
تعداد نشریات | 8 |
تعداد شمارهها | 419 |
تعداد مقالات | 5,511 |
تعداد مشاهده مقاله | 6,209,933 |
تعداد دریافت فایل اصل مقاله | 5,405,297 |
Characterization and the stability of a system of multi-radical mappings related to the additive mapping | ||
AUT Journal of Mathematics and Computing | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 تیر 1404 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2025.23946.1341 | ||
نویسندگان | ||
Abasalt Bodaghi* ؛ Sedigheh Hosseini | ||
Islamic Azad University | ||
چکیده | ||
In the current investigation, we define s-multi-radical mappings, characterize the structure of such mappings and then obtain an equation for describing them. In fact, we find a necessary and sufficient condition for a multiple mapping to be s-multi-radical. We also deal with the Hyers-Ulam stability in the spirit of Gavruta for an s-multi-radical equation by applying the so-called direct (Hyers) method in the setting of 2-Banach spaces. For a typical case, by means of a norm, induced from a 2-norm of $\mathbb R^m$, we investigate the stability of a mapping $f:\mathbb R^{mn} \longrightarrow \mathbb R^{m}$ by a known fixed point method. | ||
کلیدواژهها | ||
Cubic functional equation؛ Multi-radical mapping؛ Quintic functional equation؛ Septic functional equation؛ Hyers-Ulam stability | ||
آمار تعداد مشاهده مقاله: 6 |