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ABSTRACT: This paper presents a new approach for guiding a pursuer to intercept a maneuvering
target in two dimensions. This robust nonlinear approach is based on the combination of predictive
control and sliding mode control. The guidance strategy uses a model predictive control method based
on the Laguerre function to calculate the pursuer’s acceleration command independently of the target’s
acceleration. To handle unknown target maneuvers, a sliding mode term is added to adjust to the target’s
acceleration commands, making the algorithm more robust against uncertainties and improving its
ability to pursue maneuvering targets effectively. The proposed guidance algorithm was extensively
tested through simulations with various target maneuvers, including non-maneuvering, step maneuvers,
sinusoidal maneuvers, and stochastic maneuvers. A detailed comparison was made with traditional
methods like proportional navigation, ant colony optimization-based predictive control, proportional
guidance with a bias switch, and a square programming approach based on differential game theory.
Additionally, to observe the effect of the design parameters in the proposed guidance law, a sensitivity
analysis is done on the convergence of the pursuer acceleration and the line-of-sight rate. Finally, the
influence of disturbances was investigated by adjusting the target acceleration parameter to 10%, 20%,
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30%, 50%, 75%, and 100% beyond the maximum value.

1- Introduction

A guidance subject is defined as finding the commands
to steer a pursuer to the desired path. The guidance phases
of a pursuer are usually divided into boost, midcourse, and
terminal [1]. There are various design methods for the terminal
phase guidance law, including proportional navigation
guidance developed extensively due to its simple design
and implementation[2—4]. Despite its good performance
against non-maneuvering targets, it performs poorly against
maneuvering targets. The improved proportional navigation
method is somewhat robust to maneuvering targets [5]
given the target’s acceleration, but ineffective against targets
with high maneuver [6,7]. Numerous methods have been
proposed to improve the guidance law against maneuvering
targets, most of which estimate the target’s maneuver using
different approaches. They also require a target estimator,
which increases computational burden and the likelihood
of target estimation error due to insufficient information
about the kinematics of the engagement. Nonlinear control
methods are often used to make the guidance law robust
to the target’s maneuver. Sliding mode control (SMC) is a
widely used control method in systems with uncertainty
[8—11]. In [12], second-order sliding mode control has been
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used to engage manecuvering targets and used smoothing to
eliminate chattering, which is also employed in the integrated
missile guidance and control system [13]. Also, in [14],
a second-order sliding mode control algorithm has been
proposed to intercept maneuvering targets and eliminate
chattering with a low-pass filter. A sliding mode observer has
been used to estimate the target’s maneuver while reducing
target estimation complexity with the Kalman filter. In [15],
a sliding mode control has been investigated to design and
improve the guidance law with a modified saturation function
based on adaptive laws. In [16,17], a sliding mode control
has been considered where the zero effort miss distance is
considered as the sliding surface. In [18], a robust guidance
method based on zero effort miss distance has been presented
to engage maneuvering targets, and proposed a new function
to properly estimate time to go. Likewise, robust control
methods [19,20]H , the Lyapunov function approach
[21,22], and linear feedback controllers were used [23,24] to
engage maneuvering targets.

The proportional navigation guidance law and nonlinear
guidance laws, which are mentioned above, do not consider
guidance acceleration constraints when designing the
guidance law. Although the acceleration command in
proportional navigation can assume any value without
restrictions, this assumption is not strictly true due to practical
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system limitations. For example, the system has limited
acceleration tolerance; actuators have a limited range to
apply the acceleration command, sensors can measure values
within a specific range, or system variables have upper and
lower limits that cannot be exceeded, fearing system damage
or malfunction [25]. In these methods, after exceeding the
permitted range with the acceleration command, the control
program will impose the maximum value. This method does not
guarantee an optimal acceleration command, and increasing
it to the saturation state in closed-loop systems may cause
instability with limited input control. Therefore, considering
the limitations in the design stage is very important and is
one of the key points in designing constrained systems. One
method that can consider design constraints is the predictive
control method[26,27].

Recent developments in the model predictive control and
information processing have made this method applicable
to systems with fast [28,29] and unstable dynamics [30].
Improved system robustness to uncertainty [31] and
simplification and reduction of computational burden [32]
have made this method applicable to airborne [33] and
aerospace systems. A combination of the model predictive
control and the robust control provides a powerful guidance
law for nonlinear guidance problems with unknown target
maneuvers. In [34], a robust model predictive guidance
law based on linear covariance has been proposed. First,
the closed-loop covariance method estimates the expected
errors of the nominal state variables in case of uncertainty
and uses them as part of the cost function to ensure the
system’s robustness. Then, the predictive control method
optimally solves the guidance problem. In [35], a robust
predictive control method based on neural networks has
been presented for solving the constrained problem. Due
to its computational burden, this method is ill-suited for
systems with slow processors. In [36], a robust predictive
guidance law has been investigated that uses an explicit
linear design for solving nonlinear optimization and uses
the modified robust L1 navigation law to ensure the robust
guidance problem can be solved. In [37], a nonlinear model
predictive guidance algorithm with a disturbance observer
has been designed according to the system’s dynamic
limitations. In [38], a heuristic nonlinear model predictive
terminal guidance algorithm has been presented that uses
an ant colony optimization algorithm to estimate pursuit
states, target maneuvers, and optimal guidance commands
simultaneously. Despite uncertainties, In [39], a nonlinear
robust model predictive guidance algorithm based on a
particle swarm optimization algorithm has been presented
to solve the problem of two-dimensional engagement of
a pursuer and a maneuvering target affected by matched
uncertainties. An uncertain guidance problem is converted
into a model predictive control problem by introducing an
appropriate objective function that reflects the uncertainty.
In [40], a robust predictive model for convex programming
for nonlinear missile and aircraft landing guidance has been
proposed. In this method, a convex optimization framework
for the cost function is used to consider inequality constraints
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and a sensitivity relationship between states and inputs. A
limitation of this technique is that increasing the prediction
horizon exponentially increases computations. Despite its
numerous advantages, the integral predictive control method
is computationally burdensome, which could be challenging
for real-time and practical implementation [41].

In [42] a predictive guidance method in the midcourse
phase based on orthogonal Legendre functions is introduced.
In this method, an interceptor midcourse guidance problem
with an angle constraint is formulated and solved to
intercept an incoming ballistic missile target. Although the
computational burden of this method is less than the GPC
method, there is no limitation on the guidance command, and
there is no ability to track maneuver targets if used in the
terminal phase

The implementation of the predictive control method
is one of the important parts of using this controller in the
industry. In [43] it has been done to check the hardware
implementation of the controller on the simulator of hydraulic
press machines. It was also implemented in an Embedded
system [44]. This method has also been implemented in the
aerospace system [45]. The implementation of the Laguerre
predictive control method to guide a flying object with the
ability to track maneuvering targets has been done in the
proposed article.

In this paper, a novel control strategy combining Model
Predictive Control (MPC) with Laguerre functions and Sliding
Mode Control (SMC) is presented. The MPC framework
is employed to systematically handle system constraints,
particularly addressing physical limitations such as actuator
saturation in practical implementations. The Laguerre function
approach is adopted to reduce computational complexity
through efficient control input parameterization, enabling
real-time applications. Furthermore, SMC is incorporated to
enhance system robustness against uncertainties, specifically
treating target acceleration as bounded disturbances.
This integrated methodology effectively combines the
complementary advantages of both control techniques,
offering a theoretically rigorous and practically viable
solution for complex control challenges. The contribution
of the current study is summarized as follows: a constraint
guidance law for nonlinear engagement of a pursuer and a
target using a combination of model predictive control based
on Laguerre’s functions and the sliding mode control has
been proposed to utilize the strengths of both methods. The
dynamic model of the pursuer autopilot is considered as a
first-order lag. To use model predictive control, the pursuer
and target engagement equations were linearized at the
operating point. The linearized state-space model was used
to calculate the optimal Laguerre gain, and the guidance
command was applied to the nonlinear model. Also, the
sliding mode term has been added to the guidance command
to engage maneuvering targets. Here, the target maneuver is
known as a disturbance term its maximum value is specified.
To the author’s knowledge, the nonlinear guidance problem
with autopilot lag and unknown target maneuver has not
been solved using a combination of model predictive control
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Fig. 1. The Two-Dimensional Model of the Pursuer and Target Kinematics of Engagement

based on Laguerre’s functions and the sliding mode control.
Performance of the proposed guidance law is evaluated via
various numerical simulations and compared to some other
approaches.

Some of the problems related to this method and the
practical techniques to solve it in this article are as follows:

Linearization should be performed around operating
points. To ensure the linear and nonlinear dynamic models
remain closely aligned, the system is linearized over short time
intervals. However, this increases the computational burden
at each time step. To mitigate this issue, the linearization
interval can be adjusted such that the linear and nonlinear
systems exhibit similar behavior, thereby reducing the
frequency of linearization while maintaining accuracy.

The computational volume due to the inversion of the
matrices may cause the system to go out of real-time mode.
To solve this problem, instead of performing the calculations
related to inverting the matrix, the calculations of the inverted
matrix can be solved parametrically, and then at each step
when inversion is needed, it can only be substantiated in the
parametric form.

The rest of the paper is organized as follows. Section 2
describes the mathematical equations governing pursuer
and target geometry, Section 3 states the guidance law, and
Section 4 presents simulation results and performance of
the proposed guidance law. Finally, section 5 presents the
conclusion.

2- Problem Definition

This section presents a two-dimensional nonlinear model
of pursuer and target kinematics of engagement shown in
Fig. 1, where subscript P denotes the pursuer and subscript
T denotes the target. The A angle is the line of sight (LOS)
measured relative to the X, reference, R is the relative
distance between the pursuer and the target, and the target
velocity vectors are respectively shown with V, and V; ,

respectively. a, and a, are respectively the pursuer and
target acceleration perpendicular to the velocity vector, and
a,, are respectively the pursuer and target acceleration
perpendicular to LOS.

The gravitational acceleration has a small acceleration
command in the terminal phase. By this assumption, the
relative kinematic equations of the pursuer and the target are
stated as follows [39]:

R = Vg cos(A + y1) — Vp cos(yp — 1) (1)
. Vysin(A+ — Vp si -1

i=rT sin( Yr) p Sin(yp ) 2)

R

. ap

Yp = V_P 3)
. ar

Yt = Vo “4)

In this kinematics of the engagement, R <0 and A=0
are the target engagement conditions. To obtain the state-space
according to the state vector as: X=[R R a ¥p V1 A
,the R and A should be derived. The time derivatives of

Equations (1) and (2) are as follows:

R =RA% + apsin(yp — 1) + apsin(yr + 1) (5)
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Fig. 2. The Block Diagram of MPSMG Guidance Law.

.1 .
A= R (—=2RA —ap cos(yp —A) + ar cos(yr — 1)) (6)

The dynamic model of the autopilot was considered a
first-order model:

) 1 +1
ap=——ap+-u
F Tt

(7

where, U is the input of the autopilot, and 7 is the time
constant of the pursuer. The nonlinear state-space equations
are as follows:

X1 (1) = x5(¢) 3
I ACEEAGEHG)

+x4(t) sin(xs(£) — x7(£)) + arsin(xg(t) + x, (1)) 2
4(6) = —— (~22, (23 (0)

X3 = X, (0) X2(2)X3 10
—x4(t)cos(x5(t) — Xy (t)) + aTcos(x6(t) + x7(t)))

_ 1 1

X, (t) = —;x4(t) + su (11)
45(t) = x‘;,(:) (12)
o

%@—W (13)

32

Ve sin(x; () + x6(t)) — Vp sin(xs (£) — x, (1))

14
@ (19

%7 () =

3- Model Predictive Sliding Mode Guidance

This section will obtain the equations related to designing
the Model Predictive Sliding Mode Guidance (MPSMG)
law in two parts: the first part is based on constraint model
predictive guidance using Laguerre functions, and the second
part is based on the sliding mode control. The MPSMG
guidance law block diagram is as follows. According to Fig.
2, the guidance command is obtained as follows:

AcCC ypspic = ACC yp + ACCqy

(15)

where, Accgy = psign(S), S =4 the sliding surface,
and p>max(a;) is a positive parameter and bounded. The
hyperbolic tangent function was used instead of the sign
function to eliminate chattering.

3- 1- Model Predictive Guidance Law Using Laguerre
Functions

This section presents the constraint model predictive
guidance term, Acc,,, , using Laguerre functions. Eqn. (16)
defines the difference of the acceleration command vector
AACC,;, for optimization in the prediction horizon N, :

AACCMP =
(16)

[AACCMP(ki) AACCMp(ki + 1) ...AACCMp(ki + Np - 1)]'I

Each element of AACC,,, vector in k ; time is expressed
in the following Dirac delta function:

AACCMp(ki + 1) =

7)
[6() 8G—1)..8(i— Ny + 1)]JAACCyp
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The time form of Laguerre functions is shown as the
following vector:

L(k) = [1,(k) LK) ... Iy(W)]" (18)

where vector | is orthogonal and conversion z-1 of
Laguerre functions.
Adcey, (k;), Adceey, (k; +1) and... Adecy, (ki +N, —1)
is the step response of the stable dynamic system. The
I,(m),..1,(m) 1is
considered for system dynamics in the design stage. Hence,
the Adecy, (k; +k)= icj (k)lj (k) Dirac delta response can

be defined as the follo(f/ling Laguerre functions:

set of Laguerre functions I,(m),

AACCMP(ki + m) =

(19)

L™= [L,(m) L,(m) ... Iy(m)n

The 7 is the Laguerre function coefficients,
77=[c] Cy e CN] . Appendix A completely proves the
differential acceleration command in terms of Laguerre
functions.

The Linear Quadratic Regulator (LQR) method was
used to optimize the guidance command, where the input
is zero, the output is the signal error, and optimization is
aimed at minimizing the squared errors to determine state
coefficients. Stability can be evaluated using this well-
known method. To test the LQR method’s stability, the
prediction horizon is set to infinite, and the problem is
considered unconstrained [46]. X(ki +m|ki) is considered
as state vector, Q, and R, are weight matrices used in the
design to adjust the model. Considering the Q =C'C, the
two expressions in Eqn. (20) will be similar to the cost
function. The first expression represents the prediction
method’s cost function, and the second represents the LQR
objective function.

NP
J= > x(ki +mlk)" Qx( + mlk) +7"Ryy  (20)

m=1

Thus, the new states are defined as (21).
x(k;) = [Axpm (k)T Aceyp (k)" 1)

In the new equation defined for states, instead of
considering only the output, an error is also considered:

X(ki + mlkl) =

(22)

[Axp (ki + m|k)T  Aceyp(k; + mlk;) — r(k)]"

The predictive equation on the prediction horizon is
rewritten as follows:

x(k; + mlk;) =

m-1

A"x(k) + Y A™1BL(3)™q = (23)

=0

A™x(K;) + d(m)™n
where the ¢ matrix is defined as (24).

m—1

é(m)" = Z A IBL(I)T (24)
i=0

The cost function is rewritten according to the ¢ .

Np
J=1" ) $0mQp(mT + Ry
m=1

(25)
Np

+207C) " p(m)QA™x(k)
m=1

Np

+ ) x(k)(AN)™QA™x(k;)

To obtain7y , it is derived from the cost function obtained
according to this parameter.

Np
d
% - Z(mZ:l $(m)QP(m)T + R,
26)

Np

+2 ) p(mQA™X(K)
m=1

Assuming that matrix (27) is invertible, the derivative of
the cost function in terms of 77 is zero, and the 77 matrix is
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obtained as follows.

Np
> mQdm)T +Ry) 3
m=1
Np
== dmQpm)"
" (28)

Np

FRYT D b(m)QAMx(K)
m=1

Thus, the Laguerre coefficients are obtained by minimizing
the cost function. The following expressions can be used for
further simplification.

Np

2= $mQPmT +R,
m=1

Np

29)
U= $m)QA”
m=1

n = -0 "Px(k)

The minimum cost function based on Laguerre coefficients
(7)) will be as follows.

Np

J=n" ) $mQd@m)T +Ry)n
m=1

Np

4207 ) pm)QA™)x(ky)
m=1

Ny

(30)
* Z x (k)" (AT)™QA™x(k;) =
m=1

(M + Q7' x (k) 2 (n + 7 x(ky))

Np

—x ()W x(k) + ) x()T(AT)QA™x(Ky)
m=1

34

By simplifying Eqn. (30), we have:

Np
J=x0)T| D ATmQA™ — yTe g |x(k)
m=1 (3 l)
= X(ki)TPdmpcx(ki)
NP
where P, =>(47)"04" -y QY. Convolution

. m=l . .
coefficients are summarized in (32) in terms of Laguerre
coefficients.

m—1

S (m) = Z AM=iF1BL()T (32)
i=0

Due to the problem’s complexity, the recursive method is
used to calculate the convolution coefficients.

L(k + 1) = A,L(K)
Sc(m) = AS.(m — 1) + S, (DA DT (33)

S.(1) =BL(0)" and m=234,..,N,

The AAcc,,, is used in the model predictive guidance
method, and AAccC,;, is calculated from the Laguerre
coefficients (77). The following equations are used to obtain

AAcey, -
AACCMp(ki) = L(O)Tn (34)

By considering AAcc,,, as the following equation, the
state feedback is given to the system.

AAccyp(k) = —Kpmpcx(k) (35)
Np

Kipe = LO)T() d(m)Qep ()"
" (36)

Np

FRYT Y mQA™ = LO)Ta My
m=1

After calculating the wvariation in the acceleration
command, the acceleration command will be applied to the
flying object system as Eq. (37):
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ACCMP (k) = ACCMp(k - 1) + AACCMP (k) (37)

In Eq. (37), there is an inherent integrator that causes
complete tracking of the guidance command and also
eliminates noise and high-frequency oscillations. Therefore,
according to Eq. (37), the proposed model predictive guidance
law is similar to a linear quadratic regulator; in other words,
it is an optimal real-time guidance law. The stability proof
of the robust predictive controller based on SMC is given
in [47] in section five. It should be noted that the robust
predictive controller based on SMC presented in [47] is not
based on Laguerre functions, while the proof of stability is
comprehensively presented.

3- 2- Stability Proof for Hybrid (MPSMG) Guidance Law

This section provides a formal stability proof for the
hybrid Model Predictive Control (MPC) and Sliding Mode
Control (SMC) guidance law (MPSMG) using Lyapunov
theory. It is understood that for a large prediction horizon
and a large N in the Laguerre functions, the optimal control
trajectory converges to the underlying optimal control dictated
by a continuous-time linear quadratic regulator (LQR) with
the same weight matrices Q and R. The cost functions of
predictive control and LQR become nearly identical [48,49].

Considering the target acceleration as a perturbation, the
pursuer’s linearized dynamics are given by:

X = AX + B(Acc yp + Accgyg) + Dag (38)

Where, Acc, = —Kmpc X is the MPC-based acceleration
command (Due to the filtering property of the differential
guidance command, the optimal signal is ultimately
a coefficient of the states and equal to K mpe 1491 ),
Accyy = ptanh(D) is the SMC term (with p > max (a,)),
ap is the bounde?i target maneuver (disturbance).

For sliding term, S =] the sliding surface, its time

derivative (from engagement kinematics):

. —2RA cos(yp — 2)

R R Acc MP
fx 9
rp =4 S (r+4) 7
—cos(yp — cos(yr +
+T‘D tanh (E) + — g
fey) A®x)
The Lyapunov function is considered as follows:
1
V=X'PX+-S? (40)

where P is the solution to the Lyapunov equation for
MPC term.

ATP+PA=-0Q,0>0 (41)

To prove stability, the derivative of V must be calculated
and found to be negative:

V =XT(ATP + PA)X

+2XTPB (Acc mp ACCSMG) + SS = (42)
—XTQ X + 2X"PB (Acc yp + Accgyg) + SS
2X"PBAcc,, in combination with -X'Q X, it

leads to the negative definite expression

X' QX |
SS =S {f (x)+g(x )(—Kmpg X+ptanh(S)j)+A(x )aTT .
€

For pZmax|aT|+77, and small €; SS 3—77|S| and
2X' PDa, is dominated by S§ .
Final Inequality is as follows:

V< —XTQX— 7S/ <0 forVX=+0,S#0 (43)

Therefore, the stability condition of the hybrid method is
as follows:

*For MPC: 0 >0 , (4,B) stabilizable.
* For SMC: p>max|a;|+7, €>0

3- 3- Constrained Model Predictive Guidance Law Using
Laguerre Functions

Structural and velocity constraints lead to constraints on
maximum, minimum, and acceleration command changes,
which are expressed as follows:

Accpin < Acc < Accpyin

(44)

AAcCi, < Acc(k) —Acc(k—1) < AAccy, Yk

Now, to consider the constraints in the cost function, they
must be defined as the matrix inequality, M Au, , <N
where the matrices M and N are defined as follows.

T [ 10 — Ace(k — 1)1 1
_|-T _ | luppin + Ace(k — D
M= I N = 1AACC,, 4y (43)
—1 —1AAcc,,;,
where 1 is a vector with 7, entriesand T, =~ isalow

triangular matrix with unit value.

35
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Table 1. Comparison of computation time in per iteration in different methods

Computational Method Matrix Inversion Time (s) Total Cycle Time (s)
Conventional MPC 0.42 £0.05 0.60 + 0.07
Proposed (Laguerre-Parametric) 0.02+0.01 0.15+0.03

The constrained differential control signal is obtained as
follows, where the optimal Lagrange coefficient is derived
from quadratic programming [49]. Constrained control
requires real-time optimization using quadratic programming.

3- 4- Implementation and Execution Considerations of the
proposed method

The primary challenge in implementing model predictive
control for real-time applications lies in its computational
complexity, particularly due to the need for online
optimization and matrix operations. As highlighted in the
literature, the conventional MPC approach often struggles to
meet real-time requirements, especially in dynamic systems
with fast dynamics, such as flying objects.

To address this challenge, Laguerre functions have been
widely adopted to reduce the computational burden by
parameterizing the control trajectory, thereby decreasing the
number of decision variables49,50] ]. While this approach
significantly improves computational efficiency, further
optimizations are necessary to ensure real-time feasibility in
high-frequency control systems.

In this paper, we introduce two key enhancements to
further reduce computation time:

Parametric Matrix Inversion:

Instead of performing real-time matrix inversion (which
is computationally expensive), we pre-calculate the inverse
in parametric form.

During execution, only parameter substitution is required,
reducing the online computation load by 95% (from 0.42s to
0.02s per iteration).

Element-wise Simplification:

We exploit structural properties of the matrices to avoid
full inversion.

Recursive algebraic relations are used to compute only
the necessary elements, reducing complexity from O(n?) to
O(n?).

4- Simulation Results

This section evaluates guidance law performance through
simulation in six scenarios. The first scenario evaluates a
non-maneuvering target; the second scenario assumes that
the guidance command is limited with a non-maneuvering
target. The third scenario investigates the proposed guidance
law performance against a target with a step maneuver;
the fourth scenario considers the target’s acceleration to be

36

stochastic and it is compared to the Augmented Proportional
Navigation (APN) guidance law. The fifth scenario evaluates
the guidance law performance against a target with a
sinusoidal maneuver. The sixth scenario, Performance of
the proposed guidance law (MPSMGQG), is compared with the
MPC-based ant colony guidance algorithm, State-Dependent
Riccati Equation-Differential Game (SDRE-DG), and Linear
Quadratic Differential Game (LQDG). Finally, to test the
effect of the design parameters in the presented guidance law,
a sensitivity analysis is presented.

The design parameters include prediction horizon, N, .
In [49], predictive horizon changes on system response have
been investigated, and the results suggest that the appropriate
horizon selection depends on the speed of system dynamics.
N is the number of Laguerre networks, and a higher value
means that the system estimated the Laguerre network more
accurately. a is the Laguerre functions’ poles and should be
0<a <1 for stability. R, is the weighting coefficient.

This study employs a systematic two-phase approach
for MPC parameter optimization. The initialization phase
establishes baseline values through theoretical analysis
and preliminary simulations, where the prediction horizon
is calibrated to achieve optimal response characteristics.
Comprehensive sensitivity analyses determine the Laguerre
network order N=2 (in most scenarios) and pole parameter
a=0.99, while weighting matrices are configured using
system dynamics principles.

The optimization phase implements a rigorous multi-
objective framework incorporating settling time, overshoot,
and computational efficiency metrics. Advanced numerical
techniques refine parameters within operational constraints,
yielding a configuration that demonstrates robust performance
across all test scenarios. Experimental validation confirms the
approach maintains overshoot below 3% while guaranteeing
real-time computational feasibility, with detailed sensitivity
analyses supporting these parameter selections.

Table (2) presents the data of the simulation scenarios.
Parameters of the presented guidance law are illustrated in
Table (3). The sampling time is considered 0.1 Sec.

4- 1- First Scenario: Non-Maneuvering Target

The trajectory of the engagement is shown in the Figure 3
(a). The simulation results show that the proposed guidance
law has been able to zero Line of Sight (LOS) rate in 2.8
seconds despite the dynamics of the autopilot and maintain it
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Table 2. Simulation Parameters for six Scenarios.

o/sec

Parameter Napn Ro(m) yopo Yoo A° Xo ar(m/s?)  Vp(m/s) V¢(m/s) 1t Accgy,
First Scenario 3 4800 25 10 30 2 0 450 200 0.15 -
Second Scenario 3 4800 25 10 30 2 0 450 200 0.15 +20g
Third Scenario 3 4800 25 10 30 2.2 6g (step) 450 200 0.15 +20g
Fourth Scenario 3 4800 25 10 30 2.2 Random 450 200 0.15 +20g
Fifth Scenario 3 4800 25 10 30 2.2 6g sin(n;t) 450 200 0.15 +20g
Sixth Scenario 3 2600 7 7 7 1.75 10g (step) 600 400 0.15 +20g
Table 3. Parameters of the Proposed Guidance Law.

Parameter Np N a Re 3 p

First Scenario 100 2 099  le-20 - 0

Second Scenario 100 2 099  1le-20 - 0

Third Scenario 100 2 099  1e-20 1 1500

Fourth Scenario 100 2 099 1e-20 1 1500

Fifth Scenario 100 2 0.99  1e-20 1 1500

Sixth Scenario 50 10 0.99  1e-30 1 0

until the end of the path. The pursuer requires 8.24 seconds
to hit the target, and the miss distance is 2.25 meters. Also,
the overshoot of the LOS rate is 10%. The zero LOS rate is
important in the guidance system, especially ifthe engagement
is time-limited. For a fast LOS rate, a large acceleration
command should be applied to the system. Figure. 3 (b)
and (c) show the relative distance and the relative velocity
versus time, respectively. Moreover, the LOS angle, the flight
path angle of the pursuer, and the LOS rate are presented in
Figures 3 (d) and (f). Finally, the pursuer acceleration and the
guidance command are illustrated in Figure. 3 (g). Since the
target has no maneuver, the steady-state value of the pursuer
acceleration is zero.
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4-2- Second Scenario: Non-Maneuvering Target and

Constraint on the Pursuer Guidance Command

Here, the constraint for the guidance command of the
m

pursuer is [—ZOg, 20g] , =10 —. Also, the variation of
the guidance command is limited o [-10, IO]EZ. Simulation
results show that the proposed guidance law his been able to
zero Line of Sight (LOS) rate in 2.11 seconds, and the miss
distance is 2.40 meters. In this scenario, the overshoot of the
LOS rate is zero, and the interception time is 8.25 seconds.
Figure 4 (a)-(f) presents the pursuer and target trajectory, the
relative distance, relative velocity, LOS angle, flight path
angle of the pursuer, and the LOS rate versus time. As can be
seen in Figure 4 (g), the command is limited to 20g.
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Fig. 3. Simulation Results for the First Scenario: (a): Pursuer and target path; (b): The relative distance between
the pursuer and the target; (c) The relative velocity between the pursuer and the target; (d) LOS angle; (e) Flight
path angle of the pursuer; (f) LOS rate; (g) Guidance command and pursuer acceleration.
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Miss Distance = 2.403 m
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Fig. 4. Simulation Results for the Second Scenario: (a): Pursuer and target path; (b): The relative distance be-
tween the pursuer and the target; (c) The relative velocity between the pursuer and the target; (d) LOS angle; (e)
Flight path angle of the pursuer; (f) LOS rate; (g) Guidance command and pursuer acceleration.
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Fig. 5. Simulation Results for the Third Scenario: Pursuer and target path; (b): The relative distance between the
pursuer and the target; (c) The relative velocity between the pursuer and the target; (d) LOS angle; (e) Flight path
angle of the pursuer; (f) LOS rate; (g) Guidance command and pursuer acceleration.

illustrated in Figure 5 (a)-(g). The time required for the
pursuer to hit the target is 14.19 seconds, and the miss
distance is 2.8° meters. The target maneuver and the initial
heading error generate the LOS rate, and the pursuer executes
a lateral maneuver to decrease the LOS rate.

4- 3- Third Scenario: Target with Step Maneuver (6 g) and
Constraint on the Pursuer Guidance Command

As listed in Table 1, in this Scenario, the target performs a
step maneuver. Also, pursuer guidance command constraints
are considered as in Scenario 2. Simulation results are
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Fig. 6. Stochastic Target Maneuver Acceleration in the Fourth Scenario

4- 4- Fourth Scenario: Target with Stochastic Maneuver and
Constraint on the Pursuer Guidance Command

In this scenario, the target has a stochastic maneuver that is
simulated with a white noise pass of the 3rd-order Butterworth
filter. Simulation results are illustrated in Figure 7 (a)-(g).
The time required for the pursuer to hit the target is 14.19
seconds, and the miss distance is 13.84 meters. The constraint

for guidance command of the pursuer is [-20g, 20g] , g=10
Ez. The final instability in Figure 7 (g) is dependent on the

Sivergence of the LOS rate.

Figure (8) compares the performance of the presented
guidance law with the APN. The target acceleration needed
for the APN, is taken from the simulation. Figure (8)
demonstrates that the APN guidance law cannot provide
the required acceleration to hit the target with a stochastic
maneuver. A sensitivity analysis was performed to show the
effect of changing the effective navigation ratio on the APN
guidance law performance. In APN, the effective navigation
ratios are 3, 5, and 7. The simulation results show that with
increasing the effective navigation ratio, the MD for the
target with random maneuver is reduced, but the acceleration
command is saturated, and if the target accelerates at the last
moment, it is not possible to intercept it in the APN method.

4- 5- The Fifth Scenario: Target with Sinusoidal Maneuver
and Constraint on the Pursuer Guidance Command

When the target does a sinusoidal maneuver, MD and
interception time are 2.026 m and 8.88 sec, respectively.

Simulation results are illustrated in Figure 9 (a)-(g).
As can be seen, the guidance command has not touched a
constant value since the target has the sinusoidal maneuver.
Here, the instability of the guidance command at the end time
is due to the divergence of the LOS rate.
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4- 6- The Sixth Scenario: Target with Step Maneuver (10 g)
and Constraint on the Pursuer Guidance Command

Figure (10) compares the performance of the proposed
guidance law, MPSMG, with MPC-based ant colony, State
Dependent Riccati Equation-Differential Game (SDRE-DG),
and Linear Quadratic Differential Game (LQDG) laws in
the presence of a step target maneuver, 10g. The simulations
are selected according to [49] as given in Table 1. As can
be seen, the presented guidance command reaches 15g after
0.3 seconds and 9.7g at the end, whereas the MPC-based ant
colony guidance command reaches 15g after 0.5 seconds,
which is reduced to 12.2g at the end. Also, the results show
that the amount of acceleration command of SDRE-DG
and LQDG is more than the acceleration command of the
proposed guidance law.

To observe the effect of the design parameters in the
proposed guidance law, a sensitivity analysis is done on the
convergence of the pursuer acceleration and the LOS rate.
Figure (11) a and b illustrate the effect of N, . Increasing
the value of N, decreases the LOS rate convergence and
decreasing its value increases the guidance command. Figure
(11) c and d illustrate the effect of N . Increasing the value of
N decreases settling time, and decreasing its value decreases
the guidance command. Figure (11) e and f illustrate the effect
of a . Increasing the value of @ increases settling time and
decreasing its value increases the guidance command. Figure
(11) g and h illustrate the effect of R, . Increasing the value of
R, increases settling time, and decreasing its value increases
the guidance command.

Finally, the influence of disturbances in the third scenario
detailed in Table 1 was investigated by adjusting the target
acceleration parameter to 10%, 20%, 30%, 50%, 75%,
and 100% beyond the maximum value. The miss distance
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Fig. 7. Simulation Results for the Fourth Scenario: Pursuer and target path; (b): The relative distance between
the pursuer and the target; (c) The relative velocity between the pursuer and the target; (d) LOS angle; (e) Flight
path angle of the pursuer; (f) LOS rate; (g) Guidance command and pursuer acceleration.
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Fig. 8. Simulation Results of the Fourth Scenario (Comparison of the Proposed Guidance law and APN): (a) The
relative distance between the pursuer and the target; (b) The relative velocity between the pursuer and the target;
(¢) LOS rate; (d) Guidance command and pursuer acceleration.

(MD) derived from the proposed method (MPSMG) and
the Augmented Proportional Navigation (APN) guidance
algorithm are presented in Table 4.

5- Conclusion

This study introduced a constrained guidance law for the
nonlinear engagement of a pursuer and a target, integrating
Model Predictive Control (MPC) based on Laguerre functions
with Sliding Mode Control (SMC). The target’s acceleration
is treated as unknown, with only its maximum value
specified. The design of the guidance law takes into account
the dynamics of the pursuer’s autopilot. To implement MPC,
the nonlinear kinematics of both the pursuer and the target
were linearized around a specific operating point, allowing
the derivation of an optimal Laguerre gain from the linearized
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state-space model. The guidance command was subsequently
applied to the nonlinear model, with an added sliding mode
term to effectively engage maneuvering targets.

The performance of the proposed guidance law was
evaluated through numerical simulations, comparing
its effectiveness against both non-maneuvering and
maneuvering targets. Results demonstrated that the law
maintained a zero Line of Sight (LOS) rate and outperformed
traditional methods, MPC-based ant colony, State Dependent
Riccati Equation-Differential Game, and Linear Quadratic
Differential Game laws, particularly in scenarios involving
high target maneuverability.

A sensitivity analysis revealed the significant influence
of parameters such as prediction horizon and Laguerre
coefficients on the overall performance.
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convergence rate and acceleration command; (c) and (d) effect of N; (e) and (f) effect of a; (g) and (h) effect of RL.

Table 4. The effect of disturbance on the MD.

Disturbance Bound

Guidance Law +10% +20% +30% +50% +75% +100%
MPSMG 6.17 7.02 7.29 9.83 25.39 73.07
APN 15.96 32.60 54.26 110.13 196.65 290.20
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Appendix A: Calculate the differential form of command acceleration of Laguerre Functions
The variation of the acceleration command in the control horizon can be as follows [49]:

AAcc = [AAcc(k;) AAcc(k; + 1) ...AAcc(k; + N, —1)]" (A.1)
The variation of acceleration command can be written according to the following Dirac delta function:
AAcc(k; +1) =[8(i) 6(i—1)..6(i—N.+ 1)]AAcc (A2)

Also , Laguerre functions are defined as (A.3):

V1 —a?
N =1
1-a%2 z1-a (A.3)
I2(2) = 1-az11—-az?

1-a?2 z1-a
I'N(Z):l_az_l(

N-1
1-— az‘l)

a is the Laguerre function pole and should be 0 < a < 1 for stability. Laguerre functions are orthogonal,
meaning that the integral of multiplying the function in itself is one and zero for other functions. According

to Parseval's theorem:

1

Vs
[ F(ei) (o) do = 1

-1

(A4)

1 (" . ok
Ef Fm(ef‘”)l"n(ej‘“) do=0 m=#n
-7

Considering the common part that exists in all terms of logger functions, the expressions can be written

recursively:
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-1

VA —a
Fk(Z) = Fk_l(Z)m\/ a? + b2

(A.5)
I(2) = V1 —a?
W= a1
The time form of Laguerre functions is as follows:
L(k) = [1,(k) 1,(k) ... Iy(R)]" (A.6)
And its recursive equation will be as follows:
L(k+1) =ALk) (A.7)

The A; is a N X N matrix which is a function of a, andf, respectively. a is the pole of functions and £ is

defined according to a:

p=(1-a* (A.8)
The value of L(0) will be as follows:

L0)T = /B[1—a? a®—a®..(-1)" a1 (A.9)

The equations are true for orthogonal Laguerre functions in the infinite horizon, and restricting the horizon
may change this condition. The correct horizon selection depends on the system’s slow or fast dynamics.
Also, Laguerre functions can be used to reduce calculations and parameters. (A.10) is used to extend

orthogonal functions.
H(k) = Clll(k) + Czlz(k) + + CNlN(k) (AIO)

where C; are the functions’ coefficients.
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¢; = ) H(k);(k) (A.11)

Due to the infinite number of terms, the error term is close to zero. This error term is defined as follows:
oo N
Jse = ) (HOO) = ) eily()? (A12)
k=1 i=1
The AAcc signal is obtained from the Laguerre expansion as follows:
N
Mce(k; + K) = Z ¢; (k)L (k) (A.13)

i=1

The unknown coefficients are turned into a 1 vector and AAcc(k; + K) is replaced with L(i)Tn.

N =[cicy ...cn]” (A.14)
Thus:
m-1
x(k; + mlk;)) = A™x(k;)) + » A™ U 1BL(>i)™q
i=0
(A.15)
m—1
Y(kl + mlkl) = CAmX(kl) + CAm_i_l BL(i)TT]
i=0

The resulting equations are substituted in the cost function as follows.
J=Rs—Y)T(R; —Y) + AAcc™R, Acc (A.16)

where:

Np
RT = [T L. 1k
(A.17)

Y = [y(k; + 1|k;) y(k; +2|k;) ... y(k;+Nplk)] "
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AU = [Au(k;)) Au(k;+1) .. Au(k;+N.—1)]T

For the pursuer to track the target, the LOS rate should be zero. Therefore, r(k;) should be considered zero.

R, is a diagonal matrix with identical element 7,,. Y and AAcc are in vector form. In equation (A.16)

second term is replaced by (A.18):
NP
AAcc™R, Acc =
m=0

Finally cost function (A.16) is equal to (A.19):

Np

AAcc(k; + m)Tr, AAcc(k; + m)

(A.18)

= D (k) =y U+ mlk )T (r(ko) =y + mlky)
m=1

Np

- Z AAcc(k; + m)Tr, AAcc(k; + m)

m=0

(A.19)

Thus, differential acceleration command according to Laguerre functions are obtained as follows.

AAcc(k; + m) = [l;(m) L,(m) ... Iy(m)n
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