| تعداد نشریات | 8 |
| تعداد شمارهها | 438 |
| تعداد مقالات | 5,653 |
| تعداد مشاهده مقاله | 7,717,173 |
| تعداد دریافت فایل اصل مقاله | 6,356,694 |
تحلیل تجربی و عددی اثر تنش سهمحوره و پارامتر زاویهی لود بر شکست نرم فولاد زنگ نزن 321 | ||
| نشریه مهندسی مکانیک امیرکبیر | ||
| دوره 57، شماره 5، مرداد 1404، صفحه 545-566 اصل مقاله (2.79 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22060/mej.2025.24291.7854 | ||
| نویسندگان | ||
| محمد مزرعه کاظمی؛ سیدمهدی گنجیانی* ؛ محسن منصوری | ||
| دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران | ||
| چکیده | ||
| در این پژوهش، تأثیر تنش سهمحوره و پارامتر زاویه لود بر روی کرنش شکست فولاد زنگنزن 321 مورد بررسی قرار گرفت. اگرچه اثر تنش سهمحوری بهخوبی مطالعه شده، اما نقش پارامتر زاویه لود و تعامل آن با این تنش همچنان مبهم است. این پژوهش با هدف روشنسازی این اثرات در شکست نرم فولاد زنگنزن 321 انجام شد. برای این منظور، پنج نمونه تحت بارگذاری کششی و دو نمونه تحت بارگذاری فشاری با هندسههای متفاوت طراحی و در نرمافزار آباکوس شبیهسازی شدند. نمونهها همچنین تحت آزمونهای تجربی در دمای اتاق و به صورت استاتیکی مورد ارزیابی قرار گرفتند و توزیع کرنش، تنش و پارامترهای آسیب تا لحظه شکست ثبت گردید. برای مدلسازی رفتار ماده، از مدل توانی جهت تعریف منحنی تنش-کرنش و از دادههای آزمایشگاهی جهت کالیبراسیون مدل استفاده شد. نتایج اسنخراج شده نیرو-جابجایی در هر دو روش تجربی و عددی با یکدیگر مطابقت دارد. از نتایج میتوان نتیجه گرفت که پارامتر تنش سهمحوره تأثیر مستقیم بر کرنش شکست دارد، در حالیکه پارامتر زاویه لود تأثیر غیرخطی بر رفتار شکست از خود نشان میدهد. همچنین تغییرات جزئی در هندسه نمونهها منجر به تفاوت قابلتوجهی در مقادیر نهایی کرنش شکست خواهد شد. در مجموع، مطالعه حاضر بر روی زنگنزن 321 نشان میدهد که در بازه تنش سهمحوره 0/63- تا 0/6 و بازه پازامتر زاویه لود 0/78- تا 1 مقدار کرنش شکست از 0/6 تا 0/9 تغییر میکند | ||
| کلیدواژهها | ||
| تنش سهمحوره؛ پارامتر زاویه لود؛ کرنش شکست؛ شبیهسازی اجزای محدود | ||
| عنوان مقاله [English] | ||
| Experimental and Numerical Analysis of the Effect of Stress Triaxiality and Lode Angle Parameter on the Ductile Fracture of 321 Stainless Steel | ||
| نویسندگان [English] | ||
| Mohammad MazraeKazemi؛ Mehdi Ganjiani؛ Mohsen Mansouri | ||
| Mechanical Engineering Department, University of Tehran, Tehran, Iran | ||
| چکیده [English] | ||
| In this study, the effect of stress triaxiality and the Lode angle parameter on the fracture strain of AISI 321 stainless steel was investigated. Although the influence of stress triaxiality has been extensively studied, the role of the Lode angle parameter remains unclear. This research was conducted with the aim of clarifying these effects in the ductile fracture of AISI 321 stainless steel. To this end, five specimens under tensile loading and two specimens under compressive loading, each with different geometries, were designed and simulated in the ABAQUS software. The specimens were also subjected to experimental tests, and the distributions of strain and stress were recorded up to the point of fracture. A power-law model was employed to define the stress–strain curve, and experimental data were used to calibrate the model. The extracted force–displacement results from both experimental and numerical approaches were found to be in good agreement. The results indicate that stress triaxiality has a direct effect on fracture strain, while the Lode angle parameter exhibits a nonlinear influence on fracture behavior. Moreover, slight changes in specimen geometry can lead to significant variations in the final fracture strain values. Overall, it was found that within a stress triaxiality range of −0.63 to 0.6 and a Lode angle parameter range of −0.78 to 1, the fracture strain varies from 0.6 to 0.9. | ||
| کلیدواژهها [English] | ||
| Stress triaxiality, Lode angle parameter, Fracture strain, Finite element simulation | ||
| مراجع | ||
|
[1] W.F. Hosford, R.M. Caddell, Metal forming: mechanics and metallurgy, Cambridge university press, 2011. [2] J. Besson, Continuum models of ductile fracture: a review, International Journal of Damage Mechanics, 19(1) (2010) 3-52. [3] W.-M. Chi, A. Kanvinde, G. Deierlein, Prediction of ductile fracture in steel connections using SMCS criterion, Journal of structural engineering, 132(2) (2006) 171-181. [4] F.A. McClintock, A criterion for ductile fracture by the growth of holes, (1968). [5] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields∗, Journal of the Mechanics and Physics of Solids, 17(3) (1969) 201-217. [6] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, 46(1) (2004) 81-98. [7] I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear—Experiments, International Journal of Solids and Structures, 44(6) (2007) 1768-1786. [8] C. Cheng, B. Meng, J. Han, M. Wan, X. Wu, R. Zhao, A modified Lou-Huh model for characterization of ductile fracture of DP590 sheet, Materials & Design, 118 (2017) 89-98. [9] L. Xue, Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading, International journal of solids and structures, 44(16) (2007) 5163-5181. [10] J. Peng, P. Zhou, Y. Wang, Q. Dai, D. Knowles, M. Mostafavi, Stress Triaxiality and Lode Angle Parameter Characterization of Flat Metal Specimen with Inclined Notch, Metals, 11(10) (2021) 1627. [11] X. Liu, S. Yan, K.J. Rasmussen, G.G. Deierlein, Experimental investigation of the effect of Lode angle on fracture initiation of steels, Engineering Fracture Mechanics, 271 (2022) 108637. [12] W. Li, F. Liao, T. Zhou, H. Askes, Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle, Journal of Constructional Steel Research, 123 (2016) 1-17. [13] F. Yu, P.-Y.B. Jar, M.T. Hendry, Constitutive analysis of pressure-insensitive metals under axisymmetric tensile loading: A stress triaxiality-dependent plasticity damage model, International Journal of Mechanical Sciences, 142 (2018) 21-32. [14] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International journal of plasticity, 24(6) (2008) 1071-1096. [15] M. Nia, M. Vural, Effect of stress triaxiality and normalized Lode angle on ductile fracture of aluminum 2139-T8, Journal of Materials Science, 59(5) (2024) 2155-2178. [16] م. منصوری, س. گنجیانی, اثر سه محوره تنش منفی و زاویه لود بر رفتار شکست نرم فولاد استی-37, نشریه مهندسی مکانیک امیرکبیر, 56(9) (2024) 1303-1326. [17] M.A. Wollenweber, S. Medghalchi, L.R. Guimarães, N. Lohrey, C.F. Kusche, U. Kerzel, T. Al-Samman, S. Korte-Kerzel, On the damage behaviour in dual-phase DP800 steel deformed in single and combined strain paths, Materials & Design, 231 (2023) 112016. [18] J.-H. Kwon, J.-M. Heo, N.-T. Nguyen, M.T. Tran, H.W. Lee, S.-H. Kang, H.S. Joo, K. Rhee, S.-S. Park, D.W. Kim, Ductile fracture locus under various deformation modes with negative-to-positive stress triaxiality, International Journal of Mechanical Sciences, 279 (2024) 109615. [19] T. Wierzbicki, Y. Bao, Y.-W. Lee, Y. Bai, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences, 47(4-5) (2005) 719-743. [20] M. Basaran, D. Weichert, Stress state dependent damage modeling with a focus on the lode angle influence, Lehrstuhl und Institut für Allgemeine Mechanik, 2011. [21] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International journal of fracture, 161(1) (2010) 1-20. [22] A. Standard, E8. Standard test method for tension testing of metallic materials, West Conshohocken (USA): ASTM, (2004). [23] S. Bharti, A. Gupta, H. Krishnaswamy, S. Panigrahi, M.-G. Lee, Evaluation of uncoupled ductile damage models for fracture prediction in incremental sheet metal forming, CIRP Journal of Manufacturing Science and Technology, 37 (2022) 499-517. [24] J. Cao, F. Li, W. Ma, D. Li, K. Wang, J. Ren, H. Nie, W. Dang, Constitutive equation for describing true stress–strain curves over a large range of strains, Philosophical Magazine Letters, 100(10) (2020) 476-485. [25] M. Fukuhara, A. Sanpei, Elastic moduli and internal friction of low carbon and stainless steels as a function of temperature, ISIJ international, 33(4) (1993) 508-512. | ||
|
آمار تعداد مشاهده مقاله: 549 تعداد دریافت فایل اصل مقاله: 322 |
||