Eq.  (77):
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In Eq.  (77), the state and control vectors are defined as  
0 1 2 3, , , , , , ,

TT T T T
vx x x x x R Rθ φ =  

 and , ,
T

x y zu δ δ δ =   , 
respectively. In fact, we define a linear system in such a way 
that it includes all the state variables defined in the previous 
sections. According to the above equations, we will have the 
numerical values given in Table 2, and finally, using equation 
(76), the following matrices are obtained for A  and B .

Table 1. Parameters of the homing missile [14]Table 1. Parameters of the homing missile [14] 

variable value Variable value 

S 0.42 2m  xJ  100 2kg.m  

L 0.68 m yJ  5700 2kg.m  

m 1200 kg zJ  5600 2kg.m  

  1.1558 3kg / m  𝑚𝑚𝑦𝑦
𝛽𝛽 -27.31 

zm  -28.16 y
ym  -26.57 

z
zm  -27.92 xm  0.46 

yc  57.16 xm  -0.37 

𝑐𝑐𝑦𝑦𝛽𝛽 yc  0.08 x
xm  2.12 

z
yc  5.74 zc  -56.31 

zc  -5.62 y
zc  0.09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Initial parameters of missile and target engagement [14]Table 2. Initial parameters of missile and target engagement [14] 

variable value Variable value 
(0 )  45 (deg) mV  600 m/s 

c(0 )  0 rad tV  600 m/s 

x  0. 1 rad/s tx (0 )  1136 m 

y  0. 1 rad/s ty (0 )  8603 m 

z  0. 2 rad/s tz (0 )  5192.8 m 

mx (0 )  0 m Lf  30 (deg) 

my (0 )  0 m Lf  -30 (deg) 

mz (0 )  0 m Ta  19.6*cos(t) 
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In obtaining the numerical values of these matrices, 
the operating points are considered as follows (actually, all 
operating points should have been considered zero, but since 
the denominator of some ratios became zero and undefined, 
small near values are considered for some operating points 
instead). 
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uJ u dt 

4- 2- PID controller performance simulation
In this part, the performance of the PID controller, whose 

parameters are adjusted by the Ziegler-Nichols method 
according to Table 3, is examined.

The simulation results for PID controller performance are 
shown in Fig. 3 to 6.

The graphs in Figs. 3 and 4 show that in about 50 seconds, 

the relative distance between the missile and the target 
reaches zero. Also, the altitude and side angles reach their 
target value at the beginning of the flight. The control input in 
the diagram of Fig. 5 caused the missile to move towards the 
target according to the movement path drawn in Fig. 6 and hit 
the target at a height of 310 meters. In general, it can be said 
that the performance of the PID controller is poorly evaluated, 
because the flight time in this controller is too long, and the 
collision between the missile and the target happened at a 
low altitude, which is not a suitable height for air defenses, 
because it is better in air defenses. The collision between the 
missile and the target should take place at a higher altitude, 
and the target should not approach the positions. Also, in 
the PID controller, the angles reach their reference values 
at the beginning of the missile’s flight and do not converge 
during the flight, and this makes the target recognize the 
missile’s path that the missile and the target do not collide. 
PID controller coefficients are obtained using Ziegler-Nicols 
method. The output of this method is suitable and usually 
works better than optimization methods. Optimization tools 
in PID controllers are time-consuming, and the desired 
result may not be obtained by spending too much time. Also, 
linearization should be used for the PID controller, which will 
only be responsive in limited operating points. According to 
the dynamics of the missile, linearization is not guaranteed for 
all modes, and even if the PID controller gains were designed 
using the neural and fuzzy network method, because the 
linearization was done, it is not valid in all modes. In addition, 
by changing the coefficients of the PID controller, its results 

(74) 

 

(75) 

 

 
0 0

,
 ,    

f x u
A x x u u

x


  


 

                                                        (76) 

 

 

                                                                                            (77) 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0
−6. 67 7. 23 0 0 −6. 70 −204. 6 0 0 0 0 −5. 22 −1. 04 −8. 09 0
2. 41 2. 41 0 0 −3. 46 0. 682 0 0 0 0 4. 8 −2. 41 −4. 17 0

0 0 0 0 −0. 0116 0. 0003 −0. 0003 −0. 0175 0. 0003 1 0 0 0 0
0 0 0 0 0. 0114 0. 0011 0. 0142 0. 0175 1 0 −0. 0001 0 0 0
0 0 0 0 0. 0063 −0. 0137 0 1 −0. 0175 0 0. 0004 0 0 0
0 0 0 0 0. 45 −0. 36 0 0 0 0 0 0 0 0
0 0 0 0 0 −0. 47 0 0 0 0 0 0 0 0
0 0 0 0 −0. 49 0 0 0 0 0 0 0 0 0
0 0 0 0 0. 0118 0 0. 0002 0 0 0 0. 0082 0 0 0
0 0 0 0 0. 0112 0. 0013 −0. 0002 0 0 0 0. 0001 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 −0. 1672 −0. 0609 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

7

5 5

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2. 0994 0 0
0 0. 4616 0
0 0 0. 4937
0 3.1 7 0. 0012
0 2.1 0 2. 33
0 0 0
0 9. 6252 567. 3836

B

e
e e



 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
  
 
 
  

 

min maxy M y y M    

 ,x f x u

 
0 0

,
 ,    

f x u
B x x u u

u


  


x Ax Bu 

A

Table 3. PID controller parametersTable 3. PID controller parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gain amount gain type 

0.732 pK  

0.417 iK  

1.669 dK  
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Fig. 3. The relative distance of the missile and the target - PID controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The relative distance of the missile and the target - PID controller

 
 

Fig. 4. Changes of elevation and side angles - PID controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Changes of elevation and side angles - PID controller
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Fig. 5. Missile control input - PID controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Missile control input - PID controller

 
 

Fig. 6 Missile trajectory and target - PID controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Missile trajectory and target - PID controller
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are not improved in comparison with other controllers. Even 
if it is possible to achieve such a state, its control effort will 
be greatly increased, and the system will be in a saturated 
state. As a result, PID is not a suitable controller for this 
system. In addition, the missile-target collision time with the 
PID controller is so high that this controller is not suitable 
for the missile to hit the target in the target scenario of this 
research. In the issue of missile and target collision, time 
plays a very key role, even if some control effort is increased. 
In the end, it can be said that although the PID controller is 
simpler, it does not respond properly to complex systems. If 
the output answers are improved, the control effort will be 
unattainably high. As a result, a controller that is suitable for 
complex nonlinear systems will be more reliable.

4- 3- Simulation of LQR controller performance
In order to simulate the LQR controller, first, the 

appropriate values for the Q and R matrices for target-missile 
engagement in this research were extracted and determined 
using the particle swarm optimization algorithm. The results 
of this optimization process for these two diagonal matrices 
are obtained as follows.

0. 0988,5. 8532,0. 0893,4. 8708,
9. 3566,0. 8765,1. 2646,3.1 068,
9. 8594,4. 4510,9. 8985,3. 0687,
0.1 200,0. 0380

Q diag

 
 
 =
 
 
 

[ ]9.1 104,1. 7283,1. 3463R diag=

Using these two matrices in the cost function of relation 
(32), the changes in the values of the cost function were 
obtained and depicted in Fig. 7. It is observed that the time to 

reach the end of the simulation is 1154 seconds for the PSO 
algorithm.

In the following, using the linearized state matrices 
and Riccati equation, the control input and gain matrix are 
calculated, and the results from the simulation can be seen in 
Figs. 8 to 11.

The graphs in Fig. 8 show that in about 32.3 seconds, the 
relative distance between the missile and the target reaches 
zero, resulting in collision. Also, the altitude and side angles 
reach their target values at the beginning of the flight, as 
shown in Fig. 9. The control input in the diagram of Fig. 10 
forced the missile to move towards the target according to the 
trajectory drawn in Fig. 11, and hit the target at an altitude 
of 823 meters. As mentioned earlier, in the design of this 
LQR controller, the particle swarm optimization method was 
employed to calculate the weight matrices, rendering this 
controller outperform the PID controller. Although a better 
result was obtained, it can be stated that the performance of 
the LQR controller is yet evaluated as fair at best, because 
the flight time in this controller is still rather large for a short-
range surface-to-air engagement, plus the fact that the height 
at which the missile-target collision occurred is still rather 
low, making this controller still inappropriate for air defense 
purposes. As stated earlier, in cases of short-range air defense, 
it is essential that the missile and the target collide at a rather 
higher altitude, and the target should not get the chance to 
come close to the defense site positions. In addition, in the 
LQR controller, the angles reach their reference values at 
the beginning of the missile’s flight rather than converge 
throughout the flight, which offers the target chances to 
recognize or foresee the missile’s path and try to evade the 
missile and avoid collision. The weight matrices of this LQR 
controller are obtained using the particle swarm optimization 

 

Fig. 7.  Changes in the cost function in optimization with time using the LQR controller and genetic algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Changes in the cost function in optimization with time using the LQR control-
ler and genetic algorithm
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Fig. 8. The missile-target relative distance using the LQR controller  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The missile-target relative distance using the LQR controller 

 

Fig. 9. Changes of elevation and side angles with time using the LQR controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Changes of elevation and side angles with time using the LQR controller
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Fig. 10. Missile control input with the LQR controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Missile control input with the LQR controller

 
Fig. 11. Missile-target trajectories using the LQR controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Missile-target trajectories using the LQR controller
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method. Also, for the LQR controller, linearization must be 
done, with the linearized model effective only in limited 
operating points. Due to missile dynamics, linearization is 
not guaranteed for all modes. The time to collision using this 
LQR controller is rather high, which is not desirable, since 
time plays a key and decisive role in a missile-target conflict.

4- 4- Simulating the performance of the implicit predictive 
model controller

In this section, performance of the implicit predictive 
model controller is examined.

Fig. 12 shows the missile-target relative distance, 
which distance approaches close to zero in about 3.72 sec. 
by which collision takes place. This is a reasonable time in 
air defenses for short-range scenarios, because after firing, 
the missile quickly moves towards the target in this short 
time, and the missile does not leave a chance for the target 
to evade the missile by maneuvering to avoid collision 
with the missile. Also, Fig. 13 shows that the flight angles 
converge in a reasonable time. According to Fig. 14, the 
control input, appearing quite reasonable, forced the missile 
to move towards the target, as verified by the missile and 
target trajectories depicted in Fig. 15, leading to collision at a 
height of approximately 1260 meters.  An online linearization 
method was used in MPC controller design, and according to 
the simulation results, the performance of this controller was 
quite superior compared to those of PID or LQR controllers. 
As the simulation results indicate, it can be inferred that the 
performance of the MPC controller is evaluated as superior 
due to the fact that the flight time with this controller is 

reasonable for a short-range surface-to-air engagement, and 
the height at which the missile-target collision occurs is more 
reasonable one in cases of short-range defenses. As stated 
earlier, in a short-range air defense, it is normally best for the 
missile and the target to collide at a higher altitude so that the 
target would not come too close to the missile defense site.

To ensure a comprehensive evaluation of the controllers, 
not only were the miss distance and time to impact considered, 
but also the control effort required by each approach was 
examined. The control effort was quantified using the Integral 
of Squared Control Effort (ISCE) metric, defined as:

, where u represents the control input. This metric provides 
insight into the total energy expenditure of the control system, 
ensuring that performance improvements do not come at the 
cost of excessive actuator effort.
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The results, presented in Table 4, indicate that the MPC-
based controller achieves the best overall performance, 
minimizing both the miss distance and time to impact, while 
also requiring significantly lower control effort compared to 
PID and LQR controllers. The PID controller exhibits the 
highest control effort, which can be attributed to its reliance 
on direct error correction without predictive optimization. 
The LQR controller demonstrates a better balance between 
performance and effort; however, it lacks the constraint-
handling capabilities of MPC, which allows for more efficient 

 

Fig. 12. The missile-target relative distance using the implicit predictive model controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The missile-target relative distance using the implicit predictive model controller
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Fig. 13. Changes of elevation and side angles with time using the implicit predictive model controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Changes of elevation and side angles with time using the implicit predictive model 
controller

 

Fig. 14. Missile control input with the implicit predictive model controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Missile control input with the implicit predictive model controller
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actuator usage.
The MPC controller, benefiting from its predictive 

capability and optimal constraint handling, results in the 
lowest control effort, ensuring that the missile maneuvers 
efficiently without excessive actuator activation. This 
highlights the advantage of using an online predictive 
control strategy for integrated guidance and control systems, 
particularly in scenarios where energy efficiency and actuator 
longevity are critical factors.

Finally, a quantitative comparison between the results of 
the controllers studied in this article is presented in Table 4.

5- Conclusion
In this paper, the guidance and control of an air defense 

Flying Vehicle is proposed using online model predictive 
control for an integrated 3D Flying Vehicle-target model. 

The integrated guidance and control equations of the Flying 
Vehicle and the target were fully derived, followed by the 
design of the controllers. In order to evaluate the proposed 
controllers, a PID controller was considered as well. The 
results of this controller were not evaluated favorably due 
to long flight time and inappropriate control law, leading to 
low flight height. Next, the LQR controller was designed, 
and the results of this controller were evaluated according to 
the simulations. Then the proposed controller of this article, 
namely the predictive controller of the online model, was 
designed. According to the simulations, it can be said that the 
total time to missile-target collision is about 3.72 seconds, 
which is a quite reasonable time for short-range air defense 
missiles, and the control law is fully applied within the 
available range without saturation. This control law causes 
the missile to maneuver, and the missile hits the target at an 

 

Fig. 15. Missile-target trajectories using the implicit predictive model controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Missile-target trajectories using the implicit predictive model controller

Table 4. Quantitative simulation valuesTable 4. Quantitative simulation values 

 PID LQR implicit MPC 

missile flight time 49.66 (sec) 32.30 (sec) 3.72 (sec) 

missile flight height 310 (m) 823 (m) 1260 (m) 

Control Effort 245.7 190.2 85.4 
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altitude of 1260 meters. Such an acceptable height is quite 
important. In addition, the time to collision was not too high 
in short-range situations, so that the hostile target did not 
have the chance to position itself and perform unpredictable 
maneuvers to evade the missile and avoid collision. Overall, 
the performance of the predictive controller of the online 
model was evaluated favorably.
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