
تعداد نشریات | 8 |
تعداد شمارهها | 417 |
تعداد مقالات | 5,498 |
تعداد مشاهده مقاله | 6,164,983 |
تعداد دریافت فایل اصل مقاله | 5,388,776 |
$\phi$-Johnson amenable Banach algebras and Lie derivations | ||
AUT Journal of Mathematics and Computing | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 05 تیر 1404 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2025.24052.1354 | ||
نویسندگان | ||
Hoger Ghahramani* 1؛ Parvin Zamani2 | ||
1Department of Mathematics, Faculty of Science, University of Kurdistan. | ||
2Department of Mathematics, Faculty of Science, University of Kurdistan | ||
چکیده | ||
Let $\uu$ be a $\phi $-Johnson amenable Banach algebra where $\phi \in\Delta(\uu)$ ($\Delta(\uu)$ is the character space of $\uu$). Suppose that $X$ is a Banach $\uu$-bimodule such that $a.x=\phi(a)x$ for all $a\in \uu$, $x\in X$ or $x.a=\phi(a)x$ for all $a\in \uu$, $x\in X$. We show that any Lie derivation (not necessarily continuous) $\delta:\uu \rightarrow X$ with the property that $\mathfrak{S}(\delta)\subseteq \mathcal{Z}_{\uu}(X)$ ($\mathfrak{S}(\delta)$ is the separating space of $\delta$) can be decomposed into the sum of a continuous derivation and a center-valued trace. | ||
کلیدواژهها | ||
$\phi$-Johnson amenable؛ Banach algebra؛ Lie derivation. | ||
آمار تعداد مشاهده مقاله: 2 |