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ABSTRACT: In some deep reinforcement learning models, an experience replay buffer is utilized 
to address the issue of sequential data dependencies and leverage useful data generated in the past. 
Then, the prioritized experience replay (PER) method modified sampling from this buffer for training 
the DQN model, moving away from random selection to choosing each transition in proportion to its 
temporal difference (TD) error. This method does not use the importance of transitions and the number 
of times that each transition contributes to model training. We proposed a new prioritization method for 
calculating the probability of selecting each transition adopted to the importance of that transition and the 
contribution counter. So in this method, instead of relying solely on the TD error, three additional values, 
including transition reward, transition counter, and policy probability (RCP values) are incorporated. 
These three values are obtained for each transition, and after normalization, they are used to calculate 
the probability of that transition in the sampling from the replay buffer. Experiments conducted on some 
Atari environments demonstrate that each of these values can significantly improve the episode return 
compared to the simple prioritization method. Furthermore, three aggregation functions, including min, 
max, and mean, are proposed to utilize all three RCP values in data prioritization. The results of the 
experiments indicate that the aggregation function should be determined based on each environment, 
but the ‘mean’ aggregation function can be a preferred choice due to its acceptable performance across 
different environments and the incorporation of all three RCP values.
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1- Introduction
In recent years, deep reinforcement learning has garnered 

significant attention as a powerful framework for training 
agents to make sequential decisions in complex environments. 
This approach combines the power of deep neural networks 
with reinforcement learning algorithms to achieve remarkable 
performance in various tasks, ranging from game playing to 
robotics and autonomous driving.

One of the most well-known models in deep reinforcement 
learning is the Deep Q-Network (DQN) proposed by [1]. 
DQN introduced a neural network architecture that learns to 
approximate the state-action value, Q(s, a), from the input 
transitions, enabling agents to find the best action in any state.

In online reinforcement learning, agents sequentially 
interact with the environment, generating a stream of data 
samples, and these data are used in model training. One of 
the challenges of this approach is the sequential dependency 
of data, which contradicts the i.i.d. assumption data used in 
neural networks. Additionally, valuable data generated in the 
past is lost in this process, reducing the potential for reuse.

To address these issues, the concept of experience replay 
has been introduced [2], utilizing a buffer to store previously 

generated data and sampling from this buffer for training. 
Employing this method in online reinforcement learning 
improves the results and can also be beneficial when training 
data are limited.

In conventional deep reinforcement learning approaches, 
sampling from the replay buffer is typically done uniformly 
at random. However, it is well-known that not all data 
in the buffer contribute equally to the learning process. 
Some transitions are more informative than others, making 
it beneficial to prioritize their selection. The Prioritized 
experience replay (PER) [3] method introduces a more 
intelligent approach to sampling data from the buffer instead 
of uniform random.

The primary motivation behind PER stems from the 
variation of transitions in terms of their significance; they 
may be more or less surprising, redundant, or directly 
relevant to the learning task. The key concept driving this 
method is the use of the temporal-difference (TD) error, 
which serves as a proxy for the informativeness of each data 
transition. Transitions with higher TD errors are considered 
to contain valuable information that can enhance the learning 
process and are therefore prioritized for selection with higher 
probability.

In this study, we proposed Adaptive Prioritized Experience *Corresponding author’s email: ebadzadeh@aut.ac.ir
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Replay that considers not only the TD error but also other 
features of the data, including the probability of an action in a 
given state ( | )a sπ , the reward obtained from the transition, 
and the frequency of using the transition in training. In this 
method, unlike the previous approach, instead of using a 
constant value for the exponent of the TD error (like PER), 
this exponent is calculated based on three proposed values 
related to each transition.

In the next section, relevant research studies are reviewed, 
and after getting familiar with the past replated works, the 
proposed method is introduced. Finally, the results of the 
proposed method are presented in some Atari environments.

2- Related Works
In the real world and within human cognition, recent 

events associated with significant rewards or errors tend to 
be more frequently replayed [4-7]. This observation has been 
leveraged in various algorithms, where data are sampled and 
utilized with different priorities [8].

In deep reinforcement learning, several methods utilize 
the temporal-difference (TD) error to prioritize data. One 
notable approach is the Prioritized Experience Replay (PER) 
method [3], which calculates the probability of selecting each 
transition based on this error. To mitigate bias towards high-
error data and to maintain diversity, importance sampling 
weights are employed, adjusting the magnitude of weight 
update during network training.

Numerous enhancements have been proposed to improve 
the PER method, enhancing its efficiency and applicability. 
For example, to handle larger datasets effectively Distributed 
Prioritized Experience Replay method [9] is introduced that 
uses a distributed architecture.

PER was originally introduced for the DQN model and 
showed promising results. However, recent research tried to 
extend its application to other deep reinforcement learning 
models. In the model proposed by [10], the PER method is 
integrated into the DDPG model, yielding enhanced results. 
Also, while empirical studies have demonstrated limitations 
of the PER in off-policy actor-critic models, [11] proposed 
some modifications to this method to enable its use in actor-
critic models. Additionally, in research conducted by [12], the 
concept of PER was extended to model-based approaches.

Recent studies have proposed refinements to the PER 
method and addressed identified limitations. For instance, 
one approach aims to incorporate the value of each transition 
in prioritization [13], while another seeks to prevent priority 
values from becoming outdated during training [14]. Similar 
to these studies, we proposed adaptive experience replay, 
which is a new method to enhance the original PER method 
by introducing three values for each transition to prioritize 
the importance of data in the replay buffer.

3- Adaptive Prioritized Replay Buffer
3- 1- Prioritized Experience Replay

If data ( ), , , s a s r′  exists for each transition in the replay 
buffer, the DQN method attempts to predict the Q-value for 
state 1s  and action a  using a neural network θ . The target 

Q-value is obtained using a target model θ ′ , which is a 
copied version of the model θ .
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In this equation, δ  is the magnitude of the temporal-
difference (TD) error, and γ  is a discount factor.

The prioritized experience replay (PER) method utilizes 
the TD error and assigns a probability to each data in the 
buffer so that data with higher errors are more likely to be 
selected.
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Based on the PER paper [3], the exponent α  is set to 
a fixed value of 0.6. To address bias in high-error data, 
importance sampling weight is applied to reduce the impact 
of model updates on data with higher priority. 
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Which N  is the replay buffer size and exponent β  is 
scheduled from the initial value 0 0.4β =  to 1 linearly [3]. 
By employing this method, higher-error data can contribute 
more to the training, ensuring their valuable information 
is effectively learned. This method can improve learning, 
increasing the return value in many environments compared 
to the DQN method with uniform random sampling from the 
replay buffer.

3- 2- Prioritization with RCP Values
In this research, we consider the PER method as the 

baseline and propose a novel method for calculating the 
priority of each data. In this method, in addition to the TD 
error, we incorporate three additional values, including 
the reward of the transition, the number of times that each 
transition has been used in training the model, and the 
probability of the action in the current state ( )( )|a sπ , in 
the calculation of the priority of that data. We will refer to 
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these three values as RCP (Reward, Counter, Policy). 
Reward: Assume two transitions have been used in 

training the model, both having the same TD error. However, 
if the reward obtained from the first transition is significantly 
higher than that of the second, learning valuable information 
in the first transition will be more important. This is in contrast 
to the PER method, which considers equal probabilities for 
these two data due to their identical TD errors.

Because of the variety of reward values defined in 
different environments and transitions, the reward value in 
each transition is normalized to have a number between 0 to 
1 as the reward of any transition (see Algorithm 1).

Counter: In cases where two data points have the same 
TD error but one has been used 10 times in training while 
the other only once, it is better to assign higher priority to 
the less frequently used data. Additionally, if a data point is 
noisy and consistently has a high error, without considering 
the frequency of its contribution to the training, it can be 
consistently utilized, posing challenges to the training 
process. We know that the PER method does not account for 
these factors.

To use this value in calculating the priority of the 
transitions, the sigmoid function is used to obtain the 
normalized counter, which is a number between 0 to 1 (see 
Algorithm 1).

In the counter normalize function, normalization initially 
results in slight changes near 1 with an increasing number 
of uses, but as the count increases further, the value rapidly 
approaches 0.1 (Fig. 1)

Policy ( )( )π a | s : A higher probability of action in the 
current state indicates that the Q-value for that state-action 
pair is higher than the Q-values for the same state and other 
actions, implying the greater importance of this transition, but 
this aspect is not considered in the PER method. In a method 

like DQN where ( )|a sπ  is not directly available, this value 
can be calculated using the state-action values.
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In the proposed method, ( )|a sπ  is first calculated using 
this relationship, and then it is used in a new prioritization 
process (see Algorithm 1).

3- 3- Adaptive Prioritization
In this research, we have utilized RCP values to enhance 

the prioritization of each transition in the buffer more 
effectively. As seen in equation (3), the parameter α  is the 
exponent of TD error and determines how much prioritization 
is used. If we set this parameter to zero, the probabilities of 
all transitions become equal, and sampling will be uniformly 
at random. However, as this parameter increases, we move 
further away from random sampling.

Despite the importance of the value of this parameter, the 
PER method sets a constant value for it and does not change 
it during training. In the proposed prioritization method, this 
parameter is defined based on the information associated with 
each data. So the priority value for each data is determined 
using TD error and data-dependent parameter α .
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ALGORITHM 1:  CALCULATE  RCP  VALUES 
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Where the parameter α  is dependent on the values of 
the normalized reward, normalized counter, probability of 
action in the current state ( )( )|a sπ  (RCP values), or a 
combination of them.
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So the training algorithm for DQN using the proposed 
prioritized replay buffer will be like the PER, except that the 
parameter α  is based on RCP values (Algorithm 2).

In the next section, the impact of utilizing each of the 
three values of RCP and various combinations of them will 
be examined.

 

Fig. 1. Scheduling epsilon from 1 to 0.001 exponentially 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Scheduling epsilon from 1 to 0.001 exponentially

 

ALGORITHM 2:  DOUBLE DQN WITH ADAPTIVE PRIORITIZED EXPERIENCE REPLAY 

 Input: minibatch k , step-size  , replay period K and size N , exponents   and  , budget T  

1 Initialize replay memory H =∅, ∆=0, 1 1p   

2 Observe 0S and choose 0 0( )a s  

3 for 1t   to T  do 
4  Observe ts , tr , t  

5  Store transition ( 1ts  , 1ta  , tr , t , ts ) in H with maximum priority ( )t i t ip max p  

6  if 0t  mod K then 
7   for j=1 to k do: 
8    1 1 1 1( , ( | ), ( , , ))j j j j j j jf R a s counter s a s      

9    Sample transition  ( ) /j i
j ii

j P j p p    

10    Compute importance-sampling weight    · /  ( )j i iN P j max
 


  

11    Compute TD-error     1 1=r + , , ,j j j target j a j j jQ s argmax Q s a Q s a     

12    Update transition priority | |j jp   

13    Accumulate weight-change 1 1( , ). . j jj j Q s a      

14   Update weights .     , reset 0   
15   From time to time copy weights into target network argt et   

16  Choose action ( )t ta s  
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4- Experiments and Results
In this study, the DQN model has been employed using 

PER as our baseline. We will refer to this model PER-DQN. 
Multiple Atari environments are utilized for training the 
models, and for each experiment model is trained for up to 
10 million steps using a batch size of 32. Additionally, the 
epsilon-greedy method is employed for generating transitions 
and storing them in the buffer, with epsilon exponentially 
decreasing from 1 to 0.001 (Fig. 2).

To evaluate the models during the training process, the 
agent undergoes five episodes using the trained model every 
100 training steps, and the average and standard deviation of 
the return values for these 5 episodes are calculated, providing 
a graphical representation of the changes over time.
4- 1- Impact of RCP Values

Initially, we investigate the influence of each of the three 
RCP values on the episodic returns. To achieve this, we 
employ four Atari environments: Seaquest, AirRoad, Qbert, 
and Breakout. PER-DQN is trained on these environments as 
the baseline model.

For each of the three RCP values, the training of DQN 
with adaptive prioritized experience replay (APER) is 
performed, incorporating only one of these values at a time. 
The variations in the returns of evaluation episodes for each 
model and environment are observed in the plots depicted in 
Fig. 3.

Based on these plots, it is evident that using each of the 
RCP values in the calculation of the priority of each data 
has significantly enhanced the model compared to the PER 
method. After a detailed examination, we can find out that 
the impact of using any value of RCP values varies across 
different environments. However, in general, it can be 

observed that the effects of the two methods, policy and 
reward, are closer to each other, while the counter method 
has generally achieved a greater improvement.

After identifying the beneficial effects of these values 
on improving model training, we will explore different 
aggregation functions in the next experiment to achieve the 
optimal configuration.

4- 2- RCP Values Aggregation
To utilize all three RCP values, three functions have 

been considered for their aggregation. In each of these 
three methods, the RCP values are combined, resulting in 
a single value that is the exponent of TD error (equation 
(9)) To combine these three values, minimum, maximum, 
and average have been employed to achieve the optimal 
aggregation function. Practically, in Algorithm 2, the function 
f  is defined to minimize, maximize, or average three RCP 
values.

To evaluate the three mentioned combination methods, the 
same four Atari environments are used. The proposed model 
(APER-DQN) is trained with each aggregation function on 
these environments and is compared with the results of PER-
DQN. The results of this experiment are illustrated in the 
plots of Fig. 4.

According to the obtained results, it is evident that the use 
of each aggregation method can increase the episode return 
values in various environments. Additionally, it is observed 
that the impact of each aggregation method varies across 
different environments, and an appropriate aggregation 
function must be selected based on the target environment. 
Despite this variability, considering the significant 
improvement achieved in many environments with the mean 

 

Fig. 2. Normalizing transition replay counter using the Sigmoid function. 
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method and the utilization of all three RCP values in this 
approach, it can be generally stated that using mean as the 
aggregation function can be a preferred method.

5- Conclusion
In the DQN method, to address the issue of temporal 

data dependencies and reusing previously generated data, 
an experience replay buffer is employed that stores the 
constructed transitions, and training samples are randomly 
selected from this buffer.

The prioritized experience replay method introduces 
an approach where sampling from this buffer is no longer 
uniformly random, and each data has a probability of being 
selected based on its TD error.

In this paper, we tried to enhance the prioritized experience 
replay method by modifying the prioritization process. In 

the proposed approach, the calculation of the probability for 
selecting data is not solely based on the TD error but also 
incorporates three additional values: reward, the number of 
times that each transition has been selected, and ( )|a sπ .

Through designed experiments, the impact of using each 
of these three values in prioritizing data was examined, 
revealing that all three values can bring significant 
improvements. Subsequently, three aggregation methods, 
including min, max, and mean, were suggested for these 
three values, allowing the utilization of all three values in 
calculating the probability of selecting each data. It was found 
that the aggregation function should be determined based on 
each environment, but the ‘mean’ aggregation function can 
be a preferred choice as it exhibits acceptable performance 
across various environments and also incorporates all three 
RCP values. 
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Fig. 3. Comparison of episodes returns in DQN with prioritized experience replay (PER-DQN) and Adaptive prioritized 
experience replay (APER-DQN) using RCP values in prioritization. 
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