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Abstract: 

In this paper, we present a novel control scheme based on high-order sliding mode control (HOSM) for 

nonlinear systems under uncertainty. The stability and robustness of the proposed controller have been 

proven using Lyapunov’s method. The controller not only withstands uncertainties and disturbances 

but also significantly reduces the amplitude and frequency of chattering compared to existing 

algorithms. Furthermore, the suggested high-order sliding mode controller provides the ability to adjust 

the chattering frequency through its parameters. Initially, the sliding surface is introduced for second-

order dynamics, followed by the necessary stability assumptions to ensure system stability. Then, a new 

second-order sliding mode controller is proposed and its stability is verified through Lyapunov’s 

method. Detailed simulation results using a planar robot demonstrate the controller's performance, 

which is compared with existing algorithms. The results confirm that the new controller effectively 

manages uncertainties, ensuring stable system control. The proposed controller not only reduced the 

frequency of chattering but also decreased the steady-state error for a two-links robot. Simulation shows 

the decrease in root mean square error compared to twisting and super-twisting controllers. 

Keywords: 

High-order sliding mode, Lyapunov theory, Robust control, Twisting algorithm, Super twisting 

algorithm.  
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1. Introduction: 

Robust nonlinear control strategies have been extensively applied to complex systems, particularly 

those involving significant uncertainties. Among these methods, sliding mode control (SMC) is one of 

the most prominent techniques due to its ability to handle uncertainties through switching control laws. 

By designing an appropriate sliding surface and ensuring that the system converges to and remains on 

this surface, SMC effectively mitigates the impact of uncertainties [1, 2]. 

The concept of variable structure systems (VSS) with sliding modes, for the first time, was introduced 

in the early 20th century and gained significant attention in control applications after Utkin’s work in 

1977 [1]. Since then, SMC has been widely adopted in various fields, particularly in robotic systems [3, 

4]. Despite its robustness, conventional SMC suffers from a key limitation: chattering. This high-

frequency oscillation can cause mechanical wear in physical systems and instability in electrical 

systems, thus limiting its practical applications. 

Several approaches have been proposed to address the chattering phenomenon, including the 

development of high-order sliding mode (HOSM) controllers [5, 6]. These methods aim to reduce or 

eliminate chattering while maintaining robustness against uncertainties. Emel'yanov et al. (1986) 

introduced the use of higher-order derivatives of sliding variables, which led to the development of 

second-order sliding mode algorithms such as Twisting Algorithm (TA) and Super-Twisting Algorithm 

(STA) [7]. These algorithms provide smoother control inputs and enhance tracking performance, 

particularly in systems with disturbances and unmodeled dynamics. 

Further advancements in the SMC field have expanded the applicability of HOSM methods. For 

example, Bailey et al. introduced an SMC method for a 2-degree-of-freedom (DOF) robot in 1987, 

demonstrating its effectiveness in reducing the interaction between robot links [3]. In 1989, Yeung et 

al. utilized SMC for a flexible robot, achieving significant improvements in control accuracy [8]. The 

introduction of bound estimation for parametric uncertainties in 1993 further improved the performance 

of SMC by enabling more precise tuning of control coefficients [9]. Tzafestas et al. (1996) applied SMC 

to a 5-link bipedal robot, that achieved notable improvement in performance compared to traditional 

torque control methods, although chattering remained a persistent challenge [10]. 

Additional developments have focused on improving the robustness and accuracy of SMC methods. 

Zeinali and Notash (2010) combined feedback linearization with SMC, utilizing a proportional-integral-

derivative (PID) controller to stabilize dynamic uncertainties in robotic systems [11]. A fuzzy logic-

integrated sliding mode controller to eliminate chattering and improve the performance of a planar robot 

is studied by Yagiz. The effectiveness of the controller is validated through simulations, testing its 

robustness and noise resistance[12]. Piltan et al. (2011) implemented nonlinear SMC methods using 

field-programmable gate arrays (FPGA), demonstrating that increasing the processing frequency 

reduces chattering and improves system performance [13, 14]. Furthermore, Sanchez and Fierro (2003) 
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developed a sliding mode controller for coordinating teams of non-holonomic robots, using Lyapunov’s 

method to prove system stability and achieve trajectory tracking with acceptable error margins [15]. 

Despite the progress made, chattering remains a critical issue, especially in mechanical and electrical 

systems. To address this, several strategies have been proposed. One approach involves nonlinear gains, 

while another employs HOSM methods [16]. Additionally, some methods replace the discrete control 

signal (i.e., the signum function) with a continuous approximation function to reduce chattering [5-7, 

16]. Levant (1993) demonstrated that the convergence accuracy of sliding mode control is proportional 

to the square of switching delay time [17], underscoring the need for minimizing chattering frequency. 

Bartolini et al. (1997) introduced suboptimal control designs, that improve controller performance in 

second-order dynamic systems [18-21]. Recent advancements in SMC have introduced quantum sliding 

mode control for improving system performance under uncertainties. This approach uses a quantum 

sliding surface based on the error between the system state and the sliding mode. By combining sliding 

mode control with periodic projective measurements, the method reduces both reaching time and 

control amplitude, demonstrating its effectiveness through simulations[22]. 

In recent years, the use of HOSM has expanded into more complex systems, such as multi-input multi-

output (MIMO) systems [18, 19, 23] Capisani et al. (2009) successfully implemented HOSM to control 

a COMAU SMART3-S2 robot, initially applying SMC but later shifting to HOSM to prevent damage 

caused by vibration in the motors and electronic components [24, 25]. Zhao et al. (2018) applied a 

super-twisting adaptive controller to tethered space robots, that successfully reduced chattering and 

improved robustness in the presence of unknown uncertainties [26]. Kali et al. (2018) integrated STA 

with time-delay estimation to improve robot trajectory tracking under uncertain conditions, which 

reduced disturbances and enhanced robustness [27]. Tayebi-Haghighi et al. (2018) demonstrated the 

effectiveness of HOSM as both an observer and controller for PUMA robots, significantly reducing 

root-mean-square error (RMSE) [28]. Van et al. also utilized HOSM to compensate for uncertainties 

and reduce chattering to control the PUMA 560 robot, showing finite-time convergence of the system 

[7]. Huang et al. introduced a robust control technique, super-twisting sliding mode control, for force 

actuator design in hybrid model testing of vessels in wave tanks. The proposed actuator, validated 

experimentally, demonstrated precise force control with minimal errors, ensuring suitability for 

capturing complex physical phenomena in hybrid testing scenarios[29].  An adaptive neural network 

integral sliding-mode controller is proposed to control a biped robot, eliminating chattering in 

traditional integral sliding-mode controllers. The adaptive neural network estimates disturbances, while 

the bat algorithm tunes the controller parameters. Lyapunov stability is proven, and simulations 

demonstrate the effectiveness of the controller in reducing chattering[30]. In another study, the design 

and analysis of a three-dimensional attitude control law for underactuated multirotor aerial vehicles is 

presented, addressing bounded matched disturbances and uncertainties with unknown bounds. Using a 

geometrically consistent Gibbs vector model, an adaptive sliding mode control strategy is developed 
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and validated through simulations and experiments, ensuring robust performance with eventual sliding 

mode convergence[31]. 

Recent research efforts have focused on enhancing the robustness and convergence speed of sliding 

mode control in uncertain and dynamic environments. One such direction involves the integration of 

backstepping and high-order terminal sliding mode control to achieve smooth control torques and fast 

finite-time convergence in robotic manipulators[32]. In this context, adaptive fractional-order methods 

have also been proposed to reduce chattering and improve tracking accuracy without prior knowledge 

of system bounds, offering enhanced robustness against varying loads and disturbances[33]. 

Moreover, higher-order sliding mode observers have been employed to enable real-time estimation of 

external torques in manipulator-environment interaction scenarios. These methods, supported by 

Lyapunov-based Luenberger observers, demonstrate effective tracking and disturbance estimation, 

even under strong nonlinear friction[34]. Similarly, for systems with physical constraints such as 

underwater vehicles, model-free high-order sliding mode controllers have been synthesized with time-

base generators to ensure finite-time convergence while significantly reducing energy consumption of 

actuators[35]. 

Additionally, the combination of neural networks and sliding mode control has yielded promising 

results in power electronics. For instance, fractional-order sliding mode schemes integrated with 

recurrent neural networks have been shown to enhance compensation performance and robustness in 

active power filter[36]. Further, model-free second-order sliding mode strategies incorporating 

disturbance observers have been introduced to optimize torque rejection in permanent magnet 

synchronous motor (PMSM) systems, providing chattering-free control and finite-time stability[37]. 

Recent advances have further expanded HOSM applications in robotic systems. Zhang et al. (2023) 

developed an adaptive super-twisting algorithm that automatically adjusts control gains for 

manipulators with completely unknown dynamics, eliminating the need for prior knowledge of 

uncertainty bounds while maintaining Lyapunov stability [38]. Experimental validations on 2-DOF 

arms by Wang et al. (2024) were demonstrated that finite-time HOSM controllers can achieve tracking 

accuracies below 0.1° even with payload variations up to 50%, outperforming conventional SMC in 

both convergence speed and steady-state error [39]. For under-actuated systems, Khan et al. (2023) 

introduced a novel chattering suppression technique using logarithmic barrier functions that maintains 

robustness while reducing control effort by 35% compared to standard HOSM approaches [40]. 

Given the significance of reducing chattering and improving system performance in uncertain 

environments, the development of new HOSM approaches is crucial. This paper presents a novel 

HOSM algorithm that not only mitigates chattering but also allows for the adjustment of chattering 

frequency through controller parameters. The stability of the proposed algorithm is rigorously proven 

using Lyapunov’s method, and its performance is evaluated through numerical simulations, comparing 
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it to existing HOSM methods. As the article proceeds, Section 2 introduces the problem formulation 

and defines the sliding variable. The proposed high-order sliding mode controller and its stability 

analysis are presented in Section 3. Section 4 provides detailed numerical simulations to evaluate the 

performance of the controller, including comparisons with existing algorithms and application to a two-

link planar robot. Finally, section 5 concludes the paper by summarizing the key findings and discussing 

potential future directions.  

2. Problem formulation 

Consider the following nonlinear dynamic equation: 

     x f t,x,x g t,x,x u t 
 (1) 

where nx   represents the system state and u   is the control input. The functions  , ,f t x x  and 

 g t,x,x  are assumed to be smooth, and all states of the system in Eq. (1) are considered measurable. 

In this study, we introduce the sliding variable denoted by   as a smooth function. To have a good 

performance for the system control, we need to define a suitable and stable sliding surface, so that this 

surface should converge to zero. An essential requirement for achieving a stable and robust control 

system is to guarantee the variations of the sliding surface is bounded [17]. 

The sliding variable   is selected so that its derivative follows the system dynamics as described in the 

following equation [41]: 

     h t,x,x g t,x,x u t  
 (2) 

The limitations of the controller arise from derivations of the sliding surface and system uncertainties, 

which are addressed through the application of the Filippov solution framework as follows [42]. The 

solution to this system, in the sense of Filippov, is expressed in input-output form as: 

   , , ,t x x u g t,x,x

u

  



 

  
(3) 

where, 

         

            

   
 

, , , , , , , , , , ,

, , , , , , , , , ,

, , , ,

t x x u h t x x h t x x x h t x x f t x x
t x x

g t x x g t x x x g t x x f t x x g t x x u t
t x x

u t

h t x x g t x x
x


  

  
  

   
     

  
 

    

(4) 

The following conditions are assumed for the sliding surface   (as defined in Eq. (2)) provided that its 

components satisfy the following inequalities: 
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 

 

0

0   , ,  

, , ,

m Mg t x x

t x x u

 



   



 
 

(5) 

where ΓM , Γm , 0 , and Φ  are positive constants. These conditions are necessary to ensure system 

stability on the sliding surface [17]. The limitations of the sliding surface and its applicability to 

different system dynamics are addressed in Eqs. (2-5). These equations define the sliding surface in the 

presence of system uncertainties and establish the conditions under which the proposed structure 

remains valid. In particular, the controller is suitable for systems whose relative degree is consistent 

with the order of the derivative terms defined in the sliding variable. 

3. Controller 

In this section, we introduce the proposed novel controller based on high-order sliding mode (HOSM) 

theory and analyze its stability. The design aims to reduce chattering and ensure robustness in the 

presence of uncertainties. The stability of the controller is proven using Lyapunov’s method. 

3-1- Sliding Surface Definition 

The sliding variable   is introduced as a function of the system state and its derivatives. For a second-

order dynamic system, the sliding surface is defined as: 

 x x    (6) 

where   is a positive constant that defines the sliding dynamics. The sliding surface is designed to 

constrain system behavior, ensuring robust performance under uncertainties. When the system reaches 

this surface, it is forced to remain stable on it. 

3-2- Controller Design 

The following second-order sliding mode control law is proposed for systems where 0  : 

  0

0

cos sgn 0 for 
2 2

1 2K K
 

    
 

   
      

   
 (7) 

where 1 2,,K K  and 0  are control parameters that ensure system stability, and the signum function 

 sgn   drives the system towards the sliding surface. This equation is designed to minimize the 

chattering effect while maintaining robust control. 

3-3- Controller Implementation 

By substituting the system of Eq. (1) into the control law, the control input  u t  is derived as:  
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 1 2

0

1
   sin sgn

2ˆequ u K K dt
g






  
     

   

, 0   (8) 

where  
ˆ

1
  ˆ

equ f x
g

   is the equivalent control term stabilizing the nominal system. This equation 

ensures smooth control actions with reduced chattering. 

3-4- Stability Analysis 

The stability of the proposed sliding mode control method consists of two parts. First, it is essential to 

prove that under bounded uncertainty, all system states will converge to zero while remaining on the 

sliding surface [6]. Second, the stability of the dynamic equation of the sliding variable must be 

demonstrated, ensuring convergence to the sliding surface. 

To establish the stability of the controller, Lyapunov’s method is employed. The sliding mode dynamics 

are rewritten in the state-space form as: 

 

1
1 1 2

0

2 2 1

  sin
2

  sgn

K

K

 
 



 

  
   

  




  (9) 

 
1

2 2

 

  sgnK dt

 

 



  
 

 

A Lyapunov candidate function is defined as: 

2
2 1

2

1

2
V

K
    (10) 

Taking the derivative of the Lyapunov function yields: 

 1
1 1 0 1 0

0

sin sgn ,  0, 0
2

V K V
 

   


 
      

 
  (11) 

Since 0V  , it follows from Lyapunov’s theorem that the proposed controller is stable, ensuring 

convergence of the system to the sliding surface. This guarantees that the system states remain bounded 

and tend to zero over time. 

4. Numerical simulation 

4-1- Simple System Comparison 

To evaluate the performance of the proposed control algorithm, numerical simulations were conducted 

using a system where x u . The sliding surface for all simulations was defined as  x x   , with 

5   and the equivalent control input equ x  . The parameters for the proposed controller were set 
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as 1 9K  , 2 7K   and 0 0.1  . The simulations were performed with a sampling time of one 

millisecond to ensure sufficient precision. 

Fig. 1 depicts the phase plane of the sliding states under the proposed controller. As observed, the sliding 

variable remains close to the sliding surface, corroborating the stability proof established using 

Lyapunov’s method. This behavior confirms that the proposed controller ensures the system states 

converge to the sliding surface with minimal deviation. 

 

Fig. 1. Phase plane of the sliding states for the proposed controller 

To further investigate the effects of the sliding surface parameter 0 , its value was varied, and the 

system’s response was plotted in Fig. 2. It was found that decreasing 0  resulted in the sliding dynamics 

reaching the sliding surface more rapidly. However, this led to an increase in the frequency of 

chattering, as evident in the    phase diagram. Conversely, increasing 0  reduced the chattering 

frequency but also increased the amplitude, demonstrating the trade-off between chattering frequency 

and amplitude. 

 

Fig. 2. Effect of varying 0  on the sliding dynamics 

Fig. 3 illustrates the impact of changing the coefficient 1K  on system performance. As expected, 

increasing 1K  enhanced the speed at which the system reached the sliding surface, particularly when 

the system was far from the surface. However, the effect of 1K  on the system response near the sliding 
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surface is insignificant. Fig. 3(a) and Fig. 3(b) show that reducing 1K  increases the amplitude of 

chattering, since the overall response of the system diminishes. Additionally, increasing the system's 

response speed requires a corresponding increase in the control input, indicating that the controller's 

input must be appropriately tuned for optimal performance. 

  

(a)  (b)  

Fig. 3. Effect of varying 1K  on system response 

Next, we analyzed the effects of varying the parameter 2K , which primarily influences the system’s 

behavior near the sliding surface. As shown in Fig. 4, increasing 2K  resulted in faster convergence to 

the sliding surface, as well as an increase in the frequency of chattering. However, this also caused a 

slight increase in the amplitude of chattering near the surface, as illustrated in Fig. 4(a). The trade-off 

between chattering frequency and convergence speed becomes evident when adjusting 2K , 

highlighting the need for careful tuning to balance system stability and response characteristics. 

Fig. 2 demonstrates the impact of varying the parameter 0  on the sliding dynamics, revealing how the 

approach to the sliding surface is affected. Fig. 3 illustrates how changes in the gain parameter 1K  

influence the overall system response, including convergence rate and control smoothness. Fig. 4 

highlights the sensitivity of the sliding dynamics to variations in 2K , offering insights into the trade-

  

(a)  (b)  

Fig. 4. Effect of varying 2K  on sliding dynamics 
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off between speed and stability. These results confirm that while the proposed controller shows 

sensitivity to tuning parameters, it maintains robust performance across a practical tuning range. This 

tunability enhances its adaptability to various system requirements and operating conditions, making it 

suitable for real-world applications. 

Based on the conducted simulations, it can be concluded that the slope of the cosine derivative at zero 

is regulated by the parameter 0 . This slope, in contrast to the square root function used in the super-

twisting controller, is tunable via 0 . In practice, the key innovation of this study, namely the tuning of 

chattering frequency, is directly achieved through this parameter. While the parameter 1K  in the 

controller can also influence both error and frequency, 0  alone enables a trade-off between these two 

aspects. This property significantly enhances the practical applicability and tunability of the proposed 

controller. 

While the trade-off between chattering amplitude and frequency is adjustable within the proposed 

controller, the control performance can be tailored to meet system requirements and operational 

conditions. Uncertainties and external disturbances introduce energy fluctuations into the system, 

which, based on Lyapunov theory, must be compensated by the controller. Given that the proposed 

controller utilizes sinusoidal and cosinusoidal functions, the injected energy manifests in terms of 

frequency and amplitude. Consequently, the trade-off between these two parameters behaves 

analogously to that of the derivative of a cosine function, allowing precise tuning of control 

characteristics. Accordingly, increasing the value of 0  leads to a decrease in chattering frequency; 

however, this comes at the cost of increased chattering amplitude and higher root mean square error. 

Conversely, decreasing 0  reduces the amplitude and RMS error while raising the chattering frequency. 

Therefore, to tune the chattering characteristics, the parameter 0  is initially set to a relatively high 

value (e.g., 1). Then, 0  is gradually decreased in a stepwise manner, during which the chattering 

amplitude increases while the tracking error decreases. This process is repeated until the chattering 

remains within a tolerable level and the error falls below the desired threshold. 

4-2- Comparison with TA and STA  

To further evaluate the performance of the proposed algorithm, a comparative study was conducted 

between the novel controller, the Twisting Algorithm, and the Super-Twisting Algorithm. The sliding 

surface was defined similarly for all three controllers to ensure consistency in the comparison. The 

parameters for each controller were tuned to provide the best performance in terms of system input. 

In order to facilitate a comparative analysis of the controllers and investigate the impact of system 

uncertainties, a representative dynamic model is formulated as Eq. (12).  

   1 21x u t     (12) 
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where 1  and 2  represent the uncertainties in the form of random functions as follows: 

 1 rand 0.2,0.2    

 2 rand 1,1    

 

It should be noted that a sample time of one millisecond has been employed for the numerical 

simulations. This reflects our intention to align the control structure with real-time constraints even in 

the simulation phase, ensuring feasibility for future implementation. 

Fig. 5 presents the phase plane trajectories for all three controllers. The results show that the novel 

controller reaches the sliding surface more quickly than both of TA and STA and remains closer to the 

surface throughout the simulation. Additionally, the STA exhibited a smaller amplitude of chattering 

compared to the other controllers, as seen in the detailed phase diagrams. 

 

Fig. 5. Phase plane comparison of sliding states for TA, STA, and proposed controller 

Due to the nonlinear nature of the proposed controller, the convergence function does not admit a simple 

analytical form. Instead, the convergence behavior is illustrated through phase-plane representations. 

As shown in Fig. 1 and Fig. 5, the system trajectories converge to the sliding surface and exhibit finite-

time stabilization characteristics. 

The chattering characteristics were further analyzed by comparing the control inputs of the three 

algorithms, as shown in Fig. 6. The amplitude and frequency of the control input for TA were notably 

higher than those of the proposed algorithm. While the STA showed the smallest chattering amplitude, 

the proposed controller significantly reduced the chattering frequency compared to both TA and STA, 

offering a balanced performance in terms of stability and control effort. 
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Fig. 6. Comparison of system input for TA, STA, and proposed controller 

4-3- Two-Link Planar Robot Simulation 

To further validate the performance of the proposed controller, a simulation was conducted on a two-

link (2R) planar robot manipulator. The dynamics of the robot were described by the following 

equation: 

       M q q C q,q G q τ
 (13) 

where  1 2, 
T

q qq  represents the joint positions,  M q  is the inertia matrix,  C q,q  is the Coriolis 

matrix, and  G q  is the gravitational term[12]. The sliding surface for the two-link robot was defined 

as σ = q + q , consistent with the formulation used in the previous simulations. 

The initial conditions for the robot were set as: 

   1 10  ,   0 0
6

q q


 
 

   2 20  ,  0 0
6

q q


 
 

 

And desired values were set as: 

1 10 ,   0d dq q   

2 20 ,  0d dq q   

 

The simulation compared the proposed algorithm with the TA and STA. Table 1 summarizes the results 

in terms of average error, root mean square error (RMSE), chattering frequency, and steady-state error 

for both links of the robot.  
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Table 1. Comparisons between TA, STA, and the new algorithm for planar robot 

 

Average error (m) RMSE 

Chattering 

frequency (Hz) 

steady-state error 

(×10⁻⁵ m) 

1q  2q  1q  2q  1q  2q  1q  2q  

TA 0.0566 0.0574 12.67 12.84 130.75 130.97 3.00 2.89 

STA 0.0561 0.0536 12.58 12.81 117.00 100.49 2.78 3.44 

Proposed 0.0556 0.0534 12.41 11.95 81.07 54.70 2.43 2.06 

The results indicate that the proposed controller achieved a significant reduction in chattering frequency 

compared to both of TA and STA, while maintaining similar performance in terms of tracking accuracy 

and RMSE. Additionally, the steady-state error was lower for both links of the robot when using the 

proposed algorithm, highlighting its effectiveness in achieving precise control with reduced chattering. 

The implementation of the proposed controller poses several practical challenges, including sampling 

rate, sensor noise, actuator limitations, and external disturbances. Increasing the sampling and 

processing rates can effectively reduce both chattering frequency and tracking error. To mitigate sensor 

noise, low-pass filters can be applied; however, this creates a delay in the controller response, 

potentially degrading system performance. Nonetheless, by properly designing the filter characteristics, 

the adverse effects on control dynamics can be minimized. Another critical factor is actuator capacity. 

The actuator must not only generate the required control input magnitude but also be capable of tracking 

its rapid variations. To enhance actuator and overall control system performance, the actuator dynamics 

can be incorporated into the controller design, or a dedicated inner-loop controller can be employed. 

Overall, the control constraints are formulated in Eq. (5). 

5. Conclusions 

In this study, a novel control algorithm based on high-order sliding mode (HOSM) theory was proposed. 

The controller was designed to address key challenges in nonlinear systems, particularly reducing the 

chattering phenomenon while ensuring robust performance in the presence of uncertainties and 

disturbances. The stability of the proposed controller was rigorously proven using Lyapunov’s method, 

ensuring that the system states converge to the sliding surface and remain stable. 

The key contributions and findings of this study can be summarized as follows: 

 The novel algorithm provides a stable and robust control framework, with the ability to adjust 

the frequency and amplitude of chattering through appropriate tuning of control parameters. 

 Increasing the value of 0  results in a decrease in chattering frequency, while decreasing it 

leads to an increase in frequency. This flexibility allows the controller to adapt to different 

system requirements. 
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 The parameter 
1K  directly influences the speed at which the system reaches the sliding 

surface, with higher values resulting in faster convergence. 

 In the presence of uncertainties, the proposed controller demonstrated superior performance 

compared to the TA and STA, significantly reducing the chattering frequency while 

maintaining robust control. 

Through extensive numerical simulations, including tests on a two-link planar robot, the proposed 

controller was shown to outperform existing HOSM algorithms in terms of both tracking accuracy and 

chattering reduction. These results suggest that the proposed algorithm is highly suitable for controlling 

nonlinear systems with significant uncertainties, such as robotic manipulators. 

In future work, the applicability of this controller could be extended to multi-input multi-output 

(MIMO) systems and more complex robotic architectures, where further tuning and adjustments may 

yield even greater improvements in control performance. 
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