| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,654 |
| تعداد مشاهده مقاله | 7,719,554 |
| تعداد دریافت فایل اصل مقاله | 6,357,433 |
تحلیل خمش و خیز ورقهای مدور مدرج تابعی متخلخل با تغییرات شعاعی تخلخل بر اساس تئوری مرتبه اول برشی | ||
| نشریه مهندسی مکانیک امیرکبیر | ||
| دوره 57، شماره 3، خرداد 1404، صفحه 333-360 اصل مقاله (2.02 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22060/mej.2025.24176.7848 | ||
| نویسندگان | ||
| پیمان اکبری؛ محمدجواد خوشگفتار* | ||
| گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران | ||
| چکیده | ||
| مواد متخلخل بهدلیل ویژگیهایی مانند وزن کم، استحکام مناسب، جذب انرژی بالا و قابلیت تنظیم خواص مکانیکی، کاربردهای گستردهای در حوزههای مهندسی مکانیک، هوافضا، عمران، زیستپزشکی و صنایع نظامی و پیشرفته پیدا کردهاند. یکی از چالشهای مهم در طراحی این مواد، تحلیل دقیق خمش و خیز سازههای نازک متخلخل مانند ورقها است که میتواند نقش کلیدی در پیشگیری از آسیبهای ساختاری ایفا کند. در این تحقیق، رفتار خمش الاستیک و خیز استاتیکی ورقهای دایرهای مدرج تابعی متخلخل با توزیع شعاعی تخلخل، تحت بارگذاری عرضی یکنواخت و در شرایط مرزی ساده و گیردار بررسی شده است. معادلات حاکم با فرض تقارن محوری و بر مبنای تئوری مرتبه اول برشی استخراج و با دو روش تحلیلی (روش سریها) و عددی (روش المان محدود) حل شدهاند. صحت نتایج با مقایسه بین دو روش (خطای میانگین ۰.۰۴٪) و نیز دادههای منابع (۰.۰۵٪) تأیید شده است. بررسی پارامترهای هندسی و مکانیکی نشان میدهد که در حالت تکیهگاه ساده، مقدار تنش و خیز بهترتیب حدود ۲.۵ و ۴ برابر بیشتر از حالت گیردار است. همچنین افزایش ۱۰٪ در ضریب تخلخل، منجر به افزایش متوسط حدود ۴۰٪ (ساده) و ۳۶٪ (گیردار) در تنش و خیز در مرکز ورق میشود. این نتایج میتوانند در طراحی سازههای سبک، مقاوم و بهینه مؤثر باشند. | ||
| کلیدواژهها | ||
| ورق دایرهای متخلخل؛ توزیع شعاعی تخلخل؛ تحلیل خمش؛ تئوری مرتبه اول تغییر شکل برشی؛ حل تحلیلی | ||
| عنوان مقاله [English] | ||
| Bending and Deflection Analysis of Functionally Graded Porous Circular Plates with Radial Porosity Variation Based on the First-Order Shear Deformation Theory | ||
| نویسندگان [English] | ||
| Peyman Akbari؛ Mohammad Javad Khoshgoftar | ||
| Mechanical Engineering Department, Faculty of Technology and Engineering, Arak University, Arak, Iran | ||
| چکیده [English] | ||
| Porous materials are increasingly used in mechanical, aerospace, civil, biomedical, and advanced engineering applications due to their low density, acceptable strength, high energy absorption, and tunable mechanical properties. One key challenge in designing such materials is the accurate analysis of bending and deflection behavior of porous thin structures, such as circular plates, which is essential for avoiding structural failures. This study presents the elastic bending and static deflection analysis of functionally graded porous circular plates with radially varying porosity distribution, subjected to uniform compressive loading under both simply supported and clamped boundary conditions. The governing equations are derived based on axisymmetric assumptions using the first-order shear deformation theory and solved via both analytical (series solution) and numerical (finite element) methods. The results show excellent agreement between the two approaches (mean error 0.04%) and with existing literature data (mean error 0.05%), confirming the accuracy of the model. Parametric studies reveal that simply supported plates exhibit approximately 2.5 times higher stress and 4 times larger deflection compared to clamped ones. Furthermore, increasing the porosity coefficient by 10% leads to an average increase of about 40% (for simply supported) and 36% (for clamped) in radial stress and central deflection. These findings offer valuable insights for designing lightweight, strong, and efficient structural components in sensitive and performance-driven environments. | ||
| کلیدواژهها [English] | ||
| Porous Circular Plate, Radial Porosity Distribution, Bending Analysis, Shear Deformation Theory, Analytical Solution | ||
| مراجع | ||
|
[1] A.G. Slater, A.I. Cooper, Function-led design of new porous materials, Science, 348(6238) (2015) aaa8075. [2] C. Wang, K. Lee, Deflection and stress-resultants of axisymmetric Mindlin plates in terms of corresponding Kirchhoff solutions, International journal of mechanical sciences, 38(11) (1996) 1179-1185. [3] J. Reddy, C.M. Wang, An overview of the relationships between solutions of the classical and shear deformation plate theories, Composites Science and Technology, 60(12-13) (2000) 2327-2335. [4] J. Reddy, C. Wang, Relationships between classical and shear deformation theories of axisymmetric circular plates, AIAA journal, 35(12) (1997) 1862-1868. [5] J. Reddy, C. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics-A/Solids, 18(2) (1999) 185-199. [6] L. Ma, T. Wang, Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory, International Journal of Solids and Structures, 41(1) (2004) 85-101. [7] S. Sahraee, A. Saidi, Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory, European Journal of Mechanics-A/Solids, 28(5) (2009) 974-984. [8] A. Saidi, A. Rasouli, S. Sahraee, Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory, Composite Structures, 89(1) (2009) 110-119. [9] X. Li, H. Ding, W. Chen, Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk, International Journal of Solids and Structures, 45(1) (2008) 191-210. [10] P. Van Vinh, N. Van Chinh, A. Tounsi, Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM, European Journal of Mechanics-A/Solids, 96 (2022) 104743. [11] A.R. Khorshidvand, A.R. Damercheloo, Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory, Australian Journal of Mechanical Engineering, 21(2) (2023) 705-724. [12] S.G.M. Doori, A.R. Noori, A. Etemadi, Static response of functionally graded porous circular plates via finite element method, Arabian Journal for Science and Engineering, 49(10) (2024) 14167-14181. [13] M. Alimohammadi, M. Ghomshei, Post-Buckling Analysis of Porous Circular Plate with Small Initial Deflection Using First-Order Shear Deformation Theory, Journal of Solid Mechanics, 16(2) (2024) 168-180. [14] S. Mirzaei, M. Hejazi, R. Ansari, Isogeometric analysis for bending, buckling and free vibration of multi-directional functionally graded porous plates with variable thickness, The European Physical Journal Plus, 137(6) (2022) 694. [15] V.T. Long, H.V. Tung, Postbuckling responses of porous FGM spherical caps and circular plates including edge constraints and nonlinear three-parameter elastic foundations, Mechanics Based Design of Structures and Machines, 51(8) (2023) 4214-4236. [16] B. Bouderba, H.M. Berrabah, Bending response of porous advanced composite plates under thermomechanical loads, Mechanics Based Design of Structures and Machines, 50(9) (2022) 3262-3282. [17] S. Mahmoud, E. Ghandourah, A. Algarni, M. Balubaid, A. Tounsi, F. Bourada, On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model, Archives of Civil and Mechanical Engineering, 22(4) (2022) 186. [18] F. Kamali, F. Shahabian, A. Aftabi-Sani, Free vibration analysis of saturated porous circular micro-plates integrated with piezoelectric layers; differential transform method, Acta Mechanica, 234(2) (2023) 649-669. [19] P. Akbari, A. Asanjarani, Semi-analytical mechanical and thermal buckling analyses of 2D-FGM circular plates based on the FSDT, Mechanics of Advanced Materials and Structures, 26(9) (2019) 753-764. [20] M. Kamranfard, A. Saidi, A. Naderi, Analytical Solution for Buckling of Annular Sectorial Porous Plates, Aerospace Mechanics, 15(1) (2019) 137-152. [21] M. Mahbod, M. Asgari, Mechanical properties of functionally graded porous biomaterials for application in prosthesis replacement using analytical and numerical solution, Modares Mechanical Engineering, 19(11) (2019) 2717-2727. [22] A.K. Gupta, A. Kumar, Buckling Behavior of a Functionally Graded Sandwich Plate, Engineering, Technology & Applied Science Research, 13(4) (2023) 11355-11359. [23] N.L. Le, T.N.T. Duong, T.D. Dang, M.D. Vu, T.T. Bui, T.P. Nguyen, H.N. Vu, A novel analytical approach for nonlinear thermo-mechanical buckling of higher-order shear deformable porous circular plates and spherical caps with FGM face sheets, International Journal of Applied Mechanics, 15(05) (2023) 2350035. [24] V.N. Van Do, T.H. Ong, C.-H. Lee, Nonlinear thermal buckling analysis of temperature-dependent porous annular and circular microplates reinforced by graphene platelets by using isogeometric analysis method, Engineering Structures, 305 (2024) 117738. [25] V. Kumar, S. Singh, V. Saran, S. Harsha, Effect of elastic foundation and porosity on buckling response of linearly varying functionally graded material plate, Structures, 55 (2023), 1186-1203. [26] E. Magnucka-Blandzi, K. Magnucki, W. Stawecki, Bending and buckling of a circular plate with symmetrically varying mechanical properties, Applied Mathematical Modelling, 89 (2021) 1198-1205. [27] S.K. Sah, A. Ghosh, Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates, Composite Structures, 279 (2022) 114795. [28] M. Khatounabadi, M. Jafari, K. Asemi, Low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene platelets, Waves in Random and Complex Media, 35(4) (2022) 7838-7864. [29] M. Surianinov, Y. Krutii, O. Klymenko, V. Vakulenko, S. Rudakov, Axisymmetric Bending of Circular Plates on a Variable Elastic Base, Construction Technologies and Architecture, 9 (2023) 3-10. [30] R. Jain, M.S. Azam, Deflection and bending characteristics of embedded functionally graded porous plate with bi-directional thickness variation subjected to bi-sinusoidal loading, Steel and Composite Structures, 51(6) (2024) 601-617. [31] L. Hoang Ton That, Porous Functionally Graded Circular Plate with an Uneven Porosity Distribution in the Thermal Environment, Applications of Modelling and Simulation, 8 (2024) 70-77. [32] M.-O. Belarbi, A.A. Daikh, A. Garg, H. Hirane, M.S.A. Houari, Ö. Civalek, H. Chalak, Bending and free vibration analysis of porous functionally graded sandwich plate with various porosity distributions using an extended layerwise theory, Archives of Civil and Mechanical Engineering, 23(1) (2022) 15. [33] K. Magnucki, J. Mielniczuk, S. Milecki, Axisymmetric bending of a circular porous plate, MATERIAL AND MECHANICAL ENGINEERING TECHNOLOGY Учредители: Карагандинский технический университет им. Абылкаса Сагинова, 4(4) (2021) 16-20. [34] M. Safarpour, A. Rahimi, A. Alibeigloo, H. Bisheh, A. Forooghi, Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions, Mechanics Based Design of Structures and Machines, 49(5) (2021) 707-737. [35] H. Hatami, A. Fathollahi, Theoretical and numerical study and comparison of the inertia effects on the collapse behavior of expanded metal tube absorber with single and double cell under impact loading, Amirkabir Journal of Mechanical Engineering, 50(5) (2018) 999-1014. [36] H. Hatami, M. Hosseini, Elastic-plastic analysis of bending moment–axial force interaction in metallic beam of T-Section, Journal of Applied and Computational Mechanics, 5(1) (2019) 162-173. [37] A. Ghodsbin Jahromi, H. Hatami, Numerical behavior study of expanded metal tube absorbers and effect of cross section size and multi-layer under low axial velocity impact loading, Amirkabir Journal of Mechanical Engineering, 49(4) (2018) 685-696. [38] H. Hatami, M. Hosseini, A.K. Yasuri, Perforation of thin aluminum targets under hypervelocity impact of aluminum spherical projectiles, Materials Evaluation, 77(3) (2019) 411-422. [39] M.D. Nouri, H. Hatami, A.G. Jahromi, Experimental and numerical investigation of expanded metal tube absorber under axial impact loading, Structural Engineering and Mechanics, 54(6) (2015) 1245-1266. [40] S. Hosseini-Hashemi, H. Akhavan, H.R.D. Taher, N. Daemi, A. Alibeigloo, Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation, Materials & Design, 31(4) (2010) 1871-1880. [41] J. Choi, R. Lakes, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio, International Journal of Mechanical Sciences, 37(1) (1995) 51-59. [42] J.N. Reddy, Theory and analysis of elastic plates and shells, CRC press, 2006. [43] A.C. Ugural, Stresses in beams, plates, and shells, CRC press, 2009. [44] D.O. Brush, B.O. Almroth, J. Hutchinson, Buckling of bars, plates, and shells, (1975). | ||
|
آمار تعداد مشاهده مقاله: 492 تعداد دریافت فایل اصل مقاله: 269 |
||