

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 7(1) (2026) 77-83 https://doi.org/10.22060/AJMC.2025.23749.1299

Original Article

Some trace functional inequalities for operator (p, h)-convex functions

Omid Pourbahri Rahpeyma^a, Mehdi Bakan^b, Abasalt Bodaghi^{*c}

^aDepartment of Mathematics, Chalous Branch, Islamic Azad University, Chalous, Iran

ABSTRACT: In this paper, we present a theorem pertinent to singular value inequalities for positive and compact operators on a Hilbert space. Moreover, we obtain several trace inequalities for operator (p, h)-convex functions.

Review History:

Received:12 December 2024 Revised:14 May 2025 Accepted:15 May 2025 Available Online:01 January 2026

Keywords:

Operator (p, h)-convex function Hermite-Hadamard inequality Trace

MSC (2020):

47A63; 26D07; 26A51

1. Introduction

It is known that there are many important inequalities with miscellaneous applications in many areas of mathematics such as nonlinear analysis. One of them is the celebrated Hermite-Hadamard inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a)+f(b)}{2},$$

where f is a convex function on [a, b]; for more information and details, we refer to [7], [9], [10] and [11]. In what follows, we state some historical notes, presented in the literature about some generalizations, modifications, refinements and improvements of the Hermite-Hadamard inequality used in this work.

Let $s \in (0,1)$. Recall from [5] that a real valued function f on an interval $I \subseteq [0,\infty)$ is said to be s-convex in the second sense if $f(rx + ty) \le r^s f(x) + t^s f(y)$, for all $x, y \in I$ and $r, t \ge 0$ with r + t = 1. In [5, Theorem 2.1], Dragomir and Fitzpatrick proved the following version of Hermite-Hadamard inequality for s-convex functions in

 $E\text{-}mail\ addresses:\ omidpourbahri@gmail.com\ (O.\ P.\ Rahpeyma),\ m.bakan@gmail.com\ (M.\ Bakan),\ abasalt.bodaghi@gmail.com, abodaghi@iau.ir\ (A.\ Bodaghi)$

^bDepartment of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

^cDepartment of Mathematics, West Tehran Branch, Islamic Azad University, Tehran, Iran

^{*}Corresponding author.

the second sense: let $f: I \subseteq [0, \infty) \longrightarrow \mathbb{R}$ be a s-convex function, where $s \in (0, 1]$ and $a, b \in I$ with a < b. If $f \in L^1(I)$, then

$$2^{s-1} f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a) + f(b)}{s+1}.$$

Next, Zabandan et al. [14] presented a refinement of the Hermite-Hadamard inequality for s-convex functions in the case that $s \in [0,1]$. In addition, they studied the Hermite-Hadamard inequality for the product of a r-convex function f and a s-convex function g.

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex separable Hilbert space. We denote the C^* -algebra of all bounded linear operators on \mathcal{H} by $\mathcal{B}(\mathcal{H})$. In the following, we provide some definitions and notations.

- An operator $A \in \mathcal{B}(\mathcal{H})$ is *positive* if $\langle Ax, x \rangle \geq 0$ (denoted by $A \geq 0$) for all $x \in \mathcal{H}$. Moreover, a positive invertible operator A is naturally denoted by A > 0 and the set of all positive operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})^+$.
 - For self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ we write $B \geq A$ if $B A \geq 0$.
- A linear map $\Phi: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$ and Φ is said to be unital if $\Phi(I) = I$. For a self-adjoint operator A in $\mathcal{B}(\mathcal{H})$, it is known that there is a *-isometric isomorphism Φ between the set C(Sp(A)) of all continuous functions defined on Sp(A), the spectrum of A, and $C^*(A)$, the C^* -algebra generated by A and the identity operator $1_{\mathcal{B}(\mathcal{H})}$ on \mathcal{H} . This map is called the Gelfand map; see page 3 of [13]. Suppose that f is a continuous complex-valued function on Sp(A). We denote each element $\Phi(f)$ of $C^*(A)$ by f(A) and call it the continuous functional calculus for a bounded self-adjoint operator A. Given A as a bounded self-adjoint operator, if f is a real-valued continuous function on Sp(A) such that $f(t) \geq 0$ for all $t \in Sp(A)$, then $f(A) \geq 0$ and this means that f(A) is a positive operator on \mathcal{H} . Furthermore, $f(A) \leq g(A)$ in the operator order in $\mathcal{B}(\mathcal{H})$ provided that both f and g are real-valued functions on Sp(A) such that $f(t) \leq g(t)$ for any $t \in Sp(A)$.

An extension of the previously mentioned class of functions to operators was proposed by Ghazanfari [6] as follows: Let $s \in (0,1]$ and let I be an interval in $[0,\infty)$. A continuous function $f:I \longrightarrow \mathbb{R}$ is called *operator* s-convex on I provided that $f((1-\lambda)A + \lambda B) \leq (1-\lambda)^s f(A) + \lambda^s f(B)$ for all $\lambda \in [0,1]$ and all A,B belonging to $B(\mathcal{H})^+$ whose spectra are contained in I. Under these assumptions, he presented an inequality for operator s-convex functions as follows:

$$2^{s-1}f\left(\frac{A+B}{2}\right) \le \int_0^1 f(\lambda A + (1-\lambda)B) \, d\lambda \le \frac{f(A) + f(B)}{s+1}.$$

Let $I, J \subseteq \mathbb{R}^+$, $(0,1) \subseteq J$ and $h: J \longrightarrow \mathbb{R}$ be a nonnegative function that is not identically zero. Then

(1) (See [4].) A real-valued continuous function f on $K \subseteq [0, \infty)$ is called operator convex (operator concave) if

$$f(\lambda A + (1 - \lambda)B) \le (\ge)\lambda f(A) + (1 - \lambda)f(B),$$

in the operator order in $\mathcal{B}(\mathcal{H})$, for all $\lambda \in [0,1]$ and all bounded self-adjoint operators A and B in $\mathcal{B}(\mathcal{H})$ whose spectra are contained in K;

(2) (See [2] and [3].) We say that a continuous function $f: I \longrightarrow \mathbb{R}^+$ is an operator h-convex function (resp. operator (p,h)-convex) on I if

$$f(\lambda A + (1 - \lambda)B) \le h(\lambda)f(A) + h(1 - \lambda)f(B)$$

(resp.
$$f((\lambda A^p + (1 - \lambda)B^p)^{\frac{1}{p}}) \le h(\lambda)f(A) + h(1 - \lambda)f(B)$$
),

for all $A, B \in \mathcal{B}(\mathcal{H})^+$ whose spectra are contained in I, and for all $\lambda \in (0,1)$.

The next inequalities, due to authors [2], provides a version of the Hermite-Hadamard inequalities for operator h-convex functions.

Let f be an operator h-convex function. Then

$$\frac{1}{2h(\frac{1}{2})}f\left(\frac{A+B}{2}\right) \leq \int_0^1 f\big(tA+(1-t)B\big)\,dt \leq \left(f(A)+f(B)\right)\int_0^1 h(t)\,dt,$$

for any self-adjoint operators A and B whose spectra lie in K.

Similarly, the following inequalities, establish the Hermite-Hadamard-type inequalities for operator (p, h)-convex functions [12].

Let $f: K \longrightarrow \mathbb{R}^+$ be a continuous operator (p, h)-convex function. Then

$$\frac{1}{2h(\frac{1}{2})}f\left(\left(\frac{A^p + B^p}{2}\right)^{\frac{1}{p}}\right) \le \int_0^1 f\left((\lambda A^p + (1 - \lambda)B^p)^{\frac{1}{p}}\right) d\lambda$$

$$\le \left(f(A) + f(B)\right) \int_0^1 h(\lambda) d\lambda, \tag{1}$$

for any $A, B \in \mathcal{B}(\mathcal{H})^+$ with spectra in K and $h: J \longrightarrow \mathbb{R}^+$ be a continuous non-zero function. An interval $K \subseteq \mathbb{R}^+$ is called a *p-convex set* if

$$Sp((\lambda A^p + (1-\lambda)B^p)^{\frac{1}{p}}) \subseteq K,$$

for all positive operators $A, B \in \mathcal{B}(\mathcal{H})^+$ with spectra contained in K, for all $\lambda \in (0,1)$ and p > 0.

In this paper, we present some inequalities related to positive operators in $K(\mathcal{H})$, the C^* -algebra of compact operators on \mathcal{H} . As a consequence, we will show that if f is an operator (p,h)-convex function, then

$$\frac{1}{2h(\frac{1}{2})}Tr\left(f\left(\left(\frac{A^p+B^p}{2}\right)^{\frac{1}{p}}\right)\right) \leq \int_0^1 Tr\left(f\left((tA^p+(1-t)B^p)^{\frac{1}{p}}\right)\right)dt \\
\leq \left(Tr(f(A))+Tr(f(B))\right)\int_0^1 h(t)\,dt,$$

for any self-adjoint operators A and B on \mathcal{H} . Furthermore, we establish the singular value inequalities for positive operators in $K(\mathcal{H})$. Lastly, we present several trace inequalities for positive operators on $\mathcal{B}(\mathcal{H})$.

2. Main Results

We begin by restating some definitions, notations, commonly used terminologies and conventions from operator theory, as presented in the literature.

Let \mathcal{H} be a Hilbert space and let $K(\mathcal{H})$ be the two sided ideal of compact operators in $\mathcal{B}(\mathcal{H})$. For any $A \in \mathcal{B}(\mathcal{H})$, the operator norm is defined by $||A|| = \sup\{||Ax|| : ||x|| = 1\}$. Given $A, B \in \mathcal{B}(\mathcal{H})$, the direct sum $A \oplus B$ denotes the block diagonal matrix $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ defined on $\mathcal{H} \oplus \mathcal{H}$; see [15] for more details. It is clear that $||A \oplus B|| = \max\{||A||, ||B||\}$. It is known that the operator A^*A is always positive and it has a unique positive square root, denoted via |A|. The eigenvalues of |A| counted with multiplicities are called the *singular values* of A. We will always enumerate these in descending order, and denoted through $s_1(A) \geq s_2(A) \geq \cdots \geq s_n(A)$. Note that $||A|| = s_1(A) = ||A^*A||^{\frac{1}{2}}$.

Let $\{e_i\}_{i\in I}$ be an orthonormal basis of \mathcal{H} . We say that $A\in\mathcal{B}(\mathcal{H})$ is trace class if

$$||A||_1 = \sum_{i \in I} \langle |A|e_i, e_i \rangle < \infty.$$

It is important to note that the definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote the set of all trace class operators in $\mathcal{B}(\mathcal{H})$ by $\mathcal{B}_1(\mathcal{H})$. In addition, the trace of a trace class operator $A \in \mathcal{B}_1(\mathcal{H})$ is defined via

$$Tr(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ is an orthonormal basis of \mathcal{H} . Note that $Tr(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(\mathcal{H})$ with ||Tr|| = 1. A useful result from [8] asserts that if $A, B \in K(\mathcal{H})$, then $s_j\left(\frac{A+B}{2}\right) \leq s_j(A \oplus B)$ for all $j \in \mathbb{N}$.

Lemma 2.1. [[1], P. 75] Let $A, B \in \mathcal{B}(\mathcal{H})$ such that A is a compact operator. Then

$$s_j(AB) \le ||B|| s_j(A),$$

for all $j \in \mathbb{N}$.

From now on, we set

$$\mathcal{M}(\mathcal{H}) := \{ (A, B) \in \mathcal{B}(\mathcal{H})^+ \times \mathcal{B}(\mathcal{H})^+ | AB + BA > 0 \}.$$

In the upcoming result, we state the singular value inequalities for positive operators in $K(\mathcal{H})$.

Theorem 2.2. Let A, B be positive operators in $K(\mathcal{H})$ such that $AB + BA \ge 0$ and $\frac{1}{2} \le s \le p$. If \mathcal{T} is an arbitrary operator in $\mathcal{B}(\mathcal{H})$, then

$$\frac{1}{2}s_j((A+B)^{\frac{1}{2}}\mathcal{T})^{\frac{2s}{p}} \le s_j\left(\int_0^1 \left(\mathcal{T}^*(\lambda A + (1-\lambda)B)\mathcal{T}\right)^{\frac{s}{p}} d\lambda\right) \le \frac{2p}{s+p} \|\mathcal{T}\|^{\frac{2s}{p}} s_j(A \oplus B)^{\frac{2s}{p}},$$

for all $\lambda \in (0,1)$ and all $j \in \mathbb{N}$.

Proof. Replacing (A, B) by $(A^{\frac{1}{p}}, B^{\frac{1}{p}})$ in inequality (1), we obtain

$$\frac{1}{2h(\frac{1}{2})}f\left(\left(\frac{A+B}{2}\right)^{\frac{1}{p}}\right) \leq \int_0^1 f\left((\lambda A + (1-\lambda)B)^{\frac{1}{p}}\right) d\lambda \leq \left(f(A^{\frac{1}{p}}) + f(B^{\frac{1}{p}})\right) \int_0^1 h(\lambda) d\lambda.$$

Switching A, B with $\Phi(A), \Phi(B)$, respectively, where Φ is a positive unital operator in $\mathcal{B}(\mathcal{H})$, we obtain

$$\frac{1}{2h(\frac{1}{2})}f\left(\left(\frac{\Phi(A) + \Phi(B)}{2}\right)^{\frac{1}{p}}\right) \leq \int_{0}^{1} f\left(\left(\lambda\Phi(A) + (1 - \lambda)\Phi(B)\right)^{\frac{1}{p}}\right) d\lambda \qquad (2)$$

$$\leq \left(f(\Phi^{\frac{1}{p}}(A)) + f(\Phi^{\frac{1}{p}}(B))\right) \int_{0}^{1} h(\lambda) d\lambda.$$

Put $f(x) = x^s$, $h(\lambda) = \lambda^{\frac{s}{p}}$ for $\frac{1}{2} \le s \le p$ and $\Phi(A) = \mathcal{T}^* A \mathcal{T}$ in (2). Then, we get

$$\frac{1}{2} (\mathcal{T}^* A \mathcal{T} + \mathcal{T}^* B \mathcal{T})^{\frac{s}{p}} \leq \int_0^1 \left(\lambda \mathcal{T}^* A \mathcal{T} + (1 - \lambda) \mathcal{T}^* B \mathcal{T} \right)^{\frac{s}{p}} d\lambda$$

$$\leq \frac{p}{s + p} \left((\mathcal{T}^* A \mathcal{T})^{\frac{s}{p}} + (\mathcal{T}^* B \mathcal{T})^{\frac{s}{p}} \right).$$
(3)

We compute the first part of inequality (3) as follows:

$$\begin{split} \frac{1}{2} (\mathcal{T}^* A \mathcal{T} + \mathcal{T}^* B \mathcal{T})^{\frac{s}{p}} &= \frac{1}{2} (\mathcal{T}^* (A+B) \mathcal{T})^{\frac{s}{p}} \\ &= \frac{1}{2} \left(\mathcal{T}^* (A+B)^{\frac{1}{2}} (A+B)^{\frac{1}{2}} \mathcal{T} \right)^{\frac{s}{p}} \\ &= \frac{1}{2} \left(\mid (A+B)^{\frac{1}{2}} \mathcal{T} \mid^2 \right)^{\frac{s}{p}} = \frac{1}{2} \left(\mid (A+B)^{\frac{1}{2}} \mathcal{T} \mid \right)^{\frac{2s}{p}}, \end{split}$$

and so

$$\frac{1}{2}(\mathcal{T}^*A\mathcal{T} + \mathcal{T}^*B\mathcal{T})^{\frac{s}{p}} = \frac{1}{2}(|(A+B)^{\frac{1}{2}}\mathcal{T}|)^{\frac{2s}{p}}.$$
 (4)

For the third part of inequality (3), we find

$$\frac{p}{s+p}\left(\left(\mathcal{T}^*A\mathcal{T}\right)^{\frac{s}{p}} + \left(\mathcal{T}^*B\mathcal{T}\right)^{\frac{s}{p}}\right) = \frac{p}{s+p}\left(\left|A^{\frac{1}{2}}\mathcal{T}\right|^{\frac{2s}{p}} + \left|B^{\frac{1}{2}}\mathcal{T}\right|^{\frac{2s}{p}}\right). \tag{5}$$

It follows from (3), (5) and (4) that

$$\frac{1}{2} \left(\mid (A+B)^{\frac{1}{2}} \mathcal{T} \mid \right)^{\frac{2s}{p}} \leq \int_{0}^{1} \left(\lambda \mathcal{T}^{*} A \mathcal{T} + (1-\lambda) \mathcal{T}^{*} B \mathcal{T} \right)^{\frac{s}{p}} d\lambda$$

$$\leq \frac{p}{s+p} \left(\mid A^{\frac{1}{2}} \mathcal{T} \mid \frac{2s}{p} + \mid B^{\frac{1}{2}} \mathcal{T} \mid \frac{2s}{p} \right).$$

Since for each j, s_j is a monotone operator, we arrive at

$$\frac{1}{2}s_{j}\left(\left(|(A+B)^{\frac{1}{2}}\mathcal{T}|\right)^{\frac{2s}{p}}\right) \leq s_{j}\left(\int_{0}^{1} \left(\mathcal{T}^{*}(\lambda A + (1-\lambda)B)\mathcal{T}\right)^{\frac{s}{p}} d\lambda\right)
\leq s_{j}\left(\frac{p}{s+p}\left(|A^{\frac{1}{2}}\mathcal{T}|^{\frac{2s}{p}} + |B^{\frac{1}{2}}\mathcal{T}|^{\frac{2s}{p}}\right)\right)
\leq \frac{2p}{s+p}s_{j}\left(|A^{\frac{1}{2}}\mathcal{T}|^{\frac{2s}{p}} \oplus |B^{\frac{1}{2}}\mathcal{T}|^{\frac{2s}{p}}\right)
\leq \frac{2p}{s+p}s_{j}\left(\begin{pmatrix}A^{\frac{1}{2}} & 0\\ 0 & B^{\frac{1}{2}}\end{pmatrix} \oplus \begin{pmatrix}\mathcal{T} & 0\\ 0 & \mathcal{T}\end{pmatrix}\right)^{\frac{2s}{p}}
\leq \frac{2p}{s+p}\|\mathcal{T}\oplus\mathcal{T}\|^{\frac{2s}{p}}s_{j}\left(A^{\frac{1}{2}}\oplus B^{\frac{1}{2}}\right)^{\frac{2s}{p}}
= \frac{2p}{s+p}\|\mathcal{T}\|^{\frac{2s}{p}}s_{j}\left(A\oplus B\right)^{\frac{2s}{p}}.$$

Therefore, the proof is now complete.

In the next corollary, we include [2, Example 3.2] as a direct consequence of Theorem 2.2.

Corollary 2.3. Let \mathcal{T} be an operator in $\mathcal{B}(\mathcal{H})$. Then, for each pair of positive compact operators A and B in $M(\mathcal{H})$, we have

$$\frac{1}{2}s_j \left((A+B)^{\frac{1}{2}} \mathcal{T} \right)^{2s} \le s_j \left(\int_0^1 \left(\mathcal{T}^* (\lambda A + (1-\lambda)B) \mathcal{T} \right)^s d\lambda \right) \\
\le \frac{2}{s+1} \|\mathcal{T}\|^{2s} s_j (A \oplus B)^s,$$

for all $j \in \mathbb{N}$, where $s \in [\frac{1}{2}, 1]$.

Proof. The desired result can be obtained by putting p = 1 in Theorem 2.2.

Proposition 2.4. Let $f: K \to \mathbb{R}^+$ be an operator (p,h)-convex function and $h: J \to \mathbb{R}^+$ be a non-zero function. Then, $g(t) = Tr(f((tA^p + (1-t)B^p)^{\frac{1}{p}}))$ is h-convex on (0,1) for any self-adjoint operators A and B with spectra contained in K.

Proof. Since the trace functional is convex and monotonic, for each $u, v \in (0, 1)$ and $0 < \alpha < 1$, we obtain

$$g(\alpha u + (1 - \alpha)v) = Tr\Big(f\Big((\alpha u + (1 - \alpha)v)A^p + (\alpha u + (1 - \alpha)v)B^p\Big)^{\frac{1}{p}}\Big)$$

$$= Tr\Big(f\Big(\alpha(uA^p + (1 - u)B^p) + (1 - \alpha)(vA^p + (1 - v)B^p)\Big)^{\frac{1}{p}}\Big)$$

$$= Tr\Big(f\Big(\alpha[((uA^p + (1 - u)B^p)^{\frac{1}{p}})^p] + (1 - \alpha)[((vA^p + (1 - v)B^p)^{\frac{1}{p}})^p]\Big)^{\frac{1}{p}}\Big)$$

$$\leq Tr\Big(h(\alpha)f\Big(uA^p + (1 - u)B^p\Big)^{\frac{1}{p}}\Big) + h(1 - \alpha)f\Big((vA^p + (1 - v)B^p\Big)^{\frac{1}{p}}\Big)\Big)$$

$$= h(\alpha)Tr\Big(f\Big(uA^p + (1 - u)B^p\Big)^{\frac{1}{p}}\Big) + h(1 - \alpha)Tr\Big(f\Big((vA^p + (1 - v)B^p\Big)^{\frac{1}{p}}\Big)\Big)$$

$$= h(\alpha)g(u) + h(1 - \alpha)g(v).$$

Therefore, g is h-convex.

We now state the second main result of this paper using the above proposition. In fact, the next theorem generalizes the trace Hermite-Hadamard inequality for operator (p, h)-convex functions.

Theorem 2.5. Let $f: K \longrightarrow \mathbb{R}^+$ be an operator (p,h)-convex function and $h: J \longrightarrow \mathbb{R}^+$ be a non-zero function. Then, for each self-adjoint operators A and B with spectra contained in K, we have.

$$\frac{1}{2h(\frac{1}{2})}Tr\left(f\left(\left(\frac{A^p+B^p}{2}\right)^{\frac{1}{p}}\right)\right) \leq \int_0^1 Tr\left(f\left((tA^p+(1-t)B^p)^{\frac{1}{p}}\right)\right)dt$$

$$\leq \left(Tr(f(A))+Tr(f(B))\right)\int_0^1 h(t)dt. \tag{6}$$

Proof. By Proposition 2.4, the function $g(t) = Tr(f(tA^p + (1-t)B^p)^{\frac{1}{p}})$ is h-convex on (0,1), and hence by inequality (1), we get

$$\frac{1}{2h(\frac{1}{2})}g\left(\frac{0+1}{2}\right) \le \int_0^1 g(t) \, dt \le \left(\frac{g(0)+g(1)}{2}\right) \int_0^1 h(t) \, dt.$$

This finishes the proof.

The incoming corollaries are direct consequences of Theorem 2.5.

Corollary 2.6. Let p > 0 and $s \in [p, 2p]$. Then

$$2^{-\frac{s}{p}}Tr\big((A^p+B^p)^{\frac{s}{p}}\big) \leq \int_0^1 Tr\big((\lambda A^p + (1-\lambda)B^p)^{\frac{s}{p}}\big)\,d\lambda \leq \frac{1}{2}Tr(A^s+B^s),$$

for any self-adjoint operators $A, B \in \mathcal{B}_1(\mathcal{H})^+$ with spectra contained in K.

Proof. For $h(\lambda) = \lambda$ and $s \in [p, 2p]$, the function $f(t) = t^s$ is operator (p, h)-convex. By inequality (6) the result can be deduced.

Corollary 2.7. For p > 0 and $0 < s \le p$, we have

$$\frac{1}{2}Tr((A^p + B^p)^{\frac{s}{p}}) \le \int_0^1 Tr((\lambda A^p + (1 - \lambda)B^p)^{\frac{s}{p}}) d\lambda \le \frac{p}{s+p}Tr(A^s + B^s), \tag{7}$$

for all positive trace class operators A and B in $M(\mathcal{H})$.

Proof. Set $h(\lambda) = \lambda^{\frac{s}{p}}$ with $0 < s \le p$. Then, the function $f(t) = t^s$ is operator (p, h)-convex on $M(\mathcal{H})$. Applying f in inequality (6), we find the result.

Corollary 2.8. Suppose that $0 < s \le p$ and Φ is a unital positive linear map. For each pair of positive trace class operators A and B in $M(\mathcal{H})$, we have

$$\frac{1}{2}Tr(\Phi((A^p + B^p)^{\frac{s}{p}})) \le \frac{p}{s+p}Tr((\Phi(A))^s + (\Phi(B))^s).$$

Proof. Replacing $\Phi(A)$, $\Phi(B)$ by A, B, respectively, in inequality (7), we get the result by Proposition 2.4.

Remark 2.9. It should be note that if Φ is a unital positive trace preserving map, then by Corollary 2.8 we find

$$\frac{1}{2}Tr\big((A^p+B^p)^{\frac{s}{p}}\big) \leq \frac{p}{s+p}Tr\big((\Phi(A))^s + (\Phi(B))^s\big).$$

Some inequalities for positive operators A and B in $\mathcal{B}_1(\mathcal{H})^+$ are presented in the upcoming proposition.

Proposition 2.10. Let f be an operator (p,h)-convex and $h: J \to \mathbb{R}^+$ be a non-zero function. Then, we have

$$\frac{1}{2h(\frac{1}{2})}f\left(\left(\frac{(Tr(A))^p + (Tr(B))^p}{2}\right)^{\frac{1}{p}}\right) \leq \int_0^1 f\left((\lambda(Tr(A))^p + (1-\lambda)(Tr(B))^p\right)^{\frac{1}{p}}\right) d\lambda \tag{8}$$

$$\leq \left(f(Tr(A)) + f(Tr(B))\right) \int_0^1 h(\lambda) d\lambda,$$

for all positive operators A and B in $\mathcal{B}_1(\mathcal{H})^+$ with spectra contained in K.

Proof. Interchanging (A, B) by (Tr(A), Tr(B)) in inequality (1), we obtain (8).

Plugging [12, Example 1] and Proposition 2.10, we obtain a relation as follows. Since the proof is routine, we omit it.

Corollary 2.11. Let $0 < s \le p$ and let $A, B \in \mathcal{B}_1(\mathcal{H})^+$ such that $AB + BA \ge 0$. Then

$$\frac{1}{2} \left((Tr(A))^p + (Tr(B))^p \right)^{\frac{s}{p}} \le \int_0^1 \left(\lambda (Tr(A))^p + (1 - \lambda) (Tr(B))^p \right)^{\frac{s}{p}} d\lambda \\
\le \left((Tr(A))^s + (Tr(B))^s \right) \left(\frac{p}{s+p} \right).$$

Corollary 2.12. Suppose that 0 < p and $s \in [p, 2p]$ and let $A, B \in \mathcal{B}_1(\mathcal{H})^+$. Then, we have

$$\left(\frac{(Tr(A))^p + (Tr(B))^p}{2}\right)^{\frac{s}{p}} \le \int_0^1 \left(\lambda (Tr(A))^p + (1-\lambda)(Tr(B))^p\right)^{\frac{s}{p}} d\lambda$$
$$\le \frac{(Tr(A))^s + (Tr(B))^s}{2}.$$

Proof. The result follows from [12, Proposition 5] and Proposition 2.10.

Acknowledgement

The authors sincerely thank the anonymous reviewers for their careful reading, constructive comments to improve the quality of the first draft of the paper substantially.

References

- [1] R. Bhatia, Matrix analysis, vol. 169 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1997.
- [2] V. DARVISH, S. S. DRAGOMIR, H. M. NAZARI, AND A. TAGHAVI, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions, Acta Comment. Univ. Tartu. Math., 21 (2017), pp. 287–297.
- [3] T. H. DINH AND K. T. B. Vo, Some inequalities for operator (p,h)-convex functions, Linear Multilinear Algebra, 66 (2018), pp. 580–592.
- [4] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Appl. Math. Comput., 218 (2011), pp. 766-772.
- [5] S. S. Dragomir and S. Fitzpatrick, *The Hadamard inequalities for s-convex functions in the second sense*, Demonstratio Math., 32 (1999), pp. 687–696.
- [6] A. G. GHAZANFARI, The Hermite-Hadamard type inequalities for operator s-convex functions, J. Adv. Res. Pure Math., 6 (2014), pp. 52–61.
- [7] J. HADAMARD, Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, Journal de Mathématiques Pures et Appliquées, (1893), pp. 171–215.
- [8] O. HIRZALLAH AND F. KITTANEH, Inequalities for sums and direct sums of Hilbert space operators, Linear Algebra Appl., 424 (2007), pp. 71–82.
- [9] E. Kikianty, Hermite-Hadamard inequality in the geometry of Banach spaces, PhD thesis, Victoria University, 2010. Unpublished.
- [10] D. S. MITRINOVIĆ AND I. B. LACKOVIĆ, Hermite and convexity, Aequationes Math., 28 (1985), pp. 229–232.
- [11] C. P. NICULESCU, L.-E. PERSSON, AND L.-E. PERSSON, Convex functions and their applications—a contemporary approach, vol. 14 of CMS/CAIMS Books in Mathematics, Springer, Cham, 2025. Third edition [of 2178902].
- [12] Z. OMRANI, O. P. RAHPEYMA, AND H. RAHIMI, Some inequalities for operator (p, h)-convex function, J. Math., (2022), Art. ID 3836837, 11 pp.
- [13] J. PEČARIĆ, T. FURUTA, J. MIĆIĆ HOT, AND Y. SEO, Mond-Pečarić method in operator inequalities, vol. 1 of Monographs in Inequalities, ELEMENT, Zagreb, 2005.
- [14] G. Zabandan, A. Bodaghi, and A. Kiliçman, *The Hermite-Hadamard inequality for r-convex functions*, J. Inequal. Appl., (2012), 2012:215, 8 pp.
- [15] X. Zhan, Matrix inequalities, vol. 1790 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.

Please cite this article using:

Omid Pourbahri Rahpeyma, Mehdi Bakan, Abasalt Bodaghi, Some trace functional inequalities for operator (p,h)-convex functions, AUT J. Math. Comput., 7(1) (2026) 77-83 https://doi.org/10.22060/AJMC.2025.23749.1299

