| تعداد نشریات | 8 | 
| تعداد شمارهها | 431 | 
| تعداد مقالات | 5,601 | 
| تعداد مشاهده مقاله | 7,171,305 | 
| تعداد دریافت فایل اصل مقاله | 6,058,884 | 
Characterization and the stability of a system of multi-radical mappings related to the additive mapping | ||
| AUT Journal of Mathematics and Computing | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 تیر 1404 | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2025.23946.1341 | ||
| نویسندگان | ||
| Abasalt Bodaghi* ؛ Sedigheh Hosseini | ||
| Department of Mathematics, West Tehran Branch, Islamic Azad University, Tehran, Iran | ||
| چکیده | ||
| In the current investigation, we define s-multi-radical mappings, characterize the structure of such mappings and then obtain an equation for describing them. In fact, we find a necessary and sufficient condition for a multiple mapping to be s-multi-radical. We also deal with the Hyers-Ulam stability in the spirit of Gavruta for an s-multi-radical equation by applying the so-called direct (Hyers) method in the setting of 2-Banach spaces. For a typical case, by means of a norm, induced from a 2-norm of $\mathbb R^m$, we investigate the stability of a mapping $f:\mathbb R^{mn} \longrightarrow \mathbb R^{m}$ by a known fixed point method. | ||
| کلیدواژهها | ||
| Cubic functional equation؛ Multi-radical mapping؛ Quintic functional equation؛ Septic functional equation؛ Hyers-Ulam stability | ||
| 
			 آمار تعداد مشاهده مقاله: 116 			 | 
		||