
تعداد نشریات | 8 |
تعداد شمارهها | 421 |
تعداد مقالات | 5,523 |
تعداد مشاهده مقاله | 6,339,395 |
تعداد دریافت فایل اصل مقاله | 5,465,822 |
شبیهسازی عملکرد قلب با استفاده از مدل دوبطنی چندفیزیکی ویسکوالاستیک | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 57، شماره 1، 1404، صفحه 69-88 اصل مقاله (1.61 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23809.7815 | ||
نویسندگان | ||
پژمان نمهشیری؛ اکبر اللهوردی زاده* | ||
دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
مطالعه رفتار ماهیچه قلب به منظور افزایش شناخت و درک این بافت دارای اهمیت است. مدلسازی عملکرد قلب در بهبود روشهای درمانی اثربخش است و میتواند برای ارزیابی تجهیزات پزشکی تهاجمی مورد استفاده قرار گیرد. در پژوهش حاضر یک مدل الکترومکانیکی برای ساختار دوبطنی قلب توسعه داده شده است که شامل الکترفیزیولوژی، مکانیک و فشار بطنی است. ریزساختار قلب شامل فیبر، شیت و عمود بر شیت برای لحاظ کردن خاصیت ناهمسانگرد ماهیچه قلبی تعریف شده است. الکترفیزیولوژی قلب مبتنی بر روش اتصالات روزنهدار است و فعالسازی ماهیچه قلبی از طریق گنجاندن فیبرهای پورکینژی شبیهسازی شده است. مکانیک ماهیچه قلبی به صورت ویسکوالاستیک در نظر گرفته شده است و مدلسازی فشار بطنی به منظور گنجاندن گردش خون حلقه - بسته بسط داده شده است. سه چرخه متوالی قلب شبیهسازی شده و مورد ارزیابی قرار گرفته است. نتایج نشان داده که فعالسازی قلب از دیواره درونی آغاز شده و موج تحریک به سمت دیواره بیرونی حرکت میکند. علاوه بر این، جریانهای خون و تغییر شکل هر دو بطن به طور همزمان رخ میدهند. مدل ارائه شده پاسخ الکتریکی، زمان فعالسازی، حلقه فشار - حجم بطن چپ و راست و فازهای انقباض حجم - ثابت، تخلیه، آسودگی حجم - ثابت و پرشدن را برای قلب سالم انسان بازتولید کرد. نتایج مدل میتواند در آینده به عنوان معیاری برای ارزیابی رفتار قلب سالم مورد استفاده قرار گیرد. | ||
کلیدواژهها | ||
فشار بطنی؛ ویسکوالاستیسیته؛ چرخه قلبی؛ بیومکانیک؛ روش المان محدود | ||
عنوان مقاله [English] | ||
Simulating Cardiac Function Using a Multiphysics Viscoelastic Biventricular Model | ||
نویسندگان [English] | ||
Pezhman Namashiri؛ Akbar Allahverdizadeh | ||
Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran | ||
چکیده [English] | ||
Studying the behavior of the heart muscle is important to increase the knowledge and understanding of this tissue. Modeling cardiac function is effective in improving treatment methods and can be utilized to evaluate invasive medical devices. In this study, an electromechanical model for the biventricular structure of the heart has been developed, which includes electrophysiology, mechanics, and ventricular pressure. The microstructure of the heart including fiber, sheet, and normal-to-sheet has been defined to take into account the anisotropic properties of the cardiac muscle. Gap junction-based method is used for the electrophysiology of the heart and myocardial activation is simulated through the inclusion of Purkinje fibers. Myocardial mechanics is considered viscoelastic, and the modeling of ventricular pressure has been expanded in order to include closed-loop circulation. Three consecutive cardiac cycles have been simulated and evaluated. The results showed that the activation of the heart starts from the endocardial wall and the excitation wave moves towards the epicardial wall. Furthermore, changes in blood flow and deformation of both ventricles occur simultaneously. The presented model reproduced the electrical response, activation time, left and right ventricular pressure-volume loops, and isovolumetric contraction, ejection, isovolumetric relaxation, and filling phases for the healthy human heart. The results of the model can be used in the future as a criterion to evaluate the behavior of a healthy heart. | ||
کلیدواژهها [English] | ||
Ventricular Pressure, Viscoelasticity, Heart Cycle, Biomechanics, Finite Element Method | ||
مراجع | ||
[1] C.C.A. Ding, S. Dokos, A.A. Bakir, N.J. Zamberi, Y.M. Liew, B.T. Chan, N.A. Md Sari, A. Avolio, E. Lim, Simulating impaired left ventricular–arterial coupling in aging and disease: a systematic review, BioMedical Engineering OnLine, 23(1) (2024) 24. [2] H. Amjadi Manesh, O.R. Abbasi, H.A. Pakravan, O. AbouAli, Numerical study of the effect of left coronary artery stenosis on vascular tissue oxygenation, Amirkabir Journal of Mechanical Engineering, 53(3 (Special Issue)) (2021) 1767-1782. (in Persian) [3] F. Mirakhorly, B. Vahidi, M. Pazoki, An Image-Based Computational Simulation of Pulmonary Embolism Using Radiological Images, Amirkabir Journal of Mechanical Engineering, 52(7) (2019) 1847-1864. (in Persian) [4] S. Göktepe, E. Kuhl, Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem, Computational Mechanics, 45(2-3) (2010) 227-243. [5] A.A. Bakir, A. Al Abed, M.C. Stevens, N.H. Lovell, S. Dokos, A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device, Frontiers in physiology, 9 (2018) 1259. [6] Y. Alharbi, A 3D-0D Computational Model of the Left Ventricle for Investigating Blood Flow Patterns for Cases of Systolic Anterior Motion and after Anterior Mitral Leaflet Splitting, Applied Sciences, 14(1) (2024) 466. [7] S. Shabani, A. Allahverdizadeh, P. Namashiri, Electromechanical-Growth Model for Simulating Myocardial Concentric Hypertrophy in Systemic Hypertension, Journal of Applied and Computational Sciences in Mechanics, 37(1) (2025) 29-52. (in Persian) [8] G. Sommer, A.J. Schriefl, M. Andrä, M. Sacherer, C. Viertler, H. Wolinski, G.A. Holzapfel, Biomechanical properties and microstructure of human ventricular myocardium, Acta Biomaterialia, 24 (2015) 172-192. [9] A. Propp, A. Gizzi, F. Levrero-Florencio, R. Ruiz-Baier, An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion, Biomechanics and Modeling in Mechanobiology, 19(2) (2020) 633-659. [10] O. Gültekin, G. Sommer, G.A. Holzapfel, An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment, Computer Methods in Biomechanics and Biomedical Engineering, 19(15) (2016) 1647-1664. [11] P. Namashiri, A. Allahverdizadeh, B. Dadashzadeh, Modeling and Simulation of Myocardial Hyperelastic and Viscoelastic Properties with Incorporation of Active Stress, Modares Mechanical Engineering, 23(9) (2023) 553-565. (in Persian) [12] P. Namashiri, A. Allahverdizadeh, B. Dadashzadeh, S. Dokos, Electromechanical modeling of the left ventricle: considering hyperelastic and viscoelastic properties, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(12) (2024) 704. [13] J. Fröhlich, T. Gerach, J. Krauß, A. Loewe, L. Stengel, C. Wieners, Numerical evaluation of elasto‐mechanical and visco‐elastic electro‐mechanical models of the human heart, GAMM‐Mitteilungen, 46(3-4) (2023) e202370010. [14] W. Zhang, J. Jilberto, G. Sommer, M.S. Sacks, G.A. Holzapfel, D.A. Nordsletten, Simulating hyperelasticity and fractional viscoelasticity in the human heart, Computer Methods in Applied Mechanics and Engineering, 411 (2023) 116048. [15] W. Zhang, A. Capilnasiu, D. Nordsletten, Comparative analysis of nonlinear viscoelastic models across common biomechanical experiments, Journal of Elasticity, 145(1) (2021) 117-152. [16] B. Cansız, H. Dal, M. Kaliske, Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation, Computational Mechanics, 62(3) (2018) 253-271. [17] B. Cansız, K. Sveric, K. Ibrahim, R.H. Strasser, A. Linke, M. Kaliske, Towards predictive computer simulations in cardiology: Finite element analysis of personalized heart models, Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik, 98(12) (2018) 2155-2176. [18] P. Namashiri, A. Allahverdizadeh, B. Dadashzadeh, Electromechanical Modeling of Aortic Valve Stenosis with Hyperelastic and Viscoelastic Properties of the Myocardium, Journal of Mechanical Engineering of University of Tabriz, 53(2) (2023) 155-164. (in Persian) [19] F. Syomin, A. Osepyan, A. Tsaturyan, Computationally efficient model of myocardial electromechanics for multiscale simulations, Plos one, 16(7) (2021) e0255027. [20] F. Syomin, A. Khabibullina, A. Tsaturyan, Numerical Modeling of the Work of the Left Ventricle of the Heart in the Circulatory System: The Effects of Changes in the Frequency of Contractions and Apical Myocardial Infarction, Biophysics, 67(4) (2022) 612-622. [21] M. Fedele, R. Piersanti, F. Regazzoni, M. Salvador, P.C. Africa, M. Bucelli, A. Zingaro, A. Quarteroni, A comprehensive and biophysically detailed computational model of the whole human heart electromechanics, Computer Methods in Applied Mechanics and Engineering, 410 (2023) 115983. [22] P. Namashiri, A. Allahverdizadeh, B. Dadashzadeh, Modeling and Simulation of Growth in Diastolic Heart Failure, Journal of Applied and Computational Sciences in Mechanics, 35(3) (2023) 101-114. (in Persian) [23] D. Nordsletten, M. McCormick, P. Kilner, P. Hunter, D. Kay, N. Smith, Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function, International Journal for Numerical Methods in Biomedical Engineering, 27(7) (2011) 1017-1039. [24] I.J. LeGrice, P.J. Hunter, B. Smaill, Laminar structure of the heart: a mathematical model, American Journal of Physiology-Heart and Circulatory Physiology, 272(5) (1997) H2466-H2476. [25] Y. Alharbi, A. Al Abed, A.A. Bakir, N.H. Lovell, D.W. Muller, J. Otton, S. Dokos, Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle, Computers in Biology and Medicine, 148 (2022) 105834. [26] A.A. Bakir, A. Al Abed, N.H. Lovell, S. Dokos, Multiphysics computational modelling of the cardiac ventricles, IEEE Reviews in Biomedical Engineering, 15 (2021) 309-324. [27] T.N. James, Morphology of the human atrioventricular node, with remarks pertinent to its electrophysiology, American Heart Journal, 62(6) (1961) 756-771. [28] J. Hall, Guyton and Hall textbook of medical physiology, 13th ed., Elsevier, Philadelphia, 2016. [29] D.A. Hooks, M.L. Trew, B.J. Caldwell, G.B. Sands, I.J. LeGrice, B.H. Smaill, Laminar arrangement of ventricular myocytes influences electrical behavior of the heart, Circulation Research, 101(10) (2007) e103-e112. [30] T. Usyk, R. Mazhari, A. McCulloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle, Journal of elasticity and the physical science of solids, 61(1-3) (2000) 143-164. [31] G.A. Holzapfel, R.W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philosophical Transactions of the Royal Society, A: Mathematical, Physical & Engineering Sciences, 367(1902) (2009) 3445-3475. [32] C.N. Leong, E. Lim, A. Andriyana, A. Al Abed, N.H. Lovell, C. Hayward, C. Hamilton‐Craig, S. Dokos, The role of infarct transmural extent in infarct extension: A computational study, International Journal for Numerical Methods in Biomedical Engineering, 33(2) (2017) e02794. [33] Y. Lee, B. Cansız, M. Kaliske, Computational modelling of mechano-electric feedback and its arrhythmogenic effects in human ventricular models, Computer Methods in Biomechanics and Biomedical Engineering, 25(15) (2022) 1767-1783. [34] S. Stella, F. Regazzoni, C. Vergara, L. Dede, A. Quarteroni, A fast cardiac electromechanics model coupling the Eikonal and the nonlinear mechanics equations, Mathematical Models and Methods in Applied Sciences, 32(08) (2022) 1531-1556. [35] F. Moradi Kashkooli, M. Soltani, M.H. Hamedi, Image-based numerical model for drug delivery to solid tumors, Amirkabir Journal of Mechanical Engineering, 53(5 (Special Issue)) (2021) 3187-3200. (in Persian) [36] A.V. Glukhov, V.V. Fedorov, Q. Lou, V.K. Ravikumar, P.W. Kalish, R.B. Schuessler, N. Moazami, I.R. Efimov, Transmural dispersion of repolarization in failing and nonfailing human ventricle, Circulation Research, 106(5) (2010) 981-991. [37] R. Klabunde, Cardiovascular physiology concepts, 3rd ed., Wolters Kluwer, 2021. [38] M. Schoenberg, G. Dominguez, H.A. Fozzard, Effect of diameter on membrane capacity and conductance of sheep cardiac Purkinje fibers, The Journal of general physiology, 65(4) (1975) 441-458. [39] B. Eisenberg, I. Cohen, The ultrastructure of the cardiac Purkinje strand in the dog: a morphometric analysis, Proceedings of the Royal Society of London. Series B. Biological Sciences, 217(1207) (1983) 191-213. [40] D. Durrer, R.T. Van Dam, G. Freud, M. Janse, F. Meijler, R. Arzbaecher, Total excitation of the isolated human heart, Circulation, 41(6) (1970) 899-912. [41] R. Clayton, A. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Progress in Biophysics and Molecular Biology, 96(1-3) (2008) 19-43. [42] P.C. Franzone, L.F. Pavarino, S. Scacchi, Mathematical cardiac electrophysiology, Springer, 2014. [43] A. Pullan, M.L. Buist, L.K. Cheng, Mathematically modelling the electrical activity of the heart: from cell to body surface and back again, World Scientific Publishing Company, 2005. [44] J. Keener, J. Sneyd, Mathematical physiology 1: Cellular physiology, in, Springer New York, NY, USA, 2009. [45] A.P. Voorhees, H.C. Han, Biomechanics of cardiac function, Comprehensive Physiology, 5(4) (2011) 1623-1644. [46] A. Dabbagh, A. Imani, S. Rajaei, Cardiac physiology, in: Postoperative Critical Care for Adult Cardiac Surgical Patients, Springer, 2018, pp. 25-74. [47] M. Di Donato, P. Dabic, S. Castelvecchio, C. Santambrogio, J. Brankovic, L. Collarini, T. Joussef, A. Frigiola, G. Buckberg, L. Menicanti, Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’conicity index comparisons, European Journal of Cardio-Thoracic Surgery, 29(Supplement_1) (2006) S225-S230. [48] L.E. Hudsmith, S.E. Petersen, J.M. Francis, M.D. Robson, S. Neubauer, Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging, Journal of Cardiovascular Magnetic Resonance, 7(5) (2005) 775-782. [49] E. Braunwald, E.C. Brockenbrough, C.J. Frahm, J. Ross JR, Left atrial and left ventricular pressures in subjects without cardiovascular disease: observations in eighteen patients studied by transseptal left heart catheterization, Circulation, 24(2) (1961) 267-269. [50] J.-W. Lankhaar, N. Westerhof, T.J. Faes, K.M. Marques, J.T. Marcus, P.E. Postmus, A. Vonk-Noordegraaf, Quantification of right ventricular afterload in patients with and without pulmonary hypertension, American Journal of Physiology-Heart and Circulatory Physiology, 291(4) (2006) H1731-H1737. [51] H. Tandri, S.K. Daya, K. Nasir, C. Bomma, J.A. Lima, H. Calkins, D.A. Bluemke, Normal reference values for the adult right ventricle by magnetic resonance imaging, American Journal of Cardiology, 98(12) (2006) 1660-1664. [52] A. Mebazaa, P. Karpati, E. Renaud, L. Algotsson, Acute right ventricular failure—from pathophysiology to new treatments, Applied Physiology in Intensive Care Medicine, (2009) 261-272. [53] L.L. Demer, F. Yin, Passive biaxial mechanical properties of isolated canine myocardium, The Journal of physiology, 339(1) (1983) 615-630. [54] A. Tsaturyan, V.J. Izacov, S. Zhelamsky, B. Bykov, Extracellular fluid filtration as the reason for the viscoelastic behaviour of the passive myocardium, Journal of Biomechanics, 17(10) (1984) 749-755. [55] B. Cansız, H. Dal, M. Kaliske, An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment, Computer Methods in Biomechanics and Biomedical Engineering, 18(11) (2015) 1160-1172. [56] A. Ponnaluri, L. Perotti, D. Ennis, W. Klug, A viscoactive constitutive modeling framework with variational updates for the myocardium, Computer Methods in Applied Mechanics and Engineering, 314 (2017) 85-101. [57] J. Yao, V.D. Varner, L.L. Brilli, J.M. Young, L.A. Taber, R. Perucchio, Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart, Journal of Biomechanical Engineering, 134(2) (2012) 024502. [58] O.Z. Tikenoğulları, F.S. Costabal, J. Yao, A. Marsden, E. Kuhl, How viscous is the beating heart? Insights from a computational study, Computational Mechanics, 70(3) (2022) 565-579. [59] M. Peirlinck, F.S. Costabal, J. Yao, J. Guccione, S. Tripathy, Y. Wang, D. Ozturk, P. Segars, T. Morrison, S. Levine, Precision medicine in human heart modeling, Biomechanics and Modeling in Mechanobiology, 20(3) (2021) 803-831. [60] E. Ryzhii, M. Ryzhii, A heterogeneous coupled oscillator model for simulation of ECG signals, Computer Methods and Programs in Biomedicine, 117(1) (2014) 40-49. [61] E. Garcia-Blanco, R. Ortigosa, A.J. Gil, C.H. Lee, J. Bonet, A new computational framework for electro-activation in cardiac mechanics, Computer Methods in Applied Mechanics and Engineering, 348 (2019) 796-845. [62] Y. Lee, B. Cansız, M. Kaliske, A multiphysical computational model of myocardial growth adopted to human pathological ventricular remodelling, Computational Mechanics, 72 (2023) 1215–1237. | ||
آمار تعداد مشاهده مقاله: 166 تعداد دریافت فایل اصل مقاله: 177 |