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Abstract: 

This paper proposes a local processors-assisted structure (LPs-AS) for cell-free massive multiple-input 

multiple-output (CF-mMIMO) systems, consisting of a central processor (CP), several access points (APs), 

and some local processors (LPs). Each LP is connected to the CP and a subset of APs and is used as a 

precoding unit in downlink (DL). This proposed LPs-AS enables us to implement DL precoders with a 

semi-distributed approach. In our proposed semi-distributed implementation (SDI), we design precoders at 

the LPs. This approach differs from centralized implementation (CI) where the precoders are implemented 

at the CP and distributed implementation (DI) where the precoders are designed at APs. We evaluate LPs-

AS in terms of spectral efficiency (SE) and analytically derive its achievable SE. Furthermore, we propose 

a power control algorithm to maximize its sum SE, compute the computational complexity (CC) of its 

minimum mean square error (MMSE) precoders, and compare this CC with its counterpart in CI and DI. 

Numerical results demonstrate that employing an optimal number of LPs (between 2 and 4) in our proposed 

LPs-AS, not only enables us to design DL precoders with significantly low CC but also results in an efficient 

SDI that effectively addresses the problem of low SE in DI. 
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1. Introduction 

Cell-free massive multiple input multiple output (CF-mMIMO) system is a promising technology for 6G 

and beyond wireless networks, potentially providing high and relatively uniform data rates for all user 

equipment (UEs). This system comprises a substantial number of access points (APs) and a considerably 

smaller number of UEs in which the APs collaborate to serve the UEs coherently, using the same time-

frequency resource. Data transmission between APs and UEs is performed in the time division duplex 

(TDD) mode and each AP acquires its channel state information (CSI) through uplink (UL) pilots, 

leveraging uplink-downlink (UL-DL) channel reciprocity. All APs are connected to a CP via front-haul 

links. This CP performs the majority of signal processing and resource allocation tasks[1-7].   

Beamforming the UEs’ signals is a key feature of the CF-mMIMO systems in the DL, achieved by 

transmitting a UE signal through multiple APs. Beamforming is performed using specific vectors known 

as precoders [8]. Designing precoders with low computational complexity (CC) that can provide high 

spectral efficiency (SE) for UEs is one of the fundamental challenges in CF-mMIMO systems [9]. These 

precoders can be implemented either centrally or in a distributed manner. In the centralized implementation 

(CI), precoders are designed at the CP, whereas in the distributed implementation (DI), they are designed 

at APs. Both centralized and distributed precoders are optimized or heuristically designed from UL 

combiners using the UL-DL duality theorem [7, 10-12]. The primary challenge of centralized precoders, 

both optimized and heuristic, is their high CC and the substantial communication overhead required for 

their design [9, 13, 14]. Additionally, optimized distributed precoders necessitate some level of cooperation 

among APs [15-17] or bidirectional training between UEs and APs rendering them unsuitable for many 

applications that require prompt responses [18-20]. The most straightforward and widely applicable 

precoders are heuristic distributed precoders, designed solely from the local CSI of each AP using the UL-

DL duality theorem [8, 21]. These precoders require neither cooperation among APs nor training between 

APs and UEs. However, they are incapable of providing UEs with high SE.   
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Recent Works: 

Precoding is a fundamental component of DL transmission in MIMO, mMIMO and CF-mMIMO systems 

that has generated an extensive literature. Here, we review some related works. Traditional centralized 

precoding schemes, such as zero-forcing (ZF) [7] and weighted minimum mean-square-error (WMMSE) 

[10], require APs to transmit their local CSI to the CP via front-haul links. The CP then computes optimized 

precoding vectors and distributes them back to the APs, resulting in substantial signaling overhead and 

imposing a heavy burden on the front-haul infrastructure. To mitigate these challenges, distributed 

precoding methods have been explored. For instance, [16] introduces a cooperative team minimum mean-

square error (TMMSE) precoding scheme based on transmitter-specific CSI, extending traditional 

centralized MMSE precoding to distributed operations. Similarly, [22] proposes an iterative distributed  

approach where precoding vectors are optimized locally at each AP through bidirectional training between 

users and APs, coupled with periodic cross-term information sharing among APs. However, these 

distributed methods suffer from computational inefficiency due to their reliance on iterative optimization, 

making them impractical for latency-sensitive applications. Alternatively, non-cooperative precoding 

techniques—such as matched filtering (MF) and local MMSE operate solely on local CSI, eliminating the 

need for fronthaul-based CSI exchange. A notable example is maximum ratio transmission (MRT) [23], a 

decentralized linear precoding method designed to maximize received signal gain at the target user. 

However, unlike cellular massive MIMO systems, CF-mMIMO systems exhibit weaker channel hardening 

effects [24], limiting the performance of purely local CSI-based approaches. Furthermore, most existing 

precoding methods rely on convex optimization techniques [25], which struggle with non-convex problems 

and scale poorly as network size increases. While problem-specific algorithms can be developed, they 

demand considerable expertise and time-intensive customization, hindering their practicality for large-scale 

deployments. In CF-mMIMO systems, using artificial intelligence (AI) to design precoders and to achieve 

optimal resource allocation have been used in some recent works. As for example, in [26], a reinforcement 

learning based precoding scheme is proposed for CF-mMIMO systems and in [27], a deep learning-based 
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power control algorithm is proposed to achieve max-min, max-product and max-sum rate optimization in 

these systems. 

Contributions: 

In this paper, we propose a local processors-assisted structure (LPs-AS) for CF-mMIMO systems that 

enables the implementation of precoders in a semi-distributed manner. In our semi-distributed 

implementation (SDI), precoders are designed in local processors (LPs), each connected to the CP and a 

subset of APs. The performance of semi-distributed precoders, in terms of the SE they deliver to UEs, is 

comparable to that of centralized precoders. However, semi-distributed precoders achieve this performance 

with substantially lower CC. On the other hand, designing semi-distributed precoders heuristically resolves 

the issue of low achievable SE in their distributed counterparts and introduces an efficient alternative for 

this issue. 

The contributions of this paper include: 

• We introduce our proposed LPs-AS for CF-mMIMO systems and derive its achievable SE 

analytically. 

• We propose semi-distributed maximum ratio (MR) and minimum mean square error (MMSE) 

precoders for our LPs-AS by modifying their centralized and distributed counterparts. Then we 

compute the CC of MMSE precoders for all CI, DI, and SDI. 

• WE propose a power control algorithm for our proposed LPs-AS to maximize the sum SE. 

Organization: In Section Two, we propose our LPs-AS for CF-mMIMO systems and analyze its DL 

operation. In “Section Three “, we compute the heuristic semi-distributed MR and MMSE precoders by 

modifying their centralized and distributed counterparts. In "Section Four", we calculate the CC of semi-

distributed MMSE precoders and compare it with that of their centralized and distributed counterparts. In 

Section Five, we derive an expression for the achievable SE of our proposed LPs-AS.  In Section Six, we 
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propose a power control algorithm to maximize the sum SE for our proposed LPs-AS. Section Seven details 

the numerical results, and Section Eight concludes the paper.  

Notations: 𝑥 and 𝐱 represent a scalar and vector, respectively. We denote by (∙)∗, (∙)𝑇, (. )𝐻 and (∙) ⃖   =
(∙)

∥.∥
, 

𝐸{(∙)}, (∙) = (∙) − 𝐸{(∙)}, | ∙ | and ∥∙∥ as the complex conjugate, the transpose, the Hermitian transpose, the 

normalization of (∙), the expected value of a random variable, its deviation from the mean, the magnitude 

of a complex number and the 𝐿2 norm, respectively. We denote the complex Gaussian distribution with 

mean 𝜇 and variance 𝜎2 by 𝒩𝒞(𝜇. 𝜎2). Finally, 𝐈𝑁  is the 𝑁 × 𝑁 identity matrix. Table 1 defines the variables 

used in this paper. 

Table 1: Definitions of Variables Used in the Paper. 

Variable Definition 

𝐿𝑇  Total number of APs 

𝐿 APs number of each LP 

𝐾 UEs number 

𝑁 Antennas number of each AP 

𝑀 Number of LPs 

𝑠𝑖   𝑖 ∈ {1, … , 𝐾} Transmitted symbol of UEs 

𝐱𝑙,𝑚   l∈ {1, … , 𝐿}   m∈ {1, … , 𝑀} Sum precoded symbols of all K UEs at (l,m)th AP 

𝐰𝑖𝑙,𝑚  𝑖 ∈ {1, … , 𝐾}   l∈ {1, … , 𝐿}   

 m∈ {1, … , 𝑀} 

Precoder of ith UE at (l,m)th AP 

𝐡𝑖𝑙,𝑚  𝑖 ∈ {1, … , 𝐾}   l∈ {1, … , 𝐿}   

 m∈ {1, … , 𝑀} 

Channel between ith UE and (l,m)th AP 

𝛽𝑖𝑙,𝑚  𝑖 ∈ {1, … , 𝐾}   l∈ {1, … , 𝐿}   Channel gain between ith UE and (l,m)th AP 
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 m∈ {1, … , 𝑀} 

𝑑𝑖𝑙,𝑚  𝑖 ∈ {1, … , 𝐾}   l∈ {1, … , 𝐿}   

 m∈ {1, … , 𝑀} 

Distance between ith UE and (l,m)th AP 

𝛼𝑖𝑙,𝑚  𝑖 ∈ {1, … , 𝐾}   l∈ {1, … , 𝐿}   

 m∈ {1, … , 𝑀} 

Shadowing between ith UE and (l,m)th AP 

𝑦𝑖   𝑖 ∈ {1, … , 𝐾} Received signal at ith UE 

𝑛𝑖  𝑖 ∈ {1, … , 𝐾} AWGN at ith UE 

𝐇𝑖,𝑚  𝑖 ∈ {1, … , 𝐾}   𝑚 ∈ {1, … , 𝑀}   Channel between ith UE  and all L APs of mth LP 

𝐖𝑖,𝑚  𝑖 ∈ {1, … , 𝐾}   𝑚 ∈ {1, … , 𝑀}   Downlink precoder of ith UE at mth LP 

𝐕𝑖,𝑚  𝑖 ∈ {1, … , 𝐾}   𝑚 ∈ {1, … , 𝑀}   UL combiner of ith UE at mth LP 

𝜌𝑘,𝑚 DL power of kth UE at mth LP 

𝜇𝑘,𝑚 Square root of  𝜌𝑘,𝑚 

𝑝𝑖   𝑖 ∈ {1, … , 𝐾} UL transmitted power of ith UE 

𝑃𝑀𝑎𝑥 Maximum DL power of each AP 

𝛿 Accuracy Parameter of optimization problem 

 

2. System Model 

We consider DL transmission of a CF-mMIMO system consisting of 𝐿𝑇  APs and 𝐾 UEs where APs have 

𝑁 antennas and UEs have a single antenna. In our proposed LPs-AS, we introduce 𝑀 LPs in the network 

that are connected to the CP as in Fig 2. Each LP serves 𝐿 = 𝐿𝑇/𝑀 neighboring APs via front-haul links. 
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A primary task of an LP in the DL is to compute the precoders for its APs. Figure 1 is a geometric illustration 

of the components of a CF-mMIMO system, with the introduced LPs in our proposed LPs-AS.  

 

Fig. 1: A geometrical illustration of the introduced local processors in our proposed LPs-AS for CF-mMIMO systems. 

 

Fig. 2: Dl signal processing layers for our proposed LPs-AS for CF-mMIMO systems. 
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2.1  Downlink Transmission in Our Proposed LPs-AS 

 Fig. 2 illustrates the DL signal generation in our proposed LPs-AS where all APs serve all 𝐾 UEs at the 

same time-frequency slot. The CP encodes the UEs’ DL data into symbols 𝑠1 , 𝑠2 , ⋯ , 𝑠𝐾 where 𝐸{|𝑠𝑖|
2} = 1 

and 𝐸{𝑠𝑖} = 0. The UEs’ encoded symbols 𝑠1 , 𝑠2, ⋯ , 𝑠𝐾 are transmitted to 𝑀 LPs where they are linearly 

precoded by 𝑚th LP into the following transmit signal and transmitted by (𝑙, 𝑚)th AP:  

, ,1
,   1, , ,   1, , .

K

l m il m ii
s m M l L

=
=  = =x w  (1) 

 In our proposed LPs-AS, (𝑙. 𝑚)th AP receives 𝐱𝑙.𝑚 from 𝑚th LP and broadcast it. The received signal at 

𝑘th UE is expressed by  

, ,1 1
,

M L H

k kl m l m km l
y n

= =
= +  h x  (2) 

 where 𝑛𝑘 ∼ 𝒩𝒞(0.𝜎2) is the independent additive white Gaussian noise and 𝐡𝑘𝑙,𝑚  is the channel response 

between (𝑙, 𝑚)th AP and 𝑘th UE. We substitute (1) in (2) as  

 , ,1 1
,

M K H

k k m i m i km i
y s n

= =
= +  H W  (3) 

 and respectively define 𝐇𝑘,𝑚  and 𝐖𝑖,𝑚  as the collective channel to 𝑘th UE from all APs of 𝑚th LP and 

their collective precoders by  

1, 1,

, ,

, ,

,   .

k m i m

LN

k m i m

kL m iL m

C

   
   

= =    
   
   

h w

H W

h w

 (4) 

 We assume that 𝑚th LP has access only to its local DL channels, i.e. 𝐇1,𝑚. 𝐇2,𝑚 ⋯ . 𝐇𝐾,𝑚. These CSIs are 

employed by 𝑚th LP to compute the required local precoders 𝐖1,𝑚. 𝐖2,𝑚. ⋯ . 𝐖𝐾,𝑚 for all network UEs. 

https://doi.org/10.22060/eej.2025.23871.5640


AUT Journal of Electrical Engineering 
 10.22060/EEJ.2025.23871.5640 

In this LPs-AS, the network can be scaled up by adding new LPs (i.e., by increasing 𝑀) and APs. The 

additional APs are inexpensive as their role is simply to relay 𝐱𝑙,𝑚  to all network UEs. 

3   Heuristic MR and MMSE Precoders for Our Proposed LPs-AS 

The DL precoder optimization is known as an NP-hard problem in mMIMO and CF-mMIMO systems (this 

is in contrast to the optimal design of UL combiners) [8, 13, 28]. Due to its high CC, the DL precoder is 

typically designed heuristically, leveraging UL combiners based on the UL-DL duality theorem [8, 13]. 

Here, we propose semi-distributed MR and MMSE DL precoders by leveraging the UL-DL duality and 

modifying the UL combiners for CI and DI. From the UL-DL duality, the general form for semi-distributed 

DL precoders is:  

1
,, ,    ,LN

k mk m k m C = W V                   (5) 

 where 𝜌𝑘,𝑚 is the total transmit power assigned to 𝑘th UE by 𝑚th LP, 
,

,

,

k m
k m

k m

=
V

V
V

is the normalized 

UL combiner that 𝑚th LP uses to extract and detect the signal of 𝑘th UE. The MR and MMSE UL 

combiners are proposed in [8] for CI and DI. We modify them to obtain the semi-distributed  MMSE and 

MR DL precoders as follows.  

 MMSE precoding is computed by substituting  

( )
1

MMSE 2

, , , ,1
,

K H

k m k i i m i m NL k mi
p p 

−

=
= +V H H I H  (6) 

 in (5) where 𝑝𝑘 is 𝑘th UE uplink power. Intuitively, the MMSE precoders aim to transmit a specific strong 

signal to 𝑘th desired UE while limiting the interferences caused to unintended UEs.  

 MR precoding is computed by substituting 
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MR

, , .k m k m=V H                                                                                     (7) 

in (5). This scheme maximizes the numerator of the effective SINR (i.e. the fraction of the transmit power 

that is received at the desired UE). In contrast to the MMSE Precoder, the computation of the MR precoder 

is very simple as the MR decoder ignores the interference in the network. 

4   Computational Complexity  

  

Table  2: Computational complexities (number of complex multiplications) for computing the MMSE 

precoders.  

 Scheme   number of Complex 

Multiplications   

CC Factor 

 CI  𝑁𝐿𝑇𝐹C𝐼 𝐹C𝐼 = 𝐾
𝑁𝐿𝑇 + 1

2
+ 𝑁𝐿𝑇

+
𝑁2𝐿𝑇

2 − 1

3
 

DI  𝑁𝐿𝑇𝐹D𝐼  
𝐹D𝐼 = 𝐾

𝑁 + 1

2
+ 𝑁 +

𝑁2 − 1

3
 

SDI  𝑁𝐿𝑇𝐹S𝐷𝐼  𝐹S𝐷𝐼 = 𝐾
𝑁𝐿 + 1

2
+ 𝑁𝐿

+
𝑁2𝐿2 − 1

3
 

 

Here, we follow the method in ([13], Appendix B.1.1)to determine the required CC in our proposed LPs-

AS for computing the semi-distributed MMSE precoder and compare it with the corresponding CC in 

centralized and distributed precoders presented in [8]. The semi-distributed  MMSE precoder can be 

calculated by 𝐖𝑘,𝑚 = 𝐀−1𝐁, where  

, ,1
,

K H NL NL

i i m i mi
p C 

=
= C H H  (8) 

2
,,     .NL

k mLN kp C= + = A C I B H  (9) 
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 The number of complex multiplications to compute 𝐂, 𝐀−1 and 𝐀−1𝐁 in each LP are 
(𝑁𝐿)2+𝑁𝐿

2
𝐾, 

(𝑁𝐿)3−𝑁𝐿

3
 

and (𝑁𝐿)2, respectively. Thus, the required multiplications for computing semi-distributed MMSE 

precoder in our proposed LPs-AS is 𝑁𝐿𝑇𝐹S𝐷𝐼 for 𝑀𝐿 = 𝐿𝑇  where we define  

2 2

S

1
1 .

2 2 3
DI

K K N L
F NL

− 
= + + + 

 
 (10) 

 as a CC factor simplifies our comparisons. Table 2 presents a summary of the CC for SDI, CI, and DI, 

expressed as the required number of complex multiplications necessary for computing MMSE precoders. 

4   Spectral Efficiency of Our Proposed LPs-AS 

We now derive an achievable SE expression for our proposed LPs_AS. To this end, we define 𝐛𝑘 ∈ 𝑅+
𝑀, 

𝝁𝑘 ∈ 𝑅+
𝑀 and 𝐂𝑘𝑖 ∈ 𝐶𝑀×𝑀  with following entries ∀𝑚. 𝑚′ = 1. ⋯ . 𝑀:   

( )  , , ,k k m k mm E=b H V  (11) 

( ) , ,k k mm =μ  (12) 

( )  , , ', , , ', '    .i m i mk i k m k mm m E=C H V V H  (13) 

Lemma 1 Using (11),(12), and (13), the LPs-AS DL achievable SE of the 𝑘th UE is lower 

bounded by 𝑆𝐸𝑘 = 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑘) where 𝑆𝐼𝑁𝑅𝑘 =
𝑆𝑘

𝐼𝑁𝑘
 is the signal-to-interference plus noise ratio 

and  

 
T 2S | | ,k k k= b μ  (14) 

2
T 2

1
IN . .

K

k i ki i k ki


=
= − + C bμ μ μ  (15) 
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Proof. We substitute (5) in (3) and rewrite it as follows  

 ,, ,1
,

M

k mk k m k m k k km
y E s I n

=
= + + H V  (16) 

 where a total interference of 

, ,, , , ,1 1, 1


M K M

k m i mk k m k m k i m k m im i i k m
I s s 

= =  =
= +  H V H V                                   (17) 

is received by the 𝑘th UE. We have 𝐸{𝐼𝑘} = 0 since 𝐸{𝑠𝑖 = 0} and 𝐼𝑘 is uncorrelated with 𝑠𝑘  since 𝑠1 , ⋯ , 𝑠𝐾 

are independent. Therefore, we can easily show that 𝐸{𝑠𝑘
∗𝐼𝑘} = 0 and  

 2 2

, , ,1 1
{| | } | |

K M

k i m k m i mi m
E I E 

= =
=  H V  

  2

, , ,1
| | .

M

k m k m k mm
E 

=
−  H V  (18) 

 The proof is completed by using ([13], Lemma 3.3, page 244) and applying the expressions defined in 

(11), (12), and (13).  

6   Power allocation via Sum SE maximization 

We propose a power control algorithm by using the Weighted Minimum Mean Square Error (WMMSE) 

approach to maximize the sum SE in our proposed LPs-AS as follows:  

( )
,

210, ,

2
2

,, max1

maximize log 1 SINR

1, ,
subject ,  to 

1, ,

k m

K

kkk m

K

kl mk mk

l L
P

m M





= 

=

+

= 


= 



 w

 (19) 

https://doi.org/10.22060/eej.2025.23871.5640


AUT Journal of Electrical Engineering 
 10.22060/EEJ.2025.23871.5640 

where �̅�𝑘𝑙.𝑚 =
𝐰𝑘𝑙.𝑚

∥𝐖𝑘.𝑚∥
 is the weighted precoder assigned to the (𝑙. 𝑚))th AP by the 𝑚th LP, which 

determines the portion of 𝜌𝑘.𝑚 that the (𝑙, 𝑚)th AP allocates to 𝑘th UE, and 𝑃max is the maximum DL 

power of APs. This problem is non-convex, is an extension of the NP-hard problem in [29], and finding its 

global optimum entails an exponential complexity through the monotonic optimization method [30]. Thus, 

we focus on finding a local optimum using the WMMSE [10, 31, 32] approach 

6.1  WMMSE Approach 

We define the mean square error (MSE) of data detection by 𝑒𝑘 = 𝐸{|�̂�𝑘 − 𝑠𝑘|2}. We have  

   2 2 * *{| | } {| | } ,ˆ ˆ ˆ
k k k k k k ke E s E s E s s E s s= + − −  (20) 

 where �̂�𝑘  is an estimate of 𝑠𝑘  and is computed by applying the receiver weight 𝑢𝑘 to 𝑦𝑘  at the 𝑘th UE:  

H
,, , ,

1 1

ˆ 
M K

k mk k k k k m i m i k kk m
m i

s u y u h s u n
= =

= = +  W  (21) 

 From (20) and (21), we obtain 𝑒𝑘 :  

2 T 2 T

1

2 1,
K

k k i ki i k k k

i

e u C u b
=

 
= + − + 

 
μ μ μ  (22) 

 which depends on ({𝝁𝑖}, 𝑢𝑘). Using this approach, the problem (19) is converted to  

( )
,

10, ,

0, ,

2
2

,, max1

minimize ln

1, ,
subjec t ,t    o 

1, ,

k m

k k

K

k k kkk m

d u k

K

kl mk mk

d e d

l L
P

m M





= 

 

=

−

= 


= 



 w

 (23) 

where the non-negative weights 𝑑𝑘 are introduced to equate (23) with (19). The problem in (23) is convex 

with respect to either 𝑢𝑘, 𝑑𝑘 or 𝜇𝑘.𝑚. Thus, we employ alternating optimization, wherein we alternatively 
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optimize each of the variables 𝑢𝑘, 𝑑𝑘 and 𝜇𝑘.𝑚 individually while keeping the other two variables fixed. 

This iterative algorithm is guaranteed to converge quickly, where the optimal values of the variables are 

updated in each iteration until a stopping criterion is met. The optimization problems for determining the 

optimal values of 𝑢𝑘 and 𝑑𝑘 are unconstrained. Therefore, we optimize them by setting their first-order 

derivatives to zero, i.e., 𝑢𝑘(∑𝐾
𝑖=1 𝜇𝑖

T𝐶𝑘𝑖𝜇𝑖 + 𝜎2) − 𝑏𝑘
T𝜇𝑘 = 0. and 𝑒𝑘 −

1

𝑑𝑘
= 0. Thus, the optimal values of 

𝑢𝑘 are given by  

T
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i ki ii
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 By substituting 𝑢𝑘
opt

 in (22), we obtain:  
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 From 𝑑𝑘 = 1/𝑒𝑘, we obtain  

( )
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 Substituting (22) in (23) leads to the following optimization problem for 𝜇𝑘,𝑚   
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The matrices 𝐶𝑘𝑖  are positive semi-definite. Consequently, for fixed 𝑢𝑘 and 𝑑𝑘 , the problem in (27) is a 

convex Quadratically Constrained Quadratic Program (QCQP), which can be easily solved, e.g., by using 

CVX. Algorithm 6.1 gives a concise summary of the iterative updating procedures to solve (23). 

Substituting (24) and (26) into the objective function articulated in (23), we obtain 𝐾 − ∑𝐾
𝑘=1 ln(1 +

SINR𝑘). The minimization of this function is equivalent to the maximization of the sum SE function, i.e., 

(19) is equivalent to (23). Table 3 sumarizes the proposed iterative algorthm to solve the optimization 

problem (23). 

Table 3: Iterative Sum SE Maximization for SDI. 

• Initialization: 

− Set the solution accuracy 𝛿 > 0  

− Set arbitrary feasible initial powers {𝝁𝑘}  
• while ∑𝐾

𝑘=1 (𝑑𝑘𝑒𝑘({𝝁𝑖}, 𝑢𝑘) − ln(𝑑𝑘)) is either improved more than 𝛿 or not improved at all do  

− Update 𝑢𝑘  for all 𝑘 = 1, … , 𝐾 using (24).  

− Update 𝑑𝑘 for all 𝑘 = 1, … , 𝐾 using (26).  

− Solve (27) to update 𝜇𝑘,𝑚  for all k= 1, … , 𝐾 and all 𝑚 = 1, … , 𝑀 given the current 

values of 𝑢𝑘 and 𝑑𝑘.  
• end while  

• Output: Optimal square roots of the transmit powers   

 

7   Numerical Results 

In this section, we numerically evaluate our proposed LPs-AS for CF-mMIMO systems. To achieve this, 

we focus on the CC of MMSE precoders designed by SDI and the achievable SE that SDI provides for UEs 

and compare these results with their counterparts in the CI and DI. In our simulation, we consider 𝐿𝑇 =

100 APs and 𝐾 = 40 UEs, uniformly and independently distributed over a square area of 

1000m × 1000m. We employ the urban microcell model in [8, 33, 34] to generate the large-scale fading 

coefficients by assuming that the APs are 10 meters above the UEs:  

( ), 10 , ,30.5 37.6log   in dB,kl m kl m kl md = − − +  (28) 
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 where the shadow fading 𝛼𝑘𝑙,𝑚 is generated as a normal distribution 𝛼𝑘𝑙,𝑚 ∼ 𝒩𝒞(0, 42) and 𝑑𝑘𝑙,𝑚 is the 

distance in meters between 𝑘th UE and (𝑙, 𝑚)th AP. The channels are generated as uncorrelated Rayleigh 

distribution   

,

10
, 0,10 .

kl m

kl m N

 
   

 
h ICN                                                                                                                          

(29) 

 We plotted Figs. 4 and 5 via Monte-Carlo simulations by averaging over 100 uniformly generated setups 

of APs and UEs locations, and 500 independent channel realizations (29) for each setup. The simulation 

parameters are presented in Table. 4. 

Table 4: The Simulation Parameters of Page[28]. 

Simulation Parameter Value 

𝐿𝑇  100 

𝐾 40 

𝑁 4 

𝑝𝑖 100 mW 

𝑃𝑀𝑎𝑥 1000 mW 

𝛿 0.0001 

Area 1000m×1000m 

Bandwidth 20 MHz 

Path-Loss Exponent 3.76 

Noise Power -94 dBm 

Standard Deviation of Shadowing 4 dB 
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7.1  Complexity Comparison 

In Table. 5, we calculated the CC of MMSE precoders designed by the SDI and its corresponding CI. As 

illustrated, increasing the number of LPs in the LPs-AS results in a more significant decrease in CC. This 

table highlights the primary advantage of SDI over its corresponding CI, where utilizing only 2 LPs results 

in approximately an 80% reduction in CC. This substantial reduction in CC within the SDI is attributed to 

designing precoders using divided information in the LPs. Therefore, it is a general property of LPs-AS and 

is not limited to heuristic MMSE precoders. We will leverage this property for designing optimized 

precoders in our future works. 

Table  5: The required complexity for computation of MMSE precoder in SDI compared to the CI versus the 

number of LPs.  

 Number of LPs:   1   2   4   8  

 CI   2.1 × 07   

 SDI    2.1 × 107     6.2 × 106     1.9 × 106     6.8 × 105   

   CC Ratio   1   0.285   0.089   0.031  

  

 

7.2  SE Comparison 

In this section, we have studied two scenarios: 

• First scenario that we allocate equal powers to 𝜌𝑘,𝑚 

• Second scenario that we utilize our proposed power control algorithm to allocate optimum powers 

to 𝜌𝑘,𝑚 

 In each of the above scenarios, we evaluate the systems under MR and MMSE preodering. Regarding MR 

and MMSE precoders, it is worth expressing that MR precoders only maximize the desired power of each 

UE and do not have any effect on the interference, on the other hand MMSE precoders maximize the SINR 

of each UE, so they are capable of canceling the interference. In our simulations, we have considered 𝐿𝑇 =
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100 APs and compare the results of simulations for different values of 𝑀. We know that the APs number 

of each LP equals 𝐿 = 
𝐿𝑇

𝑀
, so smaller number of 𝑀 results in larger number of 𝐿. Moreover, large value of 

𝐿 means that each LP accesses the larger amount of local CSI of APs. This leads to designing MR precoders 

with higher beamforming power and MMSE precoders with higher interference cancelation.  After this 

introduction, now we propose a comprehensive explanation for the simulation results of the paper. All the 

results that we observe in the paper can be summarized as follows: 

• MMSE precoders provide higher SE for UEs than MR precoders with both equal power and 

optimum power. 

• Using proposed power control algorithm to allocate optimum power to UEs improve the SE of UEs 

with both MR and MMSE precoders. 

• Increasing the number of LPs 𝑀 results in decreasing the SE of UEs with both equal and optimum 

power and MR and MMSE precoders. The only exception of this result is related to allocating 

optimum power to UEs under MR precoders where increasing 𝑀 leads to higher SE of UEs.  

To justify the first result, we focus on the advantage of MMSE precoders over MR precoders in canceling 

the interference. Due to this capability, MMSE precoders can provide higher SE for UEs compared to MR 

precoders. To justify the second result, we express that our proposed power control algorithm in this paper 

aims to maximize the sum SE of UEs. So, applying this power control algorithm results in allocating 

optimum powers to UEs that achieve higher SE for them compared to the case with equal power. The third 

result is the most important finding of this paper. To justify it, we remind that we utilize 𝐿𝑇 = 100 APs in 

our simulation and emphasize that small the number of LPs 𝑀results in large number of APs in each LP 𝐿, 

because we have 𝐿 = 
𝐿𝑇

𝑀
. So, small number of LPs leads to high amount of CSI sharing in each LP. 

Designing MR precoders from high amount of CSI improves the beamforming power of these precoders. 

Moreover, designing MMSE precoders from high amount of CSI enhances the capability of interference 

cancelation in these precoders. Based on this explanation, using 𝑀 = 2 results in the best performance with 
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both equal and optimum power and under MR and MMSE precoders. The only exception of this general 

result is the case of applying power control algorithm with MR precoders where we achieve the best 

performance with 𝑀 = 8 instead of 𝑀 = 2. In this case, the proposed power control algorithm can not 

efficiently cancel the interference to achieve the maximum sum SE because the normalized beamforming 

vector of MR precoders and the allocated power to this beamforming vector with our proposed power 

control are determined to satisfy two different criteria. It is worth emphasizing that the normalized 

beamforming vector of MR precoder is determined so that each UE achieves the maximum power. On the 

other hand, our proposed power control algorithm allocates the power to this normalized beamforming 

vector so that the sum SE of all UEs is maximized. Mathematically, this justification can be summarized as 

follows:  

 In our proposed LPs-AS, we obtained the modified MR precoder of 𝑘th UE to all APs of the  𝑚h LP as 

follows: 

    
, 1

, ,

,

C
k m NL

k m k m

k m

 = 
H

W
H

,                                                                                                                         (30) 

where 

1

, 1, ,,..., CNL

k m k m kL m

 =  H h h .                                                                                                                         

(31) 

In (30), the 
,

,

k m

k m

H

H
 is normalized beamforming vector and 

,

,

k m

k m

H

H
 is the allocated power to this 

normalized beamforming vector. According to the definition of MR precoder [13], the normalized 

beamforming vector 
,

,

k m

k m

H

H
  is determined so that each UE receives the maximum power. On the other 

hand, the aim of our power control algorithm is to determine the optimum values of 𝜌𝑘,𝑚 so that the sum 
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SE of all UEs is maximized. So, in our power control algorithm, we are only allocating the powers 𝜌𝑘,𝑚  to 

the fixed directions ,

,

k m

k m

H

H
. In this case, utilizing 𝑀 = 2  results in lacking the efficiency of power control 

algorithm to cancel the interference because, the beamforming vectors  
,

,

k m

k m

H

H
 are designed so that each 

UE receives the maximum power and most of allocated powers 𝜌𝑘,𝑚 are used to increase the received power 

of each UE not to cancel the interference. After this general discussion and justification, now, we focus on 

the simulation results and explain them. 

In Fig. 3, we examine the impact of three main factors—the number of LPs, the type of precoder, and the 

method of power allocation—on the average sum SE of UEs in the LPs-AS. As illustrated in this figure,  

MMSE precoders along with utilizing a small number of LPs provide higher SE for the UEs in the LPs-AS. 

Furthermore, the proposed power control algorithm results in the improvement of sum SE, particularly with 

MR precoders. 

 

 

Fig. 3: The effect of LPs number on the average sum SE of LPs-AS. 
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a) Equal power allocation.                          b) Proposed power allocation algorithm. 

Fig. 4: CDF of DL SE per UE of CF-mMIMO system using MR precoder. 

 

  In Figs. 4a and 4b, we evaluate the UEs’ SE with MR precoders designed by SDI. As illustrated in Figure 

4a, designing MR precoders using our proposed SDI can address the low SE of UEs in the DI, particularly 

when a small number of LPs are utilized in our LPs-AS. Furthermore, as shown in Fig. 4b, it is evident that 

the application of our proposed power control algorithm leads to an improvement in the SE of UEs and 

eliminates the dependency of SE on the number of LPs. In Figs. 5a and 5b, we employ MMSE precoders 

designed by our proposed SDI  to evaluate the SE of UEs in the LPs-AS.The results are highly similar to 

those obtained with MR precoders; however, MMSE precoders demonstrate superior performance due to 

their interference cancellation capabilities. Based on our results for heuristic precoders from Table. 5 and 

Figs. 4 and 5, we present the following significant finding for our LPs-AS: Utilizing an optimal number of 

LPs in our proposed LPs-AS and designing precoders with our proposed SDI significantly reduces the CC 

of precoder design without substantially degrading the SE of UEs. We will investigate this property for 

optimized precoders in our future papers. 
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a) Equal power allocation.                                   b) Proposed power allocation algorithm. 

Fig. 5: CDF of DL SE per UE of CF-mMIMO system using MMSE precoder. 

  

 

8   Conclusion 

In this paper, we proposed a novel LPs-AS for CF-mMIMO systems, which facilitates an SDI for precoder 

design in these systems. Our proposed LPs-AS utilizes several LPs to design precoders, with each LP 

connected to the CP and multiple APs, functioning as a precoding unit for its respective APs. We evaluated 

the LPs-AS in terms of SE and CC and proposed a power control algorithm to maximize the sum SE in this 

structure. Our numerical results demonstrated that by using a small number of LPs in the LPs-AS, our 

proposed SDI significantly outperformed its corresponding CI in terms of CC of precoder design. 

Furthermore, it effectively addressed the low SE of UEs in its corresponding DI. 
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