
1 

Enhancing the Reliability of Control Systems 

Using an Improved Deep Reinforcement Learning Framework 

Maryam Barekatain and Negin Sayyaf* 

Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, 

Iran. 

Abstract 

This paper presents an improved framework for deep reinforcement learning 

algorithms integrating online system identification, based on the Dyna-Q 

architecture. The proposed framework is designed to tackle the challenges of both 

Multi Input Multi Output and Multi Input Single Output systems in complex, 

industry relevant environments, thereby significantly enhancing adaptability and 

reliability in industrial control systems. It should be noted that in the suggested novel 

framework, the system identification and model control processes run in parallel 

with the control process, ensuring a reliable backup in case of faults or disruptions. 

To verify the efficiency of the aforementioned approach, comparative evaluations in 

the presence of three of the most common deep reinforcement learning algorithms, 

i.e. Deep Q Network, Deep Deterministic Policy Gradient, and Twin Delayed Deep 

Deterministic Policy Gradient, are conducted on industry-relevant environments 

simulations available in OpenAI Gym, including the Cart Pole, Pendulum, and 

Bipedal Walker, each chosen to reflect specific aspects of the novel framework. 

Results demonstrate that the proposed method for leveraging both real and simulated 

experiences in this framework improves sample efficiency, stability, and robustness. 

Keywords: Deep Reinforcement Learning, Industrial Control Systems, System 

Stability, Model-Based Control, Intelligent Control Systems 

1 Introduction 

Control systems in industrial applications can be interpreted as the foundation for ensuring 

efficient and reliable operation. Traditional control methods, such as Proportional-Integral-

Derivative (PID) controllers [1] and model-based approaches [2], have been the backbone of 

industrial automation for decades, offering stability and reliability. These methods are well-

understood, relatively easy to implement, and provide predictable performance for stable and 

well-characterized processes. However, the growing complexity of industrial environments and 

the need for intelligent, adaptable control systems are pushing the boundaries of traditional 

approaches [3]. 

Traditional control methods excel in scenarios where system dynamics are well-defined and 

do not change significantly over time. They can provide robust performance in steady-state 

conditions and are typically straightforward to design and tune. However, they struggle in 

environments where system parameters vary, where there are unforeseen disturbances, or where 

the control objectives change frequently. Therefore, they often fall short in environments that 

demand intelligent adaptability and compatibility with dynamic conditions [4–6]. 
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As industries evolve, the need for smart control systems that can learn and adapt to changes 

autonomously has become increasingly evident [7, 8]. Furthermore, according to the 

complexity, nonlinearity, and time-variance of most industrial systems, Reinforcement 

Learning (RL) offers a compelling alternative by providing a framework where controllers can 

learn directly from their environment. It allows the controller to learn through exploration and 

interaction to uncover optimal actions, which results in continuously improving performance 

for the control signal [9]. Also, RL controllers can adapt to system conditions by learning the 

ongoing dynamics, reducing the need for extensive reprogramming. 

However, implementing RL in industrial applications presents challenges, because the 

initial knowledge base for RL controllers can be more complex than traditional methods. 

Additionally, ensuring stability during the learning process is crucial, as disruptions like sensor 

malfunctions or communication failures can arise unexpectedly. In industrial systems, sensor 

malfunctions can result in inaccurate or missing data, disrupting the controller’s ability to make 

proper decisions, which may lead to suboptimal performance or unsafe conditions. Similarly, 

communication disruptions between sensors, controllers, or actuators can delay critical signals 

or feedback loops, increasing the risk of equipment damage, downtime, and process instability 

[10]. To partially overcome these challenges, model-based RL approaches provide certain 

advantages by incorporating an internal model of the environment, which can enhance both 

safety and efficiency compared to model-free methods [11]. 

The Dyna-Q algorithm, proposed by Sutton (1990) [12, 13], is a model-based RL approach 

that combines model-free learning with an internal model of the environment. In the Dyna-Q 

framework, the agent learns both a policy and a dynamics model of the environment. This 

allows the agent to generate simulated experiences, in addition to learning from real 

interactions, which can significantly improve sample efficiency. It is worth noting that Dyna-

Q is not model-dependent (like the classic Model Predictive Control approach), but uses the 

model as a complementary part of the architecture 

[14]. 

Dyna-Q has been successfully applied to a variety of control problems, demonstrating its 

ability to enhance the performance of model-free reinforcement learning algorithms. However, 

the initial Dyna-Q studies and many of its early adaptations utilized tabular approaches for both 

the planning and learning processes, which restricts its applicability to more complex, high-

dimensional environments [15]. To address this limitation, researchers have explored the 

integration of Dyna-Q with neural networks (NN), leading to the development of the Deep 

Dyna-Q (DDQ) framework [16]. DDQ is proposed as a combination of Dyna-Q and deep 

learning methods, using NNs to model the state-action space. 

Building upon the success of DDQ, several studies have explored the integration of DDQ 

with deep reinforcement learning (DRL) algorithms, such as deep Q-network (DQN). The study 

in [17] refers to this combination as Dyna-DQN. The authors aim to demonstrate the 

effectiveness of k-step rollouts in planning compared to single-step rollouts in achieving control 

outcomes. The authors also examine the planning shape effectiveness with perfect and 

imperfect models. The work in [18] presents an energy management system (EMS) architecture 

based on Dyna RL which integrates the concepts of the Dyna framework and the DQN 

algorithm. The paper’s results highlight that Dyna-DQN outperforms both Q-Learning and 

DQN. 

In addition, authors in [19] studied DDQ as model-based learning to improve learning speed 

and applied it to robot formation change. The results showed that DDQ can improve the number 

of episodes by about half compared to DQN. Also, the study in [20] investigates the Model-

assisted Bootstrapped Deep Deterministic Policy Gradient (DDPG) algorithm in robotic 

environments, focusing on managing agent uncertainty to optimize artificial data usage in high-

uncertainty scenarios. In [21], the authors extend DRL for vision-based navigation by using a 
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DDQ learning algorithm to enable a robot to navigate and evacuate environments with varying 

types and configurations of static and dynamic obstacles. 

In short, prior works integrating Dyna-Q concepts into reinforcement learning frameworks 

have shown promising results across multiple environments. However, these approaches 

generally lack comprehensive benchmarking across widely recognized RL algorithms, limiting 

insight into their general applicability. Moreover, their architectures are often tailored to 

specific task settings and do not emphasize modular design, making them less adaptable to 

varied system configurations. 

In parallel with these Dyna-Q-inspired approaches, recent model-based deep reinforcement 

learning methods such as DreamerV3 [22], PlaNet [23], and MBPO [24] have shown strong 

performance in visual and continuous control benchmarks by learning compact latent dynamics 

models. While these works focus on high-dimensional perception and end-to-end policy 

learning, the proposed framework in this paper emphasizes modularity and adaptability in 

industrial control settings with parallel system identification and control modules. 

The main intuition of the paper originates from industrial control applications, where 

disruption, sensor malfunction, or disconnection from the controller can lead to major defects. 

These failures are critical, as industrial systems rely on the continuous transmission of essential 

data to generate accurate control signals and maintain optimal performance. Motivated by these 

real-world challenges, this paper introduces a novel solution: an RL-based control approach 

that operates independently, supported by an online system identification module. This 

combination addresses vulnerabilities caused by sensor failure or communication loss, while 

also maintaining a continuously updated model that serves as a reliable backup data generator, 

sustaining the control loop when the actual system cannot fulfill the data requirements. 

In addition to enhancing reliability, the proposed approach can reduce the cost and risk 

associated with real-world exploration in reinforcement learning environments. The online 

model enables the generation of supplementary training data, decreasing the reliance on 

expensive or unsafe physical transitions during the RL training phase which is an important 

consideration in industrial settings. 

Continuing the mentioned path, this paper presents a novel framework based on the Dyna-

Q architecture, developed for DRL combined with online system identification, applied to 

Multiple Input Multiple Output (MIMO) and Multiple Input Single Output (MISO) systems. 

The analysis focuses on both continuous and discrete, industry-relevant environments, 

particularly those that reflect real-world industrial challenges and require robust, adaptive 

control in both simple and complex scenarios. The online system identification component 

continually updates the model of the system, providing a reliable backup in case of sensor 

failure or communication disruptions. This framework aims to enhance operational robustness 

for industrial control systems by reducing sensitivity to unforeseen challenges. Moreover, by 

learning from a simulated environment alongside real-world interactions, this approach reduces 

the number of real-world trials, thereby minimizing potential risks associated with exploration 

in industrial systems. 

For comparative analysis, the proposed framework is firstly evaluated on basic and 

commonly used DRL algorithms: DQN and DDPG. These algorithms are primarily applied to 

simpler environments and MISO systems, where they have shown effectiveness in handling 

relatively straightforward control problems. However, for MIMO systems, which are naturally 

more complex, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is 

employed, which is known for its robustness and superior performance in continuous control 

tasks [25]. TD3 has emerged as one of the most reliable and fastest algorithms for MIMO 

systems, making it an ideal candidate for benchmarking this framework. 

To thoroughly observe the performance of the proposed framework, the results of its 

integration with three DRL algorithms are provided using industry-relevant environments, 

including the inverted pendulum and robot walking simulations available in OpenAI Gym [26]. 
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In summary, this paper offers two key contributions to the field of reinforcement learning: 

• Introduction of a novel DRL-based control framework that integrates the online system 

identification to address critical industrial challenges such as sensor failure, data loss, and 

unsafe exploration (The framework ensures robust control by enabling the RL agent to 

operate independently while leveraging a continuously updated system model as a backup 

for control signal generation and training data augmentation.)  

• Extensive practical study of the proposed framework in both MIMO and MISO systems 

under discrete and continuous control settings (The evaluation spans a range of industry-

relevant tasks and systematically examines the interaction between model accuracy, control 

signal complexity, and DRL performance.) 

The paper is organized as follows. The following section goes through the details of the 

utilized algorithms in this study, i.e. DQN, DDPG, TD3. Section 3 is devoted to a detailed 

explanation of the proposed framework. The results of the suggested framework application in 

three environments with benchmark DRL algorithms are also compared and discussed in 

Section 4. Finally, the paper is concluded in Section 5. 

2 Algorithms 

In this section, a thorough review of the experimental algorithms used in this paper is presented. 

First, the fundamental ideas and core concepts of RL will be explained. 

Reinforcement Learning (RL) is a branch of machine learning, where an agent learns to 

make decisions by interacting with its environment through trial and error. The agent aims to 

maximize cumulative rewards over time, as a way of improving its decision-making policy. In 

other words, RL involves the agent performing actions and receiving rewards based on 

outcomes [27]. 

At its core, RL is about learning from interaction. The agent interacts with an environment 

defined by states and actions. The fundamental elements include: 

• State (S): Represents the current situation of the environment. 

• Action (A): The act selected by the agent based on the obtained policy, aiming to maximize 

future reward. 

• Reward (R): Feedback from the environment based on the action taken. 

• Policy (  ): The agent’s strategy for choosing actions in different states, which can be 

deterministic or stochastic. 

• Value Function (V): The prediction of future rewards used to evaluate the goodness of a state. 

• Q-Value (Q): Represents the value of a state-action pair. 

The primary goal of RL is to discover a policy that maximizes the expected sum of rewards 

over time. RL excels in environments where the dynamics are unknown or partially known. 

The agent learns through exploration, trying different actions, and observing the results. This 

trial-and-error process enables the agent to develop a robust policy even in complex and 

dynamic settings, much like how humans learn from experience [28]. 

RL algorithms are typically categorized into two main types based on their approach to 

learning [29]: 

• Value-Based Methods: These methods focus on estimating the value functions. The most 

fundamental value-based method is Q-learning [30], which directly learns the value of 

action-state pairs and uses these values to form a policy. 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



5 

• Policy-Based Methods: These methods directly learn the policy that maps states to actions 

without learning value functions explicitly. Policy Gradient methods are a common example 

[31]. 

In addition, actor-critic methods combine both value-based and policy-based approaches. 

The actor updates the policy (policy-based), while the critic evaluates the action taken by the 

actor by estimating value functions (value-based). This dual approach leverages the strengths 

of both methods, resulting in more stable and efficient learning [32]. 

The evolution to DRL has seen the Q-learning algorithm significantly develop with the 

advent of NNs as function approximators [30, 33]. This development has led to DRL, which 

allows RL to scale to previously intractable problems, such as learning to play video games 

directly from pixels. In this study, DQN, DDPG and TD3, as the most widely used DRL 

algorithms, are used to evaluate the suggested framework. To this end, brief descriptions of 

these algorithms related to how they work, and their pros and cons can be observed in the 

following. 

2.1 Deep Q-Network 

DQN is a value-based algorithm that combines Q-learning with NNs to handle high-

dimensional sensory inputs [34]. The essential idea is to use an NN to approximate the Q-

function,  , ;Q s a   . Additionally, to break the temporal correlations between consecutive 

experiences and stabilize training, DQN uses an experience replay buffer. The agent stores past 

transitions    1,, ,  t tt ts ra s    in a replay buffer and samples random mini-batches to train the 

network, where  , t ts a  and tr   respectively represent the state, action, and reward at the current 

timestep, and 1ts    denotes the next state in the environment. Finally, by setting a separate 

network for the calculation of the target Q-value, the learning process becomes more robust 

and stable. Indeed, the algorithm takes advantage of the Bellman equation in Eq. (1) for 

calculating target values [35]. Hence, by performing the gradient descent step on the loss 

function in Eq. (2), the Q-values updated until the Q-function are optimal. 

 1         max  ' , ';t t ty r Q s a                                                                  (1) 

 

   
2

 

1

1
          ,  ; 

N

i i i

i

L y Q s a
N

 


                                                      (2) 

It should be noted that in the aforementioned equations, γ is the discount factor that 

determines the importance of future rewards compared to immediate rewards. N represents the 

minibatch’s size and θ represents the parameters of the NN. Q′ and a′ are also the target Q-

network and the next action respectively.  ty is the estimated Q-value at timestep t. 

2.2 Deep Deterministic Policy Gradient 

DDPG is an actor-critic algorithm designed for environments with continuous state and action 

spaces. It maintains a deterministic policy (  |  )s    and updates the actor and critic networks 

alternately [36]. To stabilize training, DDPG employs target networks for both the actor and 

critic, used to compute the target values for the Bellman equation. The critic and actor update 

equations are respectively defined in 
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and 

       

1

1
            ( ,  |  )    (  |  ) 

N
Q

a i i i

i

J Q s a s
N

 



 
  



     ,                                 (4) 

where 
   and 

Q   are the parameters of the actor and critic networks, while '  and 'Q

represent the target critic and target actor networks respectively. 

Since DDPG uses a deterministic policy, exploration during training is achieved by adding 

noise to the action selected by the actor network. Also to maintain more stability in learning, 

the target values are constrained to change slowly, using soft target updates in Eq. (5). 

 
 

 

  1

  1

Q Q Q

  

   

   

 

 

  

  





                                                     (5) 

                                                                    

In Eq. (5), τ represents the small update rate and 


and 

Q

denote the target critic and target 

actor networks’ parameters respectively. 

2.3 Twin Delayed Deep Deterministic Policy Gradient 

TD3 improves upon DDPG by addressing the overestimation bias in the value function. To this 

end, the agent employs two critic networks, specified by parameter vectors 1   and 2   for 

estimating the Q-values, i.e. 
1
( , )Q s a  and 2 ( , )Q s a  , to provide a more cautious estimation 

of the Q-value [25]. In more details, the TD3 agent takes the minimum of these two Q-values 

to determine the target for the critic update, Eq. (6), during training. Because action selection 

is governed by the policy, the target value for updating the target critic is calculated as follows.  

   
1,2

1 1             , 
j

j

t t t ty r minQ s s  


                                              (6) 

Moreover, TD3 introduces target policy smoothing to further stabilize the training process. 

This technique adds a small amount of noise to the action selected by the target policy network, 

when computing the target Q-value. Also, TD3 delays the update of the actor (policy) network 

as for every d critic update, the actor network is updated once. This delayed update prevents 

the policy from changing too rapidly in response to potentially inaccurate Q-value estimates. 

During training, the critic is updated by minimizing the loss function, and the actor is updated 

using the deterministic policy gradient. Accordingly, the critic and actor update equations can 

be modified as follows:  

 
2

 

1

1
( )          , 

j

N

j i i i

i

y Q s a
N




  
                                                    (7) 
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          ,   |  ·   

i

N

a i ia s

i

J Q s a s
N

   






    ₁                                        (8) 

In the above equations the j refers to the j-th critic network’s parameters. 
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3 Proposed Framework 

In advanced problems based on Reinforcement Learning algorithms, one prominent strategy 

for improving efficiency is the Dyna-Q approach. Dyna-Q represents an extension of the RL 

architecture which integrates learning from real experiences with simulated experiences drawn 

from a model of the environment. This model-based learning paradigm enhances data 

efficiency by supplementing direct interactions with the environment [12, 13]. Through the 

indirect RL phase, the agent does not interact with the real environment, but it updates the 

policy using simulated experiences generated by the internal model. However, the traditional 

Dyna-Q framework is primarily designed for tabular RL methods and struggles to extend to 

high-dimensional continuous spaces, particularly in MIMO settings [15]. To address these 

challenges, this paper proposes a novel framework, designed to handle a variety of RL tasks, 

particularly in high-dimensional continuous control applications. 

The proposed framework, described in Fig. 1, is composed of three key processes: the 

control process, the system identification process, and the model control process. These 

components work in parallel to support both policy learning and environment dynamics 

modeling, providing a flexible and adaptive solution for various DRL tasks and real-world 

industrial applications.  

It is worth noting that while this study evaluates the framework using DQN, DDPG, and 

TD3, these algorithms are selected solely for benchmarking purposes. The architecture of the 

framework is designed to be modular and algorithm-agnostic, allowing any RL or DRL 

algorithm to be integrated as the control agent. The control process, system identification 

process, and model control process are implemented as independent modules, making the 

framework broadly applicable across various RL paradigms. 

 

 
 

Fig. 1: Block diagram of the proposed framework 
(Remark: the policy learning in DQN algorithm is done via Q-network, while the policy is learned via actor and 

critic networks in DDPG and TD3 algorithms) 

 

Throughout this paper, three distinct processes are referred to: the control process, involving 

real-environment interactions; the model control process, in which data generated by the 

learned model is used; the system identification process, through which the model is 
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continuously updated using collected transitions; and the policy learning, defined as the training 

of the RL agent using both real and model-generated transitions. In the following sections, each 

component of the framework, as represented in the block diagram, is explained in detail. 

3.1 Control Process 

The Control Process manages policy learning, enabling the agent to interact with the 

environment and optimize its decisions. As illustrated in figure 1, this process relies on neural 

networks, with two primary architectures: Q-Networks (used in DQN for value-based learning) 

and Actor-Critic Networks (used in DDPG and TD3 for continuous control tasks). These 

networks allow the agent to approximate the optimal policy by learning from the environment’s 

feedback, which is obtained through probabilistic transitions represented as 
'( | , )P s s a  and 

reward functions 
'( , , )R s a s . 

This process supports both discrete and continuous action spaces and can be adapted to 

various RL problems by switching between value-based or actor-critic algorithms. The 

inclusion of algorithms such as DQN, DDPG, and TD3 ensures that the framework can be 

specialized for different environments, including MISO, and MIMO applications. 

3.2 System Identification Process 

To handle the complexity of high-dimensional continuous environments, the framework 

integrates a system identification process for learning the underlying dynamics of the 

environment. To implement the online system identification module, a feedforward neural 

network trained via supervised learning is used to approximate the system’s transition 

dynamics and reward function [37]. The input to this model is a concatenated vector of the 

current environment state ts and the action taken ta , i.e.  ,t ts a , and the output consists of the 

predicted next state 1t̂s  and the corresponding reward t̂r  . The neural network is trained using 

randomly sampled mini batches of transitions  1, , ,t t t ts a s r  collected online during 

interaction with the real environment. The loss function used for training is defined as the mean 

squared error (MSE) between the predicted and actual outcomes in Eq. (9) [38]. This supervised 

learning setup assumes the environment's dynamics are stationary and continuous over short 

time windows and the outputs are bounded, which allows the neural network to adaptively 

approximate the evolving system behavior. 

 2 2

1

1
ˆ ˆ

N

model i i i i

i

L s s r r
N 

                                                     (9) 

  

 As depicted in Fig. 1, the aforementioned model network approximates the environment’s 

transition dynamics, learning to map from an action state pair to a new state and reward 

prediction. By modeling these dynamics, the agent can simulate environment interactions and 

generate synthetic experiences, reducing reliance on real-world data. 

This modeling process provides a key advantage in situations where data collection is costly 

or time-consuming. The ability to learn and predict the environment’s behavior parallel to the 

other ongoing processes in the system allows for more efficient policy learning, enabling the 

agent to improve its performance without requiring extensive real-world interaction. This 

partnership also keeps the control process steady during disruptions and data reliability issues, 

taking the backup role for real interactions in the model control process as illustrated in the 

diagram of Fig. 1. 
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3.3 Model Control Process 

The model control process facilitates seamless interaction between the control process and the 

system identification process. As shown in Fig. 1, it enables the agent to update its policy using 

both real and simulated experiences, thus bridging the gap between model-based and model-

free learning. During the model episodes, the data used for policy learning is generated by the 

model that updates through system identification process. By continually refining the model of 

the environment, the agent can enhance the controller’s performance through simulated 

experiences and rely on model feedback in case of disruption. 

The combination of real and simulated experience, enabled by the model control process, 

ensures that the framework can be applied to a wide range of applications, particularly those 

involving high-dimensional continuous spaces such as robotic control, autonomous driving, 

and advanced MIMO systems.  

 

3.4 Training Episode Scheduling Strategy 

The online system identification process begins at the very start of training and continuously 

updates the model in parallel with the control and model control processes, using transitions 

collected directly from real-environment interactions. After the fixed episode threshold switchT , 

i.e. a hyperparameter that should be tuned based on the complexity of the system, the 

framework begins to alternate between real control episodes and model control episodes. The 

selection is governed by a probability parameter [0,1]  , such that a real control episode is 

executed with probability  , and a model control episode is executed with probability 1  . 

This switching mechanism is designed to balance exploration in the real environment and 

exploitation of the learned model, and can be tuned based on environment complexity and 

model training performance. Hence, the episode type can be selected using a uniform random 

variable (0,1)z u  as shown in Eq. (10) 

Scheduling strategy 

  

       

     ,   

,

R episode switch

R episode switch

M episode switch

E if N T

E if N T z

E if N T z





 


 
 

  ,                    (10) 

where RE  and ME   respectively denote the real episodes during the control process and the 

model episodes during the model control process, and episodeN  refers to the number of episodes 

passed. 

It is worth noting that while the current switching strategy between the control process and 

model control process is defined probabilistically for benchmarking purposes, in practical 

deployment, this mechanism can be adapted to respond directly to real-world conditions such 

as sensor failures or communication disruptions. Since the system identification module 

operates online and continuously from the beginning of training, the model remains up-to-date 

and can serve as a reliable fallback when such challenges arise. 

The following section evaluates the performance of the framework across three industry-

relevant environments in OpenAI Gym. The benefits and limitations of this framework will be 

discussed in the context of MIMO and MISO environments, considering both continuous and 

discrete action spaces. 

4 Numerical Simulations 

The results of applying the proposed framework based on three DRL algorithms are 

investigated in this section, focusing on how it performs in simple and complex environments. 
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In the following subsections, dedicated to the evaluation of DQN, DDPG, and TD3 algorithms 

respectively, first the general features of the simulation environments are detailed and then it’s 

followed by the results and discussion of the Dyna-Q-based framework experiments. 

To validate the defined approach, the collected reward by the agent through episodes, during 

both RL control and model control, and the loss of each environment’s modeling process are 

provided. The increases and decreases in model loss curves indicate weak and strong models 

respectively. To evaluate the contribution of the model-generated data, performance in model 

control episodes is compared with that in real control episodes. Although the learning 

trajectories may differ, both converge to similar performance levels, indicating that the model 

successfully supports policy refinement. This demonstrates that the model control process can 

generate data of sufficient quality to guide the agent toward solving the environment, 

complementing real-environment interactions. 

According to the statistical inherent of the data-driven algorithms, to evaluate the proposed 

framework in the presence of DQN, DDPG and TD3 algorithms in the following environments, 

the corresponding experiments have been runed via different seeds 10, 20, 30, 40 and 50. To 

ensure the high efficiency of the proposed novel approach, the graphs in each subsection have 

been plotted corresponding to the worst case, i.e. the latest convergence to the optimal response. 

The role of hyperparameters in both the control signal learning and system modeling phases 

is also examined. Parameters such as learning rate, network architecture, batch size, and 

exploration noise were initially selected based on commonly reported values in the literature 

and subsequently refined through an iterative trial-and-error process, guided by the observed 

learning behavior and the complexity of the environment. It should be noted that in both 

simulation studies and practical applications, hyperparameter tuning must be performed 

individually for each plant or system, as the optimal configuration is highly dependent on the 

system's specific dynamics and task characteristics. 

It is worth mentioning that both the policy learning and system identification modules are 

trained using first-order gradient-based methods, resulting in computational complexity that 

scales polynomially with the number of model parameters and input dimensions. 

 

4.1 Deep Q-Network Results 

The outcome of integrating the framework with DQN algorithm is evaluated on the Cart Pole 

environment from OpenAI Gym. The following subsection provides details about this 

environment. 

4.1.1 Simulation Environment 

Cart Pole is a part of the classic control environments in OpenAI Gym. In this setup, a pole is 

attached by an unactuated joint to a cart, which moves along a frictionless track. The pendulum 

is placed upright on the cart, and the goal is to balance the pole by applying forces to push the 

cart left or right. Therefore, the action space is discrete with two values. The state space is a 4-

dimensional array in continuous values of the cart’s position and velocity, and the pole’s angle 

and angular velocity. 

The reward function for the mentioned experiment works relatively simply: 1 positive 

reward is given to each action made and the episode terminates if the pole angle is greater than 

±12° or the cart position is greater than ±2.4. In each episode, the agent has 500 timesteps to 

interact with the environment. To solve the environment, the agent must achieve a score of 

around 500. 

4.1.2 DQN Simulation Results 

The best hyperparameters for RL control with DQN were determined through trial and error. 

The agent interacted with the environment for 500 timesteps, collecting rollouts, before the 
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learning process began. The learning rate, gamma, and sample memory batch size are 

respectively set to 0.0003, 0.99, and 128. The exploration parameter, denoted as ϵ, begins at 

1.0 and decays to 0.03 with a decay rate of 1000 episodes. The NN architecture used in the 

algorithm consists of three fully connected layers, each with 128 units. 

As shown in Fig. 2 the agent interacts with the environment for 700 episodes, where the 

agent’s performance converges around episode 530, reaching a score of 500. It is worth noting 

that the occasional drops in performance are attributed to the small exploration rate, which 

continues towards the end. 

The next step involves incorporating the framework, which requires an online model of the 

environment. To construct this model, a two-layer NN is used to estimate the environment’s 

dynamics based on experiences collected during training. The modeling process employs a 

learning rate of 0.001 and a memory sample batch size of 128. To assess the effectiveness of 

the modeling process, the model’s loss is observed. 

 
Fig. 2: The obtained reward during RL control episodes, in the presence of DQN algorithm 

 

As shown in Fig. 3, the loss reaches the 10−6 range, indicating that the model has effectively 

learned to track the environment’s dynamics. In the subsequent step, the proposed  

approach is utilized by incorporating the environment model into the control process. 

Approximately 20 percent of the control episodes are dedicated to the model control, using the 

model for the feedback signal to simulate interactions.  

 
Fig. 3: The environment model loss using the suggested framework, in the presence of DQN algorithm 

 

During this phase, shown in Fig. 4, the agent is given 150 timesteps to interact with the 

system’s model. In the Cart Pole environment, the reward function is defined such that the 
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agent receives a reward of +1 for every timestep it successfully balances the pole. The 

environment is considered "solved" or "done" when the agent reaches a total score of 500, 

which corresponds to the maximum of 500 timesteps without failure. Accordingly, in the model 

control episodes of this study, the episode length was set to 150 timesteps to evaluate whether 

the agent could approach a comparable level of performance using only model-generated 

experiences. It is anticipated that, with sufficient interaction, the agent will converge to a score 

of around 150 in these episodes, reflecting the effectiveness of the learned model in replicating 

the Cart Pole reward structure. 
 

 
Fig. 4: The acquired reward during model control episodes, in the presence of DQN algorithm 

4.2 Deep Deterministic Policy Gradient Results 

In this section, the DDPG algorithm, which employs a more complex actor-critic structure, is 

integrated with the framework to experiment with a more challenging version of the Cart Pole 

environment: The Pendulum. 

4.2.1 Simulation Environment 

The Pendulum environment consists of a pendulum fixed at one end to a stationary point, with 

the other end free to move. The objective is to apply torque to the free end to swing the 

pendulum into an upright position. In this case, the state space is continuous with 3 dimensions, 

consisting of the pendulum’s position and angular velocity. 

Also, the action space is continuous, defined by the torque applied to the free end of the 

pendulum, ranging from −2 to +2. Moreover, the reward function can be found in Eq. (11). 

  2 2 2     0.1    0.001r                                                          (11) 

4.2.2 DDPG Simulation Results 

As the complexity of the algorithm and environment increases, it becomes more challenging to 

obtain effective control signals and accurate models during training. Consequently, the 

significance of hyperparameters grows with more advanced algorithms. To illustrate the impact 

of hyperparameters on performance, two cases of RL control are presented in Figs. 5 and 6. 

Though both figures use a three-layer neural network with dimensions of 256 × 256 and a batch 

size of 256, the Fig. 5 shows the unstable and unresolved learning results, where the learning 

rate, γ, and τ are set to 0.0003, 0.99, and 0.005, respectively. Additionally, the noise standard 
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deviation is set to 1, and the policy is updated at every timestep after the first 2000 timesteps. 

Whereas Fig. 6 demonstrates the outcome of proper hyperparameter tuning. Here, the learning 

rate, γ, and τ are adjusted to 0.0001, 0.98, and 0.02, respectively, and the policy update 

frequency is set to 50. Furthermore, the exploration noise standard deviation decreases 

gradually from 0.2 to 0.05 during the first 200 episodes of the process. 

 

 

Fig. 5: The obtained reward during RL control episodes using the DDPG algorithm with untuned hyperparameters 

 
Fig. 6: The obtained reward during RL control episodes using the DDPG algorithm with tuned hyperparameters 

To proceed with the first step of the provided approach, which involves model learning, it 

is crucial to consider the role of hyperparameters in model design. As illustrated in Figs. 7 and 

8, the importance of hyperparameter tuning increases with the complexity of the environment. 

Fig. 7 shows that a model with a two-layer NN (128 × 128) results in suboptimal performance. 

In contrast, the desired model performance, achieved with a three-layer NN (256 × 256), is 

demonstrated in Fig. 8. 
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Fig. 7: The environment model loss using the suggested framework, in the presence of DDPG algorithm with 

untuned hyperparameters 

 

Fig. 8: The environment model loss using the suggested framework, in the presence of DDPG algorithm with 

tuned hyperparameters 

 
Fig. 9: The acquired reward during model control episodes, in the presence of DDPG algorithm 
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It is now clear that the complexity of the environment, including the action space and reward 

function, affects the modeling process, potentially leading to an increase in loss compared to 

simpler environments. 

Moving on to the second step, Fig. 9 illustrates the results of model control episodes. In this 

environment, the agent aims to keep the pendulum upright by applying continuous torques, and 

performance is measured by cumulative reward, with optimal policies approaching a score 

close to zero (since the reward is negative and penalizes deviation from the upright position). 

The similarity in the trend and final reward between the control episodes in Fig. 6 and model 

control episodes in Fig. 9 indicates that the policy learned from model-generated data is 

effectively contributing to the task. Despite differences in learning paths, both curves converge 

to comparable performance, demonstrating that the model is capable of producing sufficiently 

accurate transitions to support policy refinement in parallel with real interactions. 

4.3 Twin Delayed Deep Deterministic Policy Gradient Results 

To validate the introduced framework in the presence of TD3 algorithm, the examination 

environment becomes more complex as it involves a MIMO system. The experiments using 

the mentioned approach with TD3 are carried out in the Bipedal Walker environment, part of 

the Box2D environments available in OpenAI Gym. This setup allows us to observe the impact 

of transitioning from MISO to MIMO high-dimensional systems on the efficiency of this 

framework, especially as the complexity of the learning algorithm increases. 

4.3.1 Simulation Environment 

The Bipedal Walker environment simulates a 4-joint robot. The significance of this examination 

lies in its high-dimensional, multi-output nature. The state space is a 27-element array, 

consisting of hull angle speed, angular velocity, horizontal and vertical speed, positions of 

joints, joints’ angular speeds, legs’ contact with the ground, and 10 lidar rangefinder 

measurements. 

The action space is a 4-element array representing the motor speed values for each of the 4 

joints (hips and knees). The reward function considers the environment solved if the agent 

achieves a score of +300 within 1600 timesteps. If the robot falls, it incurs a penalty of -100 

points, and applying motor torque reduces the score by a small amount. A more optimal agent 

will attain a higher score. 

4.3.2 TD3 Simulation Results 

In Figs. 10 and 11, a comparison of hyperparameters for the RL control process is provided. 

Focusing on the differences in hyperparameters, changes such as increasing the critic learning 

rate from 0.0001 to 0.0003, adjusting the sample batch size from 128 to 200, modifying the NN 

architecture from a three-layer 256 × 256 to a three-layer 400 × 300, and altering the policy 

update frequency from 4 to 2 significantly improved the learning curve, preventing instability 

and suboptimal performance as shown in Fig. 10. With proper hyperparameter tuning, the 

control process demonstrated strong performance, converging to a score of 300, as illustrated 

in Fig. 11. 
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Fig. 10: The obtained reward during RL control episodes, in the presence of TD3 algorithm with untuned 

hyperparameters 

 

Fig. 11: The obtained reward during RL control episodes, in the presence of TD3 algorithm with tuned 
hyperparameters 

 
Fig. 12: The environment model loss using the suggested framework, in the presence of TD3 algorithm with 

untuned hyperparameters 
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Now, moving on to the modeling and model control phases, the results of the modeling 

process are shown in Figs. 12 and 13. Designing an online model in this case is much more 

time-consuming and computationally intensive, considering the complexity of the MIMO 

system compared to the earlier ones. As a result, the general accuracy of the model has 

decreased. However, properly adjusting the hyperparameters for the corresponding neural 

networks can still significantly improve the model’s performance. By upgrading from a 3-layer 

256 × 128 network with a batch size of 128 to a 4-layer 400 × 300 network with a batch size of 

100, the model loss curve improved from Fig. 12 to Fig. 13. 

For the model control episodes, 20% of the total episodes are dedicated to the simulated 

interactions in model, with each episode spanning 1200 timesteps. However, the model control 

episodes only begin after approximately 180 episodes of RL control have been completed. This 

decision was made because the modeling process required more time and collected rollouts to 

establish a solid baseline model before starting the model control phase. To ensure an effective 

learning process, the rewards obtained from the model episodes were constrained to the range 

of -300 to 400. 

 

Fig. 13: The environment model loss using the suggested framework, in the presence of TD3 algorithm with tuned 

hyperparameters 

 
Fig. 14: The acquired reward during model control episodes, in the presence of TD3 algorithm 

Fig. 14 shows the learning curve of the model control episodes, highlighting the model’s 

performance, which is relatively close to that expected for the actual bipedal system. In the 
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Bipedal Walker environment, the agent must learn to coordinate continuous joint actions to 

walk across uneven terrain, with episode rewards typically ranging from -100 (failure) to 300 

(successful walking). The convergence of the model-based learning curve toward the expected 

reward range indicates that the model is capable of generating realistic transitions and 

supporting effective policy learning, even in this more complex MIMO control setting. 

It should be noted that all experiments were conducted on a Dell XPS 15 laptop equipped 

with a 12th Gen Intel® Core™ i7-12700H processor (20 CPUs, 2.30 GHz), 32 GB RAM, and 

an NVIDIA GeForce RTX 3050 Laptop GPU. Training time varied across environments and 

algorithms; for instance, training with TD3 on the Bipedal Walker environment required 

approximately 7 hours to converge, while Cart Pole with DQN required around 40 minutes. 

The lightweight model used in system identification enabled fast inference, supporting near 

real-time performance in simulation. 

 

5 Conclusion 

In this study, an improved framework for DRL was presented that integrates online system 

identification, based on the Dyna-Q approach. The parallel operation of system identification 

and model control processes with the control process in the suggested approach provides a 

reliable backup mechanism for industrial settings where system failures can have critical 

consequences. The framework’s strengths and limitations were thoroughly investigated upon 

experiments across diverse industry-relevant environments, providing insights into its potential 

for addressing key challenges in industrial control systems. However, the time-consuming 

system identification process may limit the applicability of the suggested framework for some 

high-dimensional systems. Future work should focus on optimizing the system identification 

process for high-dimensional tasks and exploring ways to mitigate the approach’s dependence 

on highly accurate models. In addition, while hyperparameter tuning in this study was 

performed manually through iterative refinement, effective for benchmarking purposes, future 

work may benefit from automated optimization methods such as Bayesian optimization to 

improve robustness and reduce tuning overhead in real-world deployments. To further improve 

scalability, future extensions could explore transfer learning, lightweight surrogate models, and 

distributed or multi-agent DRL implementations. In such settings, data-sharing constraints and 

communication efficiency would become critical, and techniques like log-scale quantization 

may help reduce bandwidth requirements while preserving learning performance. 
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