| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,654 |
| تعداد مشاهده مقاله | 7,719,554 |
| تعداد دریافت فایل اصل مقاله | 6,357,433 |
کمانش پیش رونده دینامیکی در لولههای مخروطی جدار نازک شیاردار حاوی فوم تحت بار ضربهای | ||
| نشریه مهندسی مکانیک امیرکبیر | ||
| دوره 57، شماره 4، تیر 1404، صفحه 497-520 اصل مقاله (1.6 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22060/mej.2025.24158.7845 | ||
| نویسندگان | ||
| سعید فعلی* 1؛ عرفان مخصوص1؛ سید سجاد جعفری2 | ||
| 1گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران | ||
| 2گروه مهندسی مکانیک، دانشگاه صنعتی همدان، همدان، ایران | ||
| چکیده | ||
| جاذبهای انرژی به دلیل کاربرد گستره در صنعت، امروزه از اهمیت ویژهای برخوردارند و بهعنوان عناصر کلیدی در ارتقای ایمنی و کاهش خسارات ناشی از ضربه شناخته میشوند. این جاذبها با تغییر شکل پلاستیک و چروکیدگی، ضربه ناشی از بار محوری را جذب میکنند. در این مقاله، بارگذاری ضربهای در جاذبهای مخروطی شیاردار پرشده با فوم به روش تحلیلی و شبیهسازی عددی موردبررسی قرارگرفته است. ابتدا یک مدل تحلیلی جدید برای محاسبه نیروی متوسط فروریزش و میزان جذب انرژی در جاذبهای حاوی فوم ارائهشده است. این مدل بر اساس جذب انرژی الاستیک و پلاستیک که شامل خمش مفاصل و تغییر شکل بین مفاصل میباشد، ارائه شده است. شبیهسازی عددی فروریزش پیشرونده دینامیکی در این جاذبها با استفاده از نرمافزار آباکوس انجامشده و نتایج با مدل تحلیلی و نتایج تجربی مقایسه شده است. هدف از این مقایسه، ارزیابی دقت مدل تحلیلی در پیشبینی رفتار واقعی جاذبها بوده است. در نهایت، تأثیر پارامترهایی همچون زاویه مخروط، تعداد شیار و چگالی فوم جاذب بر میزان جذب انرژی بررسیشده است. نتایج این بررسی میتواند راهنمای مفیدی در طراحی بهینه این نوع جاذبهای انرژی باشد. | ||
| کلیدواژهها | ||
| جاذب انرژی؛ مخروط شیاردار؛ فوم؛ مدل تحلیلی؛ شبیهسازی | ||
| عنوان مقاله [English] | ||
| Dynamic Progressive Buckling of Thin Wall Foam-Filled Conical Tubes Under Impact Loading | ||
| نویسندگان [English] | ||
| Saeed Feli1؛ Erfan Makhsoos1؛ Seyed Sajad Jfari2 | ||
| 1Department of Mechanical Engineering, Razi University, Kermanshah, Iran | ||
| 2Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran | ||
| چکیده [English] | ||
| Energy absorbers are of particular importance today due to their extensive application in industry, and they are recognized as key elements in enhancing safety and reducing damage resulting from impact. These absorbers dissipate the impact caused by axial loads through plastic deformation and buckling. In this paper, the impact loading on foam-filled grooved conical absorbers has been investigated using analytical and numerical simulation methods. Initially, a novel analytical model for calculating the mean crushing force and the amount of energy absorption in absorbers is presented. This model is based on elastic and plastic energy absorption, which includes hinge bending and deformation between hinges. Numerical simulation of progressive dynamic crushing in these absorbers has been performed using Abaqus, and the results have been compared with the analytical model and experimental results. The aim of this comparison was to evaluate the accuracy of the analytical model in predicting the actual behavior of the absorbers. Finally, the effect of various parameters such as cone angle, number of grooves, and foam density of the absorber on the amount of energy absorption has been investigated. The results of this investigation can be a useful guide in the optimal design of this type of energy absorbers. | ||
| کلیدواژهها [English] | ||
| Energy Absorbers, Thin-Walled Grooved Conical Tubes, Foam, Analytical Model, Simulation | ||
| مراجع | ||
|
[1] J. Rouzegar, M.R. Keshavarz, H. Assaee, Experimental Study of Energy Absorption of Square Column under Multi-Indentation Loading, Amirkabir Journal of Mechanical Engineering, 51(1) (2019) 33–42. (in Persian) [2] S.J. Hosseinipour, G.H. Daneshi, Experimental studies on thin-walled grooved tubes under axial compression, Experimental Mechanics, 44(1) (2004) 101–108. [3] A. Tafazoli, M. Asgari, A. Ghaznavi, Numerical and Experimental Study Of Energy Absorption of Multi-Layer Aluminum-Composite Conical Frustum Structures under Axial Loading, Amirkabir Journal of Mechanical Engineering, 54(8) (2022) 1851–1866. (in Persian) [4] S. Feli, m.h. kiani, s.s. jafari, Investigation of the performance of multi-cellular energy absorbers with functionally graded thickness under impact loading, Amirkabir Journal of Mechanical Engineering, 56(10) (2024) 1451–1472. (in Persian) [5] R. Khondabi, H. Khadarahmi, R. Hosseini, M. Zia Shamami, Experimental and Numerical Investigation into the Effect of Core Density on the Energy Absorption of Sandwich Panels with Aluminum Face Sheets and Polyurethane Foam Core, Amirkabir Journal of Mechanical Engineering, 52(10) (2019) 2839–2858. (in Persian) [6] W. Wang, Y. Wang, Z. Zhao, Z. Tong, X. Xu, C.W. Lim, Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing, Materials, 15(16) (2022) 5556. [7] K. Liu, Z. Yu, K. Wang, L. Jing, Quasi-Static and Dynamic Collapse Behavior of Circular Foam-Filled Tubes Inspired by Bamboos, Chinese Journal of Mechanical Engineering, 37(1) (2024) 169. [8] V. Hoseini, M. Shariati, M. Mirzababaee, M.M. Rokhi, Experimental and Numerical Analysis of Energy Absorption of Hollow and Foam filled thick-wall Aluminum Tubes Considering Different Damage Models, Journal of Mechanical Engineering of the University of Tabriz 51(4) (2022) 95–104. (in Persian) [9] V. Kumar Reddy Sirigiri, V. Yadav Gudiga, U. Shankar Gattu, G. Suneesh, K. Mohan Buddaraju, A review on Johnson Cook material model, Materials Today: Proceedings, 62 (2022) 3450–3456. [10] A. Needleman, V. Tvergaard, An analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics of Solids, 32(6) (1984) 461–490. [11] G. Rousselier, Dissipation in porous metal plasticity and ductile fracture, Journal of the Mechanics and Physics of Solids, 49(8) (2001) 1727–1746. [12] S. Azarakhsh, A. Rahi, Experimental and Numerical Investigation of Energy Absorption in Thin-Walled Bi-tubular Conical Tubes under Axial Load, Iranian Journal of Mechanical Engineering Transactions of ISME,21(3) (2019) 138-157. (in Persian) [13] A. Ghamarian, H.R. Zarei, M.T. Abadi, Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes, Thin-Walled Structures, 49(10) (2011) 1312–1319. [14] S. Hou, X. Han, G. Sun, S. Long, W. Li, X. Yang, Q. Li, Multiobjective optimization for tapered circular tubes, Thin-Walled Structures, 49(7) (2011) 855–863. [15] J.M. Alexander, An approximate analysis of the collapse of thin cylindrical shells under axial loading, The Quarterly Journal of Mechanics and Applied Mathematics, 13(1) (1960) 10–15. [16]T. Wierzbicki, S.U. Bhat, W. Abramowicz, D. Brodkin, Alexander revisited—A two folding elements model of progressive crushing of tubes, International Journal of Solids and Structures, 9 (24) (1992) 3269-3288. [17] A.G. Mamalis, D.E. Manolakos, S. Saigal, G. Viegelahn, W. Johnson, Extensible plastic collapse of thin-wall frusta as energy absorbers, International Journal of Mechanical Sciences, 28(4) (1986) 219–229. [18] S.J. Hosseinipour, G.H. Daneshi, Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression, Thin-Walled Structures, 41(1) (2003) 31–46. [19] W. Abramowicz, N. Jones, Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically, International Journal of Impact Engineering, 19(5) (1997) 415–437. [20] N.K. Gupta, Some aspects of axial collapse of cylindrical thin-walled tubes, Thin-Walled Structures, 32(1) (1998) 111–126. [21] D. Karagiozova, M.l. Alves, Transition from progressive buckling to global bending of circular shells under axial impact––Part I: Experimental and numerical observations, International Journal of Solids and Structures, 41(5) (2004) 1565–1580. [22] S. Feli, E. Makhsousse, S.S. Jafari, Dynamic progressive buckling of thin-wall grooved conical tubes under impact loading, International Journal of Crashworthiness, 25(2) (2020) 220–229. [23] L.L. Tam, C.R. Calladine, Inertia and strain-rate effects in a simple plate-structure under impact loading, International Journal of Impact Engineering, 11(3) (1991) 349–377. [24] Z. Ahmad, D.P. Thambiratnam, Crushing response of foam-filled conical tubes under quasi-static axial loading, Materials & Design, 30(7) (2009) 2393–2403. [25] Z. Ahmad, D.P. Thambiratnam, Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading, Computers & Structures, 87(3) (2009) 186–197. | ||
|
آمار تعداد مشاهده مقاله: 365 تعداد دریافت فایل اصل مقاله: 256 |
||