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ABSTRACT: A novel and unified approach is presented for analyzing the free vibration of rectangular 
nanoplates with elastic boundary conditions. The theoretical modeling is achieved using the nonlocal 
Mindlin plate theory, which accounts for the size-dependent behavior of nanoplates, while the artificial 
spring technique is employed to accommodate a wide range of boundary conditions, including classical 
boundary conditions, elastic boundary conditions, and their combinations. The governing equations of 
motion are derived using the virtual displacement principle, followed by the application of the weighted 
residual method to obtain the nonlocal quadratic functional. The Rayleigh-Ritz method, employing 
Gram-Schmidt polynomial series as the admissible displacement functions, is then utilized to solve the 
eigenvalue problems associated with the free vibration of nanoplates. The present approach is validated 
through a series of comparison and convergence studies, which demonstrate its high accuracy and low 
computational cost. Finally, parametric numerical investigations are conducted to elucidate the effects 
of variations in spring stiffness on the natural frequencies of nanoplates. It is shown that the proposed 
method can easily compute the natural frequencies of nanoplates with elastic boundary conditions.
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1- Introduction
Nano-scale plates, such as graphene sheets, boron-

nitride sheets, gold nanoplates, and silver nanoplates, have 
unlocked a wealth of promising applications in nanoscience 
and nanotechnology [1,2]. These intriguing applications 
include, but are not limited to, bio and mechanical sensors 
[3],  supercapacitors and energy storage systems [4],  anti-
corrosion coatings [5], electrocatalysts [6] as well as lithium-
ion batteries [7]. In most of the above-mentioned applications, 
the precise prediction of the vibrational behavior of nanoplates 
plays a pivotal role since the performance and effectiveness 
of these nano-scale systems are inextricably linked to their 
mechanical characteristics, such as natural frequencies. 

Among numerous continuum theories, including strain 
gradient theory [8-10], nonlocal elasticity theory [11-13], 
couple stress elasticity theory [14-17], and micromorphic 
theory [18], Eringen’s nonlocal theory of elasticity has 
emerged as the most widely used theory for addressing 
the size effects. This theory is based on the idea that a 
continuous system is highly interconnected. To address the 
size-dependent effects and incorporate atomic interactions 
into traditional continuum-based theories, a nonlocal factor 
is introduced in this theory. Peddieson et al. [19] pioneered 
the application of nonlocal elasticity theory to investigate 
the nonlocality effects on the bending behavior of Euler–
Bernoulli nanobeams. Thereafter, this theory has been widely 
employed to analyze the linear and nonlinear bending, 

buckling, and vibration behavior of different nano-scale 
structures, such as nanobeams [20-22], nanoplates [23,24], 
nanorods [25,26], and nanowires [27, 28].

The free vibration analysis of nanoplates with general 
boundary conditions (BCs) has received relatively less 
attention compared to one-dimensional nanostructures. 
However, there are a few studies that have provided important 
findings in this field. In this regard, Lu et al. [29] proposed 
exact nonlocal solutions for the bending and free vibration of 
the nanoplate with simply supported BCs, using the nonlocal 
Kirchhoff plate (NKP) and nonlocal Mindlin plate (NMP). 
Afterward, numerous numerical and analytical techniques 
were employed for the nonlocal buckling and vibration 
analyses of nanoplates. The most commonly used numerical 
methodologies include the Finite element method [30,31], 
the Galerkin method [32], the differential quadrature method 
[33,34], the Rayleigh-Ritz method [35], the finite strip 
method [36,37], the Chebyshev collocation method [38], the 
element-free kp-Ritz method [39] and the discrete singular 
convolution method [40].

Exact analytical solutions also exist for rectangular 
nanoplates having at least two parallel simply supported BCs. 
Using the Navier method, researchers have achieved exact 
solutions for bending, buckling, and vibration responses of 
simply-supported nanoplates based on various plate models, 
including the NKP [41], NMP [42], second-order shear 
deformation model [43], and higher-order plate models 
[44]. Similarly, exact buckling and vibration solutions for 
nanoplates with Levy-type BCs have been obtained using the 
NKP [45,46], NMP [47], and higher-order plate models [48]. *Corresponding author’s email: Hosseinpakdaman@email.kntu.ac.ir
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Furthermore, studies have been conducted on nanoplates with 
non-Levy BCs based on the NKP. Zheng et al. [49] utilized 
the symplectic superposition approach to derive series-based 
analytic solutions for bending and vibration of nanoplates 
with a combination of clamped/simply-supported BCs. 
Additionally, Wang et al. [50] presented an iterative approach 
based on the separation-of-variable approach to examine the 
free vibration of nanoplates with general homogeneous BCs.

In the aforementioned studies concerning the vibration 
of nanoplates, only classical BCs, namely simply supported, 
clamped, or free BCs, along with their combinations, 
were taken into account. However, classical BCs may not 
always apply in practical engineering as some unknown 
elastic constraints may appear in the actual situation [51]. 
Under such conditions, relying only on classical BCs may 
lead to significant errors and inaccuracies in engineering 
analyses. Hence, the development of a unified and efficient 
formulation capable of addressing nanoplates with general 
BCs is critical and of paramount significance. In the 
simulation of general boundaries, one of the widely used 
methods is the artificial spring technique, which involves the 
implementation of distributed artificial springs with suitable 
stiffness along all edges of the nanoplates. Subsequently, 
the Rayleigh-Ritz method is adopted, and appropriate sets 
of admissible functions, such as the modified Fourier series 
[52], Chebyshev polynomials [53], and Gram-Schmidt 
polynomials [54], are chosen to develop a unified solution. 
Researchers have analyzed the accuracy, rate of convergence, 
and computational efficiency of these three distinct sets of 
admissible functions. Their findings reveal that Chebyshev 
polynomials and Gram-Schmidt polynomials outperform the 
modified Fourier series substantially in both convergence 
speed and computational efficiency [55]. Furthermore, 
among these functions, Gram-Schmidt polynomials offer 
several advantages, such as improved matrix conditioning, 
increased numerical stability, and minimized susceptibility 
to round-off errors. Their efficient computation through 

recurrence relations also enhances overall performance, 
making them particularly effective for problems with elastic 
BCs. Although the artificial spring method has been utilized 
for the vibration of classical plates [56-58], its application to 
nonlocal nanoplates has not yet been reported.

To the best of the author’s knowledge, this study is the 
first to investigate the vibrations of rectangular nanoplates 
with general elastic BCs using nonlocal elasticity theory, 
capturing size-dependent effects under arbitrary BCs. In the 
context of NMP theory, the direct formulation of the potential 
energy functional based on constitutive relations is not 
straightforward. Therefore, this paper introduces the weak 
forms of the equations of motion employing the weighted 
residual method (WRM) to obtain the nonlocal quadratic 
functional. Furthermore, the displacement components 
are expanded by the Gram-Schmidt polynomials. By 
combining these expansions with the nonlocal quadratic 
functional and employing the Rayleigh-Ritz procedure, a 
standard eigenproblem is developed. The convergence of the 
proposed method is verified, and its accuracy is validated 
through comparative analysis of the obtained results against 
those previously reported by other researchers in the field. 
Parametric studies are also conducted to examine the free 
vibration behavior of nanoplates under different classical 
BCs and elastic restraints BCs as well as their combinations.

2- Theoretical formulations
2- 1- Nanoplate model description

Consider a rectangular nanoplate with length a, width b 
and thickness h, as illustrated in Fig. 1. Assigning coordinates 
x, y, and z to align with the longitudinal, width, and transverse 
directions, respectively, a Cartesian coordinate system (x, 
y, z) is introduced and fixed on the middle surface of the 
nanoplate. Within this frame of reference, the component 
of the deformation of the nanoplate is denoted by w in the 
transverse direction. The material properties of the nanoplate 
are isotropic with Young’s modulus E, shear modulus G, 

 

 
Fig. 1. Schematic plot of a nanoplate: (a) geometry and coordinates, (b) side view with boundary springs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic plot of a nanoplate: (a) geometry and coordinates, (b) side view with boundary springs.
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mass density , and Poisson’s ratio . Along each end of the 
nanoplate, a group of translational springs with stiffness 

wk  and two groups of rotational springs with stiffnesses 
xk  and yk are introduced to simulate the classical and 

non-classical BCs. The desired BCs can be readily achieved 
by properly assigning the springs with appropriate stiffness 
values. For instance, a clamped BC can be constructed by 
setting the stiffness values of all the springs to an extremely 
high value.

2- 2- Mindlin plate model
Based on NMP theory, the strain components  are given 

by [59]:

, , 0,

,

,

,

yx
xx yy zz

xz x

yz y

yx
xy

z z
x y

w
x
w
y

z
y x



 

 




    

 


 



 


 
     

                     (1) 

 

2 2
2

2 2
2

2 2

(

,

1 ) ( ),
1

(1 ) ( ),
1

(1 )

nl
s xx xx yy

nl
s yy yy xx

nl
s xy xy

El

El

l G

 


 


 

   


   


  

                    (a) 2 

  2 2 2 2 ,(1 ) , (1 )nl nl
s xz xz s yz yzl G l G                (b)                                                                       

 

2 2(1 ) ,ynl x
s xxl M D

x y
 
 

      
                  (a) 

2 2(1 ) ,ynl x
s yyl M D

y x
 
 

      
                  (b) 3 

2 2 (1 )(1 ) ,
2

ynl x
s xyl M D

y x
  

      
         (c) 

 

2 2

2 2

(1 ) ,

(1 ) ,

nl
s x x

nl
s y y

wl Q S
x
wl Q S
y





      
 

     

                   (4) 

 

 

 

 

   (1)

where xψ and yψ  denote the rotation angles of the 
x-z and y-z planes, respectively. Based on the nonlocal 
theory, the differential constitutive relation is expressed 
as ( )2 21 nl l

sl σ σ− ∇ =  in which nlσ  and lσ  represent the 
nonlocal stress and local stress, respectively,  is the nonlocal 
factor and  denotes the Laplacian operator and is given by 

( ) ( ) ( )2 2 2 2 2/. . ./ x y∇ = ∂ ∂ + ∂ ∂  for a two-dimensional space. 
The nonlocal factor, 0sl e l= , is defined by the coupling 
of a material constant 0e , which is determined through 
experimental methods or atomistic dynamics for each 
specific material, along with an internal characteristic length 
l, which relates to molecular distances, the lattice parameter, 
and granular size [60]. 

Taking into account Hooke’s law and the differential 
model of nonlocal theory, the constitutive equations for the 
nanoplate can be formulated as follows [59]:
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By multiplying both sides of Eq. (2a) by z, considering 
Eq. (1), and integrating over the thickness, we obtain the 
nonlocal moment stress resultants as [59]:
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where ( )3 2/ 12 1D Eh ν = −   is the flexural rigidity. 
Similarly, the nonlocal shear force resultants can be obtained 
by integrating both sides of Eq. (2b) over the thickness, i.e., 
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where sS k Gh=  and sk  denote the shear correction 
factor. To derive the differential equations of motion in terms 
of w , xψ  and yψ , the virtual displacement principle is 
used together with Eqs. (3a)-(3c) and (4), which leads to the 
following governing equations and BCs for the nanoplate: 
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where 0I hρ= , 3
2 /12I hρ= , 0 /x xa

w wk k , 0 /x xa
x xk k  and 

0 /x xa
y yk k  are the springs’ stiffness at the edge 0 /x x a= =  

and 0 /y yb
w wk k , 0 /y yb

x xk k  and 0 /y yb
y yk k  are the springs’ 

stiffness at the edge 0 /y y b= = . The derived nonlocal 
differential equations can easily be reduced to the classical 
ones by setting 0sl = . 

Assuming modal motion, we express the displacement 
and rotation fields as: ( ) *, , ( , ) i tw x y t w x y e ω= , 

( ) *, , ( , ) i t
x xx y t x y e ωψ ψ=  and ( ) *, , ( , ) i t

y yx y t x y e ωψ ψ=
, where ω  is the natural frequency. For convenience and 
simplification, we introduce the following dimensionless 
quantities, dropping the subscripts * for simplicity: 
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Using Eqs. (5a)-(5c) and (7), the nonlocal dimensionless 
equations for the vibration analysis of nanoplates are obtained 
as: 
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3- Solution methodology
In this section, the energy-oriented Rayleigh–Ritz method 

is applied to examine the vibration behavior of nanoplates. 
This approach involves formulating a quadratic functional 
whose minimization yields a solution that matches the 
governing equation. Classical elasticity theory utilizes the 
principle of minimum total potential energy to construct the 
minimization functional. This principle assumes that the stress 
at a given location can be uniquely determined from the strain 
at that same point [61]. In contrast, the nonlocal elasticity 

theory reveals that the stress at a generic point depends on 
the stresses within the surrounding neighborhood, not just the 
local strain. As a result, an inverse method is employed here to 
derive the quadratic form of the total potential energy directly 
from the governing equations, rather than relying on the 
minimum potential energy principle. This inverse approach 
starts with the governing equations and works backwards to 
obtain the desired quadratic functional form, which can then 
be minimized to determine the vibration solution.

3- 1- Weak formulation
The partial differential equations expressed in Eqs. (8a)-

(8c) represents the strong form of the equations of motion 
for the vibration analysis of nanoplates. To establish a weak 
form of the system of equations, one can employ the energy 
principle or WRM. The WRM is a more general mathematical 
technique that can be used to approximately solve a wide 
range of partial differential equations. Based on this method, 
the weak form of equations of motion, given by Eqs. (8a)-
(8c), is expressed as follows:
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where  represents the nanoplate domain. By applying 
integration by parts to Eq. (9), disregarding the boundary 
terms and incorporating potential energies stored in the 
springs, the following quadratic functional for the nanoplate 
is derived:
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It can be noted that, by setting [*] [*] [*] 0s w x yl k k k= = = =   
in Eqs. (11a)-(11c), the quadratic potential term for the 
classical Mindlin plates can be retrieved.

3- 2- Admissible displacement functions and the Rayleigh-
Ritz procedure

The selection of suitable admissible functions is crucial 
in the Rayleigh-Ritz method, as the accuracy of the solution 
depends heavily on how well these functions can represent 
the actual displacement. A major advantage of the quadratic 
functional given in Eq. (10) is that it significantly simplifies 
the determination of admissible displacement functions 
for the nanoplates. Any set of independent, complete basis 
functions can be utilized to achieve precise results. This 
is because the geometric BCs in the nanoplate are relaxed 
and enforced through translational and rotational boundary 
springs, which can be viewed as penalty parameters [62]. As 
a result, there is no explicit requirement to satisfy natural and 
essential conditions on these boundaries when determining 
the admissible displacement functions in advance. Herein, 
the Gram-Schmidt polynomials are introduced as admissible 
functions. Each of the displacement and rotation functions of 
the nanoplate, regardless of BCs, is stated as [51]:
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where M and N are the number of polynomial terms 

truncated in practical calculation mnW , mnΘ  and mnΦ  
are corresponding Gram-Schmidt expansion coefficients, 

( )mP ξ  and ( )nP η denote the mth and nth order Gram-
Schmidt polynomials for the displacement and rotation 
components in the interval [0, 1] across ξ  and η  directions, 
respectively, which are defined as [63]:
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where ( )Pi τ  is an orthogonal polynomial set of functions. 
To address classical BCs, the first terms of the polynomials 
should be adjusted within the prescribed BCs. When it comes 
to general BCs, the first terms of the polynomials that meet 
the free BCs,  i.e., ( )1P 1τ = , are utilized. The following 
terms of the polynomial are derived using recursive equations 
described in [51], as follows:   
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It is clear that the orthogonality condition is met by the 
constructed polynomials, i.e.,
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Substituting Eqs. (12a)-(12c) into Eqs. (11a)-(11d) and 
minimizing ( ),ξ ηΠ  with respect to unknown expansion 
coefficients, i.e., ( ), / 0qξ η∂Π ∂ =  where mnq W= , mnΘ  
and mnΦ , the following set of linear equations will be 
obtained:
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Here, q is a 1 3MN×  vector composed of the unknown 
coefficients as follows:
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K and M denote, in order, stiffness matrix and mass 
matrix with dimension of 3 3MN MN× given by

,

,

ww w w

w

w

ww

 

  

  





 
   
  
 
   
  

K K K
K K K K

K K K

M 0 0
M 0 M 0

0 0 M

                                (20) 

 

[*] [*] [*]

0 1 0 1

F edge: 0,
[*] , , , ,

w x yk k k
   
  


 

 
[*] [*] 5 [*]

[*] [*] 5
0 1

[*]
0 1

S edge: 10 , 0,

[*] , , 10 ,
0, [*] , ,

w y x

w x

y

k k k

k k
k

 
 

  

  

 

 

 
[*] [*] [*] 5

0 1 0 1

C edge: 10 ,
[*] , , , ,

w x yk k k
   
  


 

 
1 [*] [*] [*]

0 1 0 1

E  edge: 0.03,
[*] , , , ,

w x yk k k
   
  


 

 
2 [*] [*] 5 [*]

[*] [*] 5
0 1

[*]
0 1

E  edge: 10 , 0.03,

[*] , , 10 ,

0.03, [*] , ,

x y w

x y

w

k k k

k k

k

 

 

  

  

 

  

 
3 [*] [*] [*] 5

[*] [*]
0 1

[*] 5
0 1

E  edge: 0.03, 10 ,

[*] , , 0.03,

10 , [*] , ,

x y w

x y

w

k k k

k k

k

 

 

  

  

 

 

(20)

where the elements of the above matrices have been 
provided in the Appendix. Eq. (17) represents a standard 
eigenproblem that can be solved to determine the natural 
frequencies of the nanoplate. Also, the eigenvector q presents 
the vibration mode shape. We have summarized the solution 
procedure in the flowchart shown in Fig. 2.

4- Results and discussion
This section addresses the proposed model’s capabilities 

in predicting the vibrational frequencies of nanoplates with 
arbitrary BCs. First, the convergence of the Rayleigh-Ritz 
solutions is investigated in terms of the number of polynomial 
terms used. Next, the efficiency and accuracy of the proposed 
method for the free vibration of nanoplates with classical BCs 
are verified against existing literature. Finally, a parametric 
study is performed for nanoplates subjected to elastic BCs. 

For the sake of brevity, symbolic notations are utilized 
to define the BCs of the four edges. For instance, “CSFS” 
indicates that BCs at 0η = , 1ξ = , 1η = , and 0ξ =  are 
clamped, simply-supported, free, and simply-supported, 
respectively. In the calculations, the following material 
properties are adopted: Young’s modulus 1.06 TPaE =
, density 32300kg / mρ = , Poisson’s ratio 0.3ν =  , and 
shear correction factor 0.86667sk = . Additionally, the 
vibrational behavior of the nanoplate is described through the 
dimensionless frequency parameter 2 /a h Dω ρΩ = , where 
ω  is the natural frequency.

As stated in Section 2, the arbitrary BCs of the 
nanoplate are enforced through the incorporation of a set 
of continuously distributed translational springs and two 
sets of rotational springs along each edge of the nanoplate. 
This allows for the simulation of arbitrary BCs by assigning 
appropriate stiffnesses to the boundary springs. In the present 
study, the vibration frequencies of nanoplates under various 
BCs are determined, including classical BCs such as simply 
supported (S), clamped (C), and free (F), as well as elastic 
BCs denoted as 1E , 2E  and 3E , and their combinations. 
The dimensionless spring stiffness parameters for the three 
classical BCs and the three elastic BCs are provided below: 
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It is important to note that the value of the nonlocal 

 

Fig. 2. Flowchart of the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart of the proposed method.



H. Pakdaman, AUT J. Mech. Eng., 9(4) (2025) 413-430, DOI: 10.22060/ajme.2025.24153.6178

419

factor depends on several parameters, including material 
type, internal characteristic length, boundary conditions, 
nanoplate dimensions, and mode number. When considering 
graphene sheets as nanoplates, studies have shown that the 
material constant.  for zigzag graphene sheets ranges from 3 
to 8, as identified through theoretical analysis and molecular 
dynamics simulations in Ref. [64]. Given the C-C bond 
length of approximately 0.142 nm or the lattice parameter of 
graphene at 0.246 nm, the nonlocal factor value falls within 
the range of 0 to 2 nm. This range is consistent with findings 
from other studies using molecular dynamics simulations 
and size-dependent plate models. Based on this explanation, 
we adopt a nonlocal factor range of 0 to 2 nm for this study 
[65-67].

4- 1- Convergence analysis
Given that a finite truncation number of polynomial terms 

must be used in the displacement expressions for practical 
calculations, the presented method should be regarded as a 
method with arbitrary accuracy. Therefore, it is crucial to 
thoroughly assess the convergence and numerical robustness 
of the method’s solution. In Table 1, the dimensionless 
fundamental frequencies of the nonlocal Mindlin nanoplate 
subjected to various classical BCs are listed. In Table 2, 
the dimensionless natural frequencies of nanoplates for 
higher modes with various classical BCs are presented. 
The results demonstrate that, with an increase in truncation 
terms, the solutions converge rapidly for all nanoplates 
with different BCs for fundamental frequencies. However, 

Table 1. Convergence of dimensionless fundamental frequency 1Ω  for nanoplates with various classical BCs 
( , 20 nm, 2 nm, =0.34 nm)sN M a b l h= = = =  .

Table 1. Convergence of dimensionless fundamental frequency 1  for nanoplates with various classical BCs 
( , 20 nm, 2 nm, =0.34 nm)sN M a b l h    . 

14N  13N  12N  11N  10N  9N  8N  7N  6N  5N  BCs 

32.196 32.196 32.196 32.196 32.197 32.197 32.200 32.201 32.228 32.229 CCCC 

18.021 18.021 18.021 18.021 18.021 18.021 18.021 18.020 18.023 18.023 SSSS 

28.585 28.585 28.585 28.585 28.585 28.585 28.588 28.588 28.603 28.606 CSCS 

6.649 6.649 6.650 6.652 6.654 6.656 6.659 6.663 6.671 6.678 CCFF 

14.349 14.349 14.350 14.351 14.352 14.353 14.357 14.360 14.387 14.424 FSFS 

3.269 3.269 3.270 3.271 3.272 3.272 3.273 3.274 3.275 3.276 SSFF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Convergence of dimensionless natural frequencies for higher modes 3Ω  and 5Ω  of nanoplates with various 
classical BCs ( , 20 nm, 2 nm, =0.34 nmsN M a b l h= = = = ).

Table 2. Convergence of dimensionless natural frequencies for higher modes 3  and 5  of nanoplates with various classical BCs 
( , 20 nm, 2 nm, =0.34 nmsN M a b l h    ). 
 

BCs 
3  5  

6N   7N   8N   9N   10N   11N   6N   7N   8N   9N   10N   11N   

CCCC 59.14 59.09 58.17 58.16 58.15 58.15 462.18 94.78 90.57 89.88 89.87 89.86 

SSSS 40.39 40.38 40.28 40.28 40.28 40.28 94.22 70.55 70.51 69.67 69.67 69.67 

CCSS 49.44 49.17 48.89 48.88 48.88 48.88 120.03 82.78 81.23 79.59 79.50 79.49 

CSSF 43.15 42.73 42.37 42.35 42.34 42.34 52.33 52.14 51.93 51.91 51.90 51.89 

SFSF 29.27 29.08 29.07 29.06 29.05 29.05 37.98 37.98 37.95 37.85 37.84 37.84 

SSFF 17.04 17.01 17.01 17.01 17.01 17.01 38.74 38.61 38.38 38.37 38.36 38.36 
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for higher modes, more truncation terms are required to 
achieve convergence. The efficiency of the Gram-Schmidt 
polynomial series solution in achieving convergence of 
the natural frequencies is evident in the tabulated results in 
Tables 1 and 2. Considering the high computational cost of 
using large truncation terms, we adopt , 10M N =  to achieve 
adequate convergence in analyzing the problem at hand.

To further evaluate the numerical robustness of the 
Gram-Schmidt polynomial series solution, a sensitivity 
analysis is conducted to assess the impact of the translational 
spring stiffness 0

wk ξ    on the first three dimensionless natural 
frequencies ( 1 2 3, , )Ω Ω Ω  for SFSF with , 10M N = . The 
sensitivity, defined as 0d / di wk ξΩ   , and the relative change,   

0 0
/
/

i i

w wk kξ ξ

∆Ω Ω
∆

, are computed over a range of 0
wk ξ    from 410−  

to 510  using central finite differences. Fig. 3 illustrates the 
sensitivity, showing a high initial value at low 0

wk ξ  (i.e., 
10−4) that decreases sharply and levels off toward zero at 
higher stiffness, with no distinct peaks in the range shown. 
Fig. 4 presents the relative change, which highlights regions 
where small stiffness variations cause substantial frequency 
shifts. These results confirm the method’s stability, as 
sensitivities diminish at extreme stiffness values, and validate 
the choice of , 10M N = for reliable frequency predictions in 
the SFSF BCs.

4- 2- Verification study
Having established the mathematical model and nonlocal 

methodology in the preceding section, we now proceed 
to validate the efficiency, reliability and accuracy of the 

 
 
Fig. 3. Sensitivity of the first three dimensionless frequencies to 0

wk   for SFSF ( 20 nm, 0.34 nm, 2 nmsa b h l    ). 
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Fig. 4. Relative change in the first three dimensionless frequencies to 0

wk   for SFSF ( 20 nm, 0.34 nm, 2 nmsa b h l    ). 
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proposed formulation for the free vibration analysis of 
nanoplates. This is achieved by comparing the calculated 
results obtained using our approach with those reported in 
the existing literature. In the first comparison shown in Table 
3, the dimensionless fundamental frequencies for nonlocal 
Mindlin nanoplates with various classical BCs and different 
nonlocal factors are detailed. The comparison reveals that the 
present solutions match very well with the results obtained 
using the Rayleigh-Ritz method and iterative separation-of-
variable method based on the NKP model, as reported by 
Chakraverty et al. [35] and Wang et al. [50], respectively. The 
negligible discrepancies, which do not exceed 0.84% even in 
the worst case, can be attributed to the use of different plate 
theories and the shear effects in NMP that are not incorporated 
in NKP.

In the second comparison, Table 4 lists the first four 
dimensionless frequencies Ù  for the nanostructure with 
various classical BCs. The comparisons are performed 
between the present results and the extended separation-
of-variable method reported by Li et al. [59], who used the 
NMP model. The table demonstrates reasonable agreement 
between the present results and the referential data.

It should be noted that to validate the theoretical results 
presented here, experimental methods such as Atomic 
Force Microscopy (AFM) and laser vibrometry, along with 
other approaches, can be employed as well to measure the 
vibrational characteristics of nanoplates. These methods 
enable a direct comparison with the proposed nonlocal 
Mindlin plate model.

4- 3- Parametric study
The developed methodology, following comprehensive 

convergence and validation analyses, is employed to 
determine the impacts of boundary spring stiffness and the 
nonlocal factor on the free vibration of the nanoplates. Fig. 
5 shows the 1 st , 2 nd  and 3 rd  dimensionless frequencies 
against boundary spring stiffness. The nanoplate under 
consideration has completely free boundaries at 0η =  and 

1η = , while the 0ξ =  boundary is clamped. At the 1ξ =
edge, the nanoplate is elastically supported by a single set of 
spring components, with stiffnesses ranging from 810−  to 510
. Examining Fig. 5 reveals that the dimensionless frequencies 
remain relatively constant as long as the stiffness parameters 
of the boundary springs are less than 310− . This low stiffness 
regime indicates that the boundary at 1ξ =  behaves like a 
free edge, as long as the stability of the proposed methods 
is maintained. In this case, the springs provide negligible 
resistance, which allows vibrations to be governed by the 
nanoplate’s properties. However, a distinct change occurs as 
the stiffness parameters are increased beyond that threshold. 
In this regime, the dimensionless frequencies begin to rise 
sharply. Notably, once the stiffness parameters surpass 310
, the dimensionless frequencies approach a maximum value 
and remain unchanged. In this high stiffness regime, the 
boundary at 1ξ =  acts as a clamped edge, with the springs 
fully constraining displacements and rotations, stabilizing the 
vibrational modes.

To further demonstrate the effects of stiffness parameters 
on the dimensionless natural frequencies, we have plotted the 

Table 3. Comparison of dimensionless fundamental frequency   for nanoplates with various classical BCs 
( 5 nma b= = ).
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2 nmsl  2 nmsl  1 nmsl  0 nmsl  Model BCs 

9.6664 12.2739 14.7348 19.7113 Present 

SSSS 9.6800 12.2912 14.7556 19.7000 Chakraverty et al. 
[35]  

9.6800 12.2912 14.7556 19.7392 Wang et al. [50] 

16.1401 20.8431 25.5102 35.8231 Present 

CCCC 16.2072 20.9293 25.6182 36 Chakraverty et al. 
[35]  

16.2207 20.9443 25.6337 35.9990 Wang et al. [50] 

13.5469 17.3515 21.0384 28.8486 Present 

SCSC 13.5914 17.4090 21.1091 29 Chakraverty et al. 
[35]  

13.5914 17.4090 21.1091 28.9509 Wang et al. [50] 

11.7139 15.1963 17.9848 22.0982 Present 

FCFC 11.7908 15.2936 18.0585 22.2000 Chakraverty et al. 
[35]  

11.8124 15.3174 18.0916 22.2244 Wang et al. [50] 
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dimensionless fundamental frequency against the boundary 
spring stiffness in Fig. 6. This figure shows the development 
of the first three dimensionless frequencies as the stiffnesses 
of the translational and rotational artificial springs at the 
boundaries vary from zero (free edge at 1ξ = ) to infinity 
(clamped edge at 1ξ = ). It is important to note that the same 
BCs mentioned earlier are applied in this figure as well. The 
key observation from Fig. 6 is that when the spring stiffness 
value exceeds 210 , the natural frequencies of the nanoplate 
converge to a fixed value. This convergence reflects a 
clamped-like behavior at 1ξ = , where high spring stiffness 
restricts all boundary motion, with rotational springs having 
a more pronounced effect on higher frequencies. 

In another study, the dimensionless fundamental 
frequencies of the nanoplates with various classical-
elastic combined BCs are presented in Table 5. The table 

examines nine sets of BCs, including the F F,Π Π S SΠ Π , 
and C CΠ Π  conditions, where Π  denotes 1,E 2 ,E  and 3E
. Analysis of the data in Table 5 reveals that 1 1E FE F BCs are 
associated with the lowest fundamental frequencies, while 

3 3E CE C conditions correspond to the highest frequencies. 
Furthermore, the influence of the nonlocal factor is observed 
to be minimal for 1 1E FE F case, but it has the most substantial 
impact on 3 3E CE C  conditions.

Given the importance of the nonlocal factor and its 
effects on the vibrational analysis of nanoplates, we have 
plotted the dimensionless fundamental frequencies against 
the nonlocal factor in Fig. 7 for various classical-elastic BCs. 
The predicted results show that, for all the considered BCs, 
the fundamental frequencies decrease as the nonlocal factor 
increases. However, the degree of this frequency reduction 
varies depending on the specific BCs. Nanoplates with CCCC 

Table 3. Comparison of first four dimensionless frequency   for nanoplates with various classical BCs 
( 10 nm, =1 nma b h= = ).Table 4 Comparison of first four dimensionless frequency   for nanoplates with various classical BCs ( 10 nm, =1 nma b h  ). 

Mode 
Model (nm)sl BCs 

4 3 2 1 
64.0816 50.0221 50.0221 29.3639 Present 

1 
CCCC 

64.0999 50.0369 50.0369 29.3875 Li et al. [59] 
41.2909 34.6404 34.6404 23.3667 Present 

2 
41.3107 34.6552 34.6552 23.3911 Li et al. [59] 
58.0828 43.6915 43.3584 22.9311 Present 

1 
CCSS 

58.0968 43.5326 43.5326 22.9390 Li et al. [59] 
37.7483 30.6447 30.3263 18.4353 Present 

2 
37.7652 30.4946 30.4946 18.4433 Li et al. [59] 
21.0591 17.3548 7.5370 3.3546 Present 

1 
CFFF 

20.7710 18.0779 7.5820 3.3938 Li et al. [59] 
15.2315 12.9402 6.3923 3.1482 Present 

2 
14.6142 13.8362 6.4317 3.1872 Li et al. [59] 
42.6727 38.2263 24.6598 14.9680 Present 

1 
CSSF 

42.6979 38.2862 24.6806 15.0125 Li et al. [59] 
28.1448 27.2371 18.2618 12.7175 Present 

2 
28.1623 27.3027 18.2837 12.7577 Li et al. [59] 
41.5970 32.0821 22.4735 10.7127 Present 

1 
SSSF 

41.5791 32.0754 22.4660 10.7110 Li et al. [59] 
27.5472 23.1916 16.7286 9.2365 Present 

2 
27.5403 23.1836 16.7219 9.2348 Li et al. [59] 

28.7161 16.3845 14.4873 3.2007 Present 
1 

SSFF 
28.9499 15.6062 15.6062 3.2156 Li et al .[59] 
20.1256 12.7347 11.0253 2.9734 Present 

2 
20.3908 12.0187 12.0187 2.9877 Li et al .[59] 
30.7660 27.0518 13.9675 9.0048 Present 

1 
SFSF 

30.7632 27.0435 13.9580 9.0045 Li et al. [59] 
22.5160 18.6238 11.2459 7.9771 Present 

2 
22.5127 18.6172 11.2374 7.9768 Li et al. [59] 
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Fig. 5. The first three dimensionless frequencies versus boundary springs stiffness ( 10 nm, 0.34 nm, 2 nmsa b h l    ). 
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Fig. 5. The first three dimensionless frequencies versus boundary springs stiffness ( 10 nm, 0.34 nm, 2 nmsa b h l= = = = ).

 

Fig. 6. Surface plot of the first three dimensionless frequencies versus boundary springs stiffness (

10 nm, =0.34 nm, =2 nm, = ys xa b h l k k   ). 
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Fig. 6. Surface plot of the first three dimensionless frequencies versus boundary springs stiffness 

( 10 nm, =0.34 nm, =2 nm, = ys xa b h l k kξ ξ= = ).

Table 5. The dimensionless fundamental frequency   for nanoplates with various classical-elastic com-
bined BCs ( 10 nm, 0.34 nma b h= = = ).

 
Table 5 The dimensionless fundamental frequency 1  for nanoplates with various classical-elastic combined BCs (
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3 3E CE C 2 2E CE C 1 1E CE C 3 3E SE S 2 2E SE S 1 1E SE S 3 3E FE F 2 2E FE F 1 1E FE F (nm)sl 

34.8616 31.7915 30.5639 27.8578 23.9363 22.3634 21.1194 12.0588 11.9178 0 

33.8795 31.1362 29.9736 27.1398 23.5082 21.9935 20.8085 12.0450 11.9028 0.5 

31.3559 29.3543 28.3606 25.2759 22.3360 20.9747 19.9480 12.0027 11.8569 1 

28.1510 26.8911 26.1034 22.8688 20.6915 19.5286 18.7132 11.9285 11.7765 1.5 

24.9485 24.2219 23.6198 20.4176 18.8681 17.9017 17.2974 11.8165 11.6556 2 
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and 3 3 3 3E E E E  BCs exhibit a more pronounced sensitivity to 
the increase in the nonlocal factor, compared to the 1 1 1 1E E E E  
and 2 2 2 2E E E E  cases. Additionally, it is observed that when 
the nonlocal factor is zero, the fundamental frequencies 
for the SSSS BCs are greater than those for 1 1 1 1E E E E  and 

2 2 2 2E E E E  cases. However, as the nonlocal factor increases, 
the discrepancies among these BCs diminish. In fact, when the 
nonlocal factor exceeds 1.1 nm, the fundamental frequencies 
for SSSS BCs become higher than those for 1 1 1 1E E E E  and 

2 2 2 2E E E E  cases.

5- Conclusions
This paper presents a unified approach for the free 

vibration analysis of nonlocal Mindlin nanoplates using 
the weighted residual method based on the artificial 
spring technique. The study employed the Gram-Schmidt 
polynomial series as admissible displacement functions and 
applied the Rayleigh-Ritz method to solve the eigenvalue 
problems for the vibration of nanoplates with arbitrary 
BCs. The proposed method was validated by comparing 
the numerical results with existing literature. The study 
investigated the vibrational frequencies of nanoplates under 
various classical BCs, elastic BCs, and their combinations, 
and examined the effects of the spring stiffness parameters 
on the vibration characteristics. The main findings of this 
work are summarized as follows:

The proposed method effectively computes the natural 
frequencies of nanoplates with arbitrary BCs, including 
classical BCs, elastic BCs, and their combinations, while 
capturing size-dependent behavior at the nanoscale.

The fundamental frequency of the nanoplates converges 
rapidly with an increasing number of truncation terms for 
various BCs; however, for higher modes, more truncation 
terms are required to achieve accuracy.

For a specific BC, a sensitivity analysis indicates that 
the natural frequencies are highly sensitive to translational 
spring stiffness at very low values, which stabilizes as the 
stiffness increases, confirming the stability and reliability of 
the proposed method.

The impact of the rotational spring parameters is more 
pronounced on the second and third dimensionless natural 
frequencies compared to the first dimensionless natural 
frequency.

The nonlocal factor has a minimal impact on the 
dimensionless fundamental frequency of nanoplates with 

1 1 1 1E E E E  and 2 2 2 2E E E E  elastic BCs, whereas its influence is 
more pronounced for those with CCCC, SSSS, and 3 3 3 3E E E E   
BCs.

The novel technique introduced in this study enables 
bending, vibration, and buckling analyses of nanostructures, 
such as nanoplates, nanoshells and circular nanoplates, 
using advanced nonlocal continuum models. Furthermore, 
the current model is limited to linear vibration analysis, 
suitable for small-amplitude oscillations. Nanoplates 
may exhibit nonlinear geometric and material behavior in 
practical applications. Investigating nonlinear vibrational 
characteristics with elastic BCs, including geometric 
nonlinearity, nonlinear boundary stiffness, and amplitude-
dependent frequencies, presents an exciting avenue for future 
research.

 

Fig. 7. The dimensionless fundamental frequency versus nonlocal factor for various classical and elastic BCs 
( 10 nm, 0.34 nm)a b h   . 
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Appendix

This appendix provides the entries of the matrices K and M for the nanoplate with arbitrary BCs. In 

order to simplify and clarify the expressions, two indexes are pre-defined: 

( 1) , ( 1) ,s N i k q N j l                                                                                                  (A.1) 

where 𝑖𝑖, 𝑗𝑗 𝜖𝜖[1, 𝑀𝑀] and 𝑘𝑘, 𝑙𝑙 𝜖𝜖[1, 𝑁𝑁]. 

The entries of the stiffness matrix K are computed using the following formulations: 
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