
تعداد نشریات | 8 |
تعداد شمارهها | 425 |
تعداد مقالات | 5,549 |
تعداد مشاهده مقاله | 6,496,195 |
تعداد دریافت فایل اصل مقاله | 5,552,975 |
ارزیابی ترمودینامیکی و اقتصادی و تحلیل جامع مکانیزمهای مؤثر بر هزینه یک سیستم چندگانه تولید هیدروژن صفر کربن، توان و گرمایش برپایه انرژی هستهای | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 57، شماره 2، 1404، صفحه 147-170 اصل مقاله (1.54 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23897.7825 | ||
نویسندگان | ||
رضا خفافپور؛ مرتضی یاری* ؛ علی اکبر درآبادی زارع* | ||
دانشکده مهندسی مکانیک دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
رآکتورهای نسل چهارم با دمای بسیار بالا، بهویژه هنگامی که با فرایندهای رفرمینگ بخار متان و جذب دیاکسیدکربن ترکیب شوند، ظرفیت چشمگیری در تولید هیدروژن در مقیاس وسیع و با رویکردی سازگار با محیطزیست ارائه میدهند. بااینوجود، پژوهشهای اندکی در زمینه طراحی و ارزیابی اقتصادی سیستمهای یکپارچه نسل چهارم و ریفرمینگ بخار متان برای تولید هیدروژن هستهای، بهویژه با درنظرگرفتن یک سیکل ترکیبی بهعنوان بخشی از سیستم تولید توان کلی، صورتگرفته است. در این مطالعه، یک سیستم تولید همزمان هیدروژن و توان الکتریکی، با بهرهگیری از یک راکتور دمای بسیار بالا، توسعه و تحلیل شده است. این سیستم از فرایند ریفرمینگ بخار متان با جذب تقویتشده و رویکرد سیکل ترکیبی استفاده میکند. مدلسازی سیستم از دیدگاههای ترمودینامیکی و اقتصادی، با استفاده از نرمافزار اسپن پلاس انجام شده و عملکرد ترمودینامیکی آن در شرایط عملیاتی مختلف ارزیابی گردیده است. علاوه بر این، چندین مطالعه پارامتری جهت تعیین عواملی که بر روی تولید هیدروژن و توان الکتریکی اثر میگذارند، انجامگرفته است. نتایج شبیهسازی، راندمان انرژی سیستم پیشنهادی را 73 درصد و بازده تولید هیدروژن و توان الکتریکی به ترتیب 16 و 23 درصد نشان میدهد. نتایج نشان میدهد که سیستم پیشنهادی نسبت به سیستمهای چند نسلی تحقیقات گذشته بهتر عمل میکند. علاوه بر این، راندمان اگسرژی سیستم پیشنهادی69/9 درصد محاسبه شده است. | ||
کلیدواژهها | ||
انرژی هستهای؛ تولید هیدروژن؛ رفرمینگ بخار متان؛ سیکل فوقبحرانی کربندیاکسید؛ جذب کربندیاکسید؛ جذب افزایشیافته؛ اگسرژی؛ اقتصادی | ||
عنوان مقاله [English] | ||
Cost Analysis of a Zero-Carbon Hydrogen, Power, and Heat System Using Advanced Nuclear and Sorption-Enhanced Methane Reforming | ||
نویسندگان [English] | ||
Reza Khaffaf pour؛ Mortaza Yari؛ Aliakbar Darabadi Zare | ||
Department of Mechanical Engineering, Faculty of Mechanical Engineering, Tabriz University, Tabriz, Iran | ||
چکیده [English] | ||
Fourth-generation very-high-temperature reactors, particularly when integrated with steam methane reforming and carbon dioxide capture processes, offer significant potential for large-scale hydrogen production with an environmentally conscious approach. However, limited research has been conducted on the design and economic evaluation of integrated Generation IV and steam methane reforming systems for nuclear hydrogen production, especially when considering a combined cycle as part of the overall power generation system. In this study, a combined hydrogen and power generation system, utilizing a very-high-temperature reactor, has been developed and analyzed. This system employs steam methane reforming with enhanced CO2 absorption and a combined cycle approach. System modeling was performed from thermodynamic and economic perspectives using Aspen Plus software, and its thermodynamic performance was evaluated under various operating conditions. Furthermore, several parametric studies were conducted to determine the factors that affect hydrogen and power generation. Simulation results indicate an energy efficiency of 73% for the proposed system, with hydrogen and power production efficiencies of 16% and 23%, respectively. The results show that the proposed system performs better than multi-generation systems in previous research. In addition, the exergy efficiency of the proposed system was calculated to be 69.9%. | ||
کلیدواژهها [English] | ||
SE-SMR, Hydrogen Production, Poly-Generation | ||
مراجع | ||
[1] H.A. Hassan, The Evolving Geopolitics of Climate Change: From Rio to Dubai COP28, From Rio to Dubai, 13. [2] S. Alam, J.P. Kumar, K.Y. Rani, C. Sumana, Comparative assessment of performances of different oxygen carriers in a chemical looping combustion coupled intensified reforming process through simulation study, Journal of Cleaner Production, 262 (2020) 121146. [3] S. Alam, C. Sumana, Thermodynamic analysis of plant-wide CLC-SESMR scheme for H2 production: Studying the effect of oxygen carrier supports, International Journal of Hydrogen Energy, 44(5) (2019) 3250-3263. [4] F. Raganati, P. Ammendola, CO2 post-combustion capture: a critical review of Current technologies and future directions, Energy & Fuels, 38(15) (2024) 13858-13905. [5] C. Wu, Q. Huang, Z. Xu, A.T. Sipra, N. Gao, L.P. de Souza Vandenberghe, S. Vieira, C.R. Soccol, R. Zhao, S. Deng, A comprehensive review of carbon capture science and technologies, Carbon Capture Science & Technology, 11 (2024) 100178. [6] M. Heidari, M. Tahmasebpoor, S.B. Mousavi, C. Pevida, CO2 capture activity of a novel CaO adsorbent stabilized with (ZrO2+ Al2O3+ CeO2)-based additive under mild and realistic calcium looping conditions, Journal of CO2 Utilization, 53 (2021) 101747. [7] J. Yin, X. Kang, C. Qin, B. Feng, A. Veeraragavan, D. Saulov, Modeling of CaCO3 decomposition under CO2/H2O atmosphere in calcium looping processes, Fuel Processing Technology, 125 (2014) 125-138. [8] G. Santos, Road transport and CO2 emissions: What are the challenges?, Transport Policy, 59 (2017) 71-74. [9] A.M. Ali, M. Shahbaz, M. Inayat, K. Shahzad, A.A. Al-Zahrani, A.B. Mahpudz, Conversion of municipals waste into syngas and methanol via steam gasification using CaO as sorbent: An Aspen Plus modelling, Fuel, 349 (2023) 128640. [10] Y. Zhang, Y. Wang, K. Han, J. Zhao, J.J. Wu, Y. Li, Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: a review, Green Energy and Resources, 2 (2024) 100078. [11] A.-M. Cormos, C.-C. Cormos, Techno-economic assessment of combined hydrogen & power co-generation with carbon capture: The case of coal gasification, Applied Thermal Engineering, 147 (2019) 29-39. [12] N. Saithong, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, Thermodynamic analysis of the novel chemical looping process for two-grade hydrogen production with CO2 capture, Energy Conversion and Management, 180 (2019) 325-337. [13] A.A.D. Zare, M. Yari, H. Nami, F. Mohammadkhani, Low-carbon hydrogen, power and heat production based on steam methane reforming and chemical looping combustion, Energy Conversion and Management, 279 (2023) 116752. [14] A.A.D. Zare, M. Yari, Comprehensive examination and analysis of thermodynamics in a multi-generation hydrogen, heat, and power system based on plastic waste gasification integrated biogas-fueled chemical looping combustion, Process Safety and Environmental Protection, 183 (2024) 976-991. [15] W.G. Davies, S. Babamohammadi, Y. Yan, P.T. Clough, S.M. Soltani, Exergy analysis in intensification of sorption-enhanced steam methane reforming for clean hydrogen production: Comparative study and efficiency optimisation, Carbon Capture Science & Technology, 12 (2024) 100202. [16] Q. Wang, R. Macián-Juan, M. Yang, P. Zhang, X. Liu, B. Yang, R. Li, H. Cheng, Y. Wang, S. Fang, Thermo-economic characteristics and cost-influencing mechanism analysis of an advanced nuclear-powered zero-carbon hydrogen-electricity co-production system with sulfur-iodine process and combined cycle, International Journal of Hydrogen Energy, 78 (2024) 688-702. [17] H. Ni, X. Qu, W. Peng, G. Zhao, P. Zhang, Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors, Energy, 273 (2023) 127206. [18] S. Guo, D. Zhang, X. Li, X.a. He, H. Wang, J. Deng, X. Zhang, W. Tian, S. Qiu, G. Su, Exergy analysis of biomass and nuclear hydrogen production system, International Journal of Hydrogen Energy, 57 (2024) 1354-1363. [19] M. Ishaq, I. Dincer, A novel integrated gas-cooled fast nuclear reactor and vanadium chloride thermochemical cycle for sustainable fuel production, Journal of Cleaner Production, 468 (2024) 142853. [20] S. Schröders, K. Verfondern, H.-J. Allelein, Energy economic evaluation of solar and nuclear driven steam methane reforming processes, Nuclear Engineering and Design, 329 (2018) 234-246. [21] H. Nami, F. Mohammadkhani, F. Ranjbar, Utilization of waste heat from GTMHR for hydrogen generation via combination of organic Rankine cycles and PEM electrolysis, Energy Conversion and Management, 127 (2016) 589-598. [22] N. Norouzi, S. Talebi, M. Fani, H. Khajehpour, Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant, Nuclear Engineering and Technology, 53(8) (2021) 2753-2760. [23] A.A. Darabadi Zare, F. Mohammadkhani, M. Yari, An efficient biogas-base tri-generation of power, heating and cooling integrating inverted Brayton and ejector transcritical CO2 cycles: exergoeconomic evaluation, Scientia Iranica, (2024(. [24] A.A.D. Zare, M. Yari, Techno economic analysis of efficient and environmentally friendly methods for hydrogen, power, and heat production using chemical looping combustion integrating plastic waste gasification and thermochemical copper chlorine cycles, Energy, 289 (2024) 129941. [25] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal design and optimization, John Wiley & Sons, 1995. [26] M. Ji, J. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, International Journal of Hydrogen Energy, 46(78) (2021) 38612-38635. [27] R. Hegner, B. Atakan, A polygeneration process concept for HCCI-engines–Modeling product gas purification and exergy losses, International Journal of Hydrogen Energy, 42(2) (2017) 1287-1297. [28] Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi, Development of membrane reformer system for highly efficient hydrogen production from natural gas, International Journal of Hydrogen Energy, 34(10) (2009) 4482-4487. [29] E. Tosto, D. Martinez-Diaz, R. Sanz, G. Azzato, J.A. Calles, J.A. Medrano, E. Fernandez, D.A.P. Tanaka, F. Gallucci, D. Alique, Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification, Fuel Processing Technology, 213 (2021) 106661. [30] S. Yun, S.T. Oyama, Correlations in palladium membranes for hydrogen separation: A review, Journal of membrane science, 375(1-2) (2011) 28-45. [31] A.A.D. Zare, M. Yari, F. Mohammadkhani, H. Nami, U. Desideri, Thermodynamic and exergoeconomic analysis of a multi-generation gas-to-X system based on fuel-rich combustion to produce power, hydrogen, steam and heat, Sustainable Cities and Society, 86 (2022) 104139. [32] O. Balli, T.H. Karakoc, Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine (ATFE), Energy, 256 (2022) 124620. [33] A.D. Zare, R.K. Saray, S. Mirmasoumi, K. Bahlouli, Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle, Energy, 181 (2019) 635-644. [34] Z. Sun, S. Wang, M. Aziz, Highly integrated system for ammonia and electricity production from biomass employing direct chemical looping: exergy and exergoeconomic analyses, Energy Conversion and Management, 251 (2022) 115013. [35] K.S. Ng, J. Sadhukhan, Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power, Biomass and Bioenergy, 35(3) (2011) 1153-1169. [36] V. Spallina, D. Pandolfo, A. Battistella, M.C. Romano, M.V.S. Annaland, F. Gallucci, Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture, Energy Conversion and Management, 120 (2016) 257-273. [37] F. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari, M. Rosen, Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles, Energy, 65 (2014) 533-543. | ||
آمار تعداد مشاهده مقاله: 229 تعداد دریافت فایل اصل مقاله: 190 |