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Abstract 

Induction motors are broadly applied in different industries because of low cost, high efficiency, 

reliability. Although, failures in such motors could cause in significant issues like decreased efficiency, 

unexpected shutdown, ruin to other system sections. Diagnosing bearing failures is critical to reducing 

maintenance costs and operational failures. Bearing failures are a major cause of machine vibrations. 

Unfortunately, existing methods are optimized for controlled environments, and disregard realistic 

conditions such as variable load, time-varying rotational speeds, and non-stationary nature of vibration. 

This study presents an integration of time analysis and deep learning techniques to diagnose bearing 

failures under time-varying speeds and varying noise levels. In this study, we present an approach to 

diagnosing bearing failures employing vibration signals and convolutional neural networks (CNN) with 

Pre-processing of the vibration signal by using discrete wavelet transform (DWT) to remove the effect 

of Variable Frequency Drive (VFD) which causes odd harmonics. The experimental outcomes show 

that presented technique surpasses conventional techniques in the two computational efficiency as well 

as accuracy to diagnose bearing failures. This work paves the way for further research in the field of 

bearing fault diagnosis and provides a promising solution for real-world applications. 
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List of abbreviations 

fs power supply frequency 

fr rotor shaft frequency 

n the number of rolling elements 

Db ball diameter 

Dc the pitch diameter 

𝛽 ball contact angle 

fv one of the characteristic vibration frequencies (fi, fo, fc) 

𝑓𝑖  Inner Race Fault Frequency (also known as BPFI - Ball Pass Frequency of Inner Race) 

𝑓𝐶  Cage Fault Frequency (also known as FTF - Fundamental Train Frequency). 

𝑓𝑜 Outer Race Fault Frequency (also known as BPFO - Ball Pass Frequency of Outer Race) 

𝑓𝐵  Ball Spin Frequency or Rolling Element Fault Frequency. 

ψ (t) function of zero mean 

b translation parameter 

a scale parameter 

g[n] low-pass filters 

kl
ij convolution kernels 

M total number of input channels 

blj bias conforming to the jth kernel 

f( ) activation function 

(Cr) Crest Factor 

(Kur) Kurtosis 

(RMS) Root Mean Square 

(Ske) skewness 

(Sta) standard deviation 

(Var) variance 

H Entropy 

h[n] high-pass filters 

 

1. Introduction  

Induction motors are the backbone of many industrial systems, perhaps one of the most widely applied 

tools in various industrial applications such as domestic appliances, aerospace, petrochemical, and 
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chemical sectors. This widespread use is due to their high efficiency, ruggedness, and low cost. 

However, they are susceptible to mechanical, electrical, thermal, and environmental stresses that can 

lead to catastrophic failures [1]. Bearings play a crucial role in guiding and supporting shafts in rotating 

machinery, often operating in extreme environments. As essential components of these machines, 

bearings are a major source of failure due to harsh working conditions and increased pressures [2, 3]. 

Extensive research has demonstrated that bearing failure is a primary cause of most mechanical failures 

in rotating machinery, contributing to over 40% of induction motor failures [4]. In functional 

applications, rotating machinery bearing failures pose significant risks to safety and reliability, and can 

also lead to substantial production and equipment losses. While the early onset of bearing failures might 

not cause immediate catastrophic failure, the gradual degradation over time inevitably leads to major 

machinery breakdowns, making their maintenance more costly [5]. This underscores the critical 

importance of condition monitoring and fault diagnosis to ensure system safety and reliability [6]. In 

recent years, considerable effort has been dedicated to bearing health monitoring, with several 

approaches considered for preventing bearing failure. Consequently, monitoring health status and 

detecting faults in bearings have become a crucial area of industrial research. Various bearing health 

monitoring techniques have been developed, including current analysis, temperature monitoring, 

vibration analysis, and noise analysis [7, 8, 9, 10].  

Bearing Fault Diagnosis Techniques Diagnosing bearing faults relies on utilizing various indicators and 

features to accurately and effectively analyze potential issues. These indicators include parameters such 

as vibration, speed, noise, acceleration, and temperature, with a particular focus on vibration signal 

processing and analysis, which has been extensively studied for fault detection [11]. Vibration signals 

are considered one of the most significant and valuable sources of accurate information for 

understanding phenomena associated with bearing problems [5, 12]. They provide precise information 

about the equipment's operational condition in real-time without interrupting the production line. 

Vibration monitoring is one of the most effective strategies because of its ability to diagnose and 

distinguish the locations and types of different defects from their early stages, before they worsen and 

lead to severe damage [13].  
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However, the effectiveness of vibration monitoring largely depends on the signal-processing approach 

employed. Different techniques have been developed for extracting fault detection attributes from raw 

data, including time-domain, frequency-domain, and time-frequency-domain analysis. Due to their 

relevance in various health monitoring applications, time-domain statistical analyses are frequently 

applied [14, 15]. These methods utilize various time-based indicators such as peak value, skewness 

[16], root mean square [13, 17], and kurtosis [17]. The benefits of time-domain analysis include 

effective and simplified computations. However, a primary deficiency of this method is its low 

sensitivity to early-stage faults and inability to diagnose deeply embedded defects. 

 Frequency analysis, or spectrum analysis, is one of the conventional methods for diagnosing faults in 

rotating machines. It allows the conversion of time signals into the frequency domain, which provides 

more comprehensive information about the machine's condition compared to time-domain analysis. 

Techniques used include bearing fault frequency analysis [18], envelope spectrum [19], and Hilbert 

transform [20]. While these are accurate methods for determining the location and type of bearing faults, 

they depend on factors such as the size and speed of the bearing. However, noise can obscure valuable 

information, which necessitates careful frequency range selection. Time-frequency domain analysis 

represents a significant advancement due to its ability to provide information about both stationary and 

non-stationary signals [21]. Techniques in this domain include short-time Fourier transform (STFT) 

[22, 23], wavelet transforms [24, 25], and empirical mode decomposition [26]. In systems with variable 

speeds and loads, simple evaluation of monitoring indicators often does not provide reliable information 

about the machine's condition [5, 11].  

Advancements in AI and Deep Learning for Fault Detection With the rapid advancement of AI 

technology, machine learning methods have been widely applied for detecting mechanical element 

faults [21]. Roller bearings exhibit unique vibration features that change based on the operating area, 

directly impacting machine reliability and stability. Consequently, researchers have proposed various 

intelligent methods based on Machine Learning (ML) and Artificial Intelligence (AI) models for 

efficiently detecting bearing faults. Pattern recognition uses several techniques for effectively grouping 
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signal patterns indicative of bearing faults. Examples of such techniques include convolutional neural 

networks (CNN), k-nearest neighbor classifiers (KNN) [27], support vector machines (SVM), Bayesian 

classifiers, and back-propagation neural networks (BPNN). Patil et al. [24] presented a fault 

conditioning and classification system to monitor the health of induction motor bearings using vibration 

signal analysis. Discrete wavelet transform (DWT), incorporating different wavelet families such as 

Sym5, DB4, and DB8, was initially used for signal decomposition. Various statistical features, 

including RMS, kurtosis, and skewness, were extracted from the third DWT decomposition level. These 

extracted features were then used as input for a 3-layer artificial neural network (ANN) model for 

classifying bearing faults. The improved system achieved a classification accuracy of 98.7% for inner 

race, outer race, and ball bearing faults. Other research has also offered KNN, Support Vector Machine 

(SVM), and Decision Tree (DT) mechanisms to detect various induction motor faults, including bearing 

defects [20]. These investigations relied on Hilbert–Huang Transform (HHT) for extracting fault-based 

features from signal analysis. Subsequently, the most significant attributes were selected using various 

dimensionality reduction mechanisms and presented to the employed ML strategies. The 

comprehensive inference from this study indicates that the feature-selection stage can remarkably 

improve fault detection system classification accuracy. Additionally, for localizing defects and 

identifying restrictions in roller bearings, some statistical vibration signal features were extracted from 

both time and frequency domains [28].  

Currently, deep learning has garnered broad attention in the mechanical fault detection domain. An 

increasing number of researchers are relying on deep learning methods for achieving fault detection and 

machine life prediction under complicated working conditions [29]. Researchers in [30] propose an 

innovative system based on IoT and deep learning for fault diagnosis and a rectification scheme for 

induction motors, utilizing vibration signals. This system is notable for its ability to identify faults with 

high accuracy and detect fake data injection attacks. It has been successfully tested in a pilot 

environment, with results showing an accuracy of up to 99.84%, making it more effective compared to 

conventional methods [30]. This system allows for improved decision-making and identification of 

engine conditions with high reliability. This paper addresses the limitations of exploiting original 
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signals’ temporal association features, the high cost of parameter setting, and the complexity of 

obtaining diverse training data in various operation situations. It achieves this by proposing a developed 

CNN-BiLSTM diagram for bearing fault detection. This model extracts accurate features from raw 

vibration signals by applying a Particle Swarm Optimization (PSO) mechanism for training parameter 

optimization. The pre-trained model can then be transferred to novel working situations with limited 

training instances, improving fault detection accuracy. Extensive tests demonstrated the presented 

model's efficiency in effectively addressing model training and fault detection issues in new working 

situations with data scarcity. 

While previous research has made significant strides in bearing fault diagnosis, the work presented here 

contributes several novel aspects to the state-of-the-art. Firstly, many existing studies have focused on 

motors with a direct power supply, neglecting the widespread use of Variable Frequency Drives (VFDs) 

that introduce unique noise characteristics. Secondly, much of the literature has emphasized one-

dimensional vibration analysis or employed complex computational models requiring substantial 

processing resources. This research addresses these gaps by specifically targeting fault diagnosis in 

VFD-driven motors using a three-dimensional vibration analysis approach combined with tailored 

wavelet denoising techniques. This approach effectively isolates characteristic fault frequencies below 

500 Hz by removing higher-frequency VFD-induced noise components. Furthermore, the selective 

feature reduction methodology using information gain preserves diagnostic accuracy while significantly 

reducing computational requirements, making the solution more practical for real-time industrial 

monitoring applications. 

This article remnant is regularized as: Section below proposes bearing fault features the Wavelet 

Transform and CNN deep learning mechanisms’ summary developed. ‘‘Experimental Setup’’ part 

labels experimental rig, bearing dataset obtain technique in present study, vibration signal pre-

processing for eliminating variable frequency drive (VFD) effect. Statistical features’ extracting process 

in time-domain is discussed in ‘‘Statistical Features’’ section. ‘‘Feature Selection’’ part checks 

developed methods to choose statistical features. Data processing and Model training technique is 

defined in ‘‘Training of Model’’ part. ‘‘Results and Discussion’’ parts presents findings and discussion, 
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such as confusion matrix analysis, comparative assessment, classification results, feature significance 

rankings. This investigation contributions and summarizes are concluded in ‘‘Conclusion’’ part. 

2. Methodology 

2.1 Bearing Fault Characteristic 

Bearing defects produce distinct vibration frequencies that vary depending on the affected bearing 

surface. Each type of defect has a unique frequency, which can be calculated based on the bearing's 

structure and dimensions. Figure 1 illustrates the geometric structure of a bearing. These characteristic 

frequencies include the inner race fault frequency (BPFI), outer race fault frequency (BPFO), cage fault 

frequency (FTF), and ball spin frequency (BSF). These frequencies can be predicted by recording the 

machine's vibration spectrum, as shown in equations (1)-(4) [31, 32, 33, 34]. Inner race faults, outer 

race faults, and cage faults are among the most common bearing defects. Localized defects cause 

periodic pulsations in the vibration signal, which are influenced by the shaft rotation speed and the 

bearing's location and dimensions, leading to periodic vibrations during engine operation 

𝑓𝑖 =
𝑛𝑓𝑟

2
(1 +

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠𝛽)                                                              (1) 

𝑓𝑜 =
𝑛𝑓𝑟

2
(1 −

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠𝛽)                                                              (2)         

𝑓𝐶 =
𝑓𝑟

2
(1 −

𝐷𝑏

𝐷𝑐
𝑐𝑜𝑠𝛽)                                                                (3)  

𝑓𝐵 =
𝐷

2𝑑
[1 − (

𝑑

𝐷
𝑐𝑜𝑠𝛽) 2]                                                            (4)  

Where: fr is rotor shaft frequency, n is the number of rolling elements, Db is ball diameter Dc is the 

pitch diameter,  𝛽 is ball contact angle. 
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Fig. 1. Geometry structure of the bearing[35] 

Such mechanical vibrations generate anomalies in the air gap flux density, which in turn cause stator 

current modulation. These frequencies can also be computed as shown in equation (5) [31, 32, 33, 34] 

𝑓𝐵𝑛𝑔=|𝑓𝑠 ± 𝑚𝑓𝑣|                                                                         (5)    

Where fs is the power supply frequency, fv is one of the characteristic vibration frequencies (fi, fo, fc), 

and m= 1, 2, 3, ...     

2.2 Wavelet Transform 

Signals from faulty components often exhibit non-stationary behavior. When the Fourier transform is 

used to analyze these signals, it provides an average frequency configuration over the entire signal 

period [6, 7]. Time-frequency analysis techniques, such as wavelet transforms (WT), are more suitable 

for analyzing these non-stationary signals [18]. The wavelet transform has been widely used in many 

applications to improve the accuracy of signal analysis compared to Fourier transforms [12]. In a 

wavelet series, the parent wavelet is modulated and superimposed on the signal. The inner product of 

the signal is then calculated with a series of child wavelets using scale and translation (offset) 

parameters. This transformation process is performed by shifting the wavelet along the x-axis to cover 

the entire signal, ensuring that the measured wavelet power density matches the original parent wavelet. 

Mathematically, this can be expressed as follows [10]: 

𝐶𝑊𝑓(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑓(𝑡)ѱ∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

+∞

−∞
                                               (6)                      

Where: a is the scale parameter, b is a translation parameter, ψ (t) is a function of zero mean. 

While the Continuous Wavelet Transform (CWT) improves signal processing accuracy, it comes at a 

high cost in terms of energy, computation time, and memory [3], making it impractical in many cases. 
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To overcome these limitations, the Discrete Wavelet Transform (DWT) was developed. In DWT, 

wavelets are measured and modified at discrete points within the signals. DWT is employed to 

decompose the original signal into multiple sub-signals, each possessing a specific bandwidth. A key 

advantage of DWT is its ability to evaluate data at different levels by utilizing filters with varying cutoff 

frequencies. A high-pass filter (HP) is used for analyzing high frequencies, while a low-pass filter (LP) 

is used for analyzing low frequencies [5, 23]. The use of Discrete Wavelet Transform (DWT) allows 

time-domain signals to be segmented and decomposed into various frequency bands with differing 

resolutions [12]. DWT employs wavelet and scaling functions associated with low-pass (LP) and high-

pass (HP) filters. The original signal is passed through these filters at the first level, generating two 

signals with similar sampling lengths as the original signal. To maintain the number of samples, the 

number of samples is reduced by a factor of two, keeping one out of every two samples. Detail 

coefficients (cD1) represent the high-frequency information of the signal, while approximation 

coefficients (cA1) represent low-frequency information. Mathematically expressed as follows [9]: 

𝑐𝐷1[𝑘] = ∑ 𝑥[𝑛] ∗ ℎ𝑛𝜑[2𝑘 − 𝑛]𝑛                                                     (7) 

𝑐𝐴1(𝑘) = ∑ 𝑥[𝑛] ∗ 𝑔𝑛𝜓[2𝑘 − 𝑛]𝑛                                                     (8)      

Where g[n] and h[n] represent the low-pass and high-pass filters, respectively. After achieving the first 

level of decomposition, the method can be used to further decompose cA1 into detail coefficients and 

an additional approximation, as illustrated in equations (9) and (10). This process is repeated until the 

desired decomposition level is reached. 

𝑐𝐷𝑙[𝑘] = ∑ 𝑐𝐷1−1[𝑛] ∗ ℎ𝑛𝜑[2𝑘 − 𝑛]𝑛                                             (9) 

𝑐𝐴𝑙(𝑘) = ∑ 𝑐𝐴1−1[𝑛] ∗ 𝑔𝑛𝜓[2𝑘 − 𝑛]𝑛                                           (10)    

Where cDl[k] and cAl[k] are the DWT coefficients at level l, and cAl−1 is the approximate coefficient 

at level l−1. It is important to note that filtering and subsampling at each level reduce the number of 

instances by half (halving the temporal precision) and halve the frequency spectrum (doubling 

frequency accuracy). As a result of the repeated sampling by a factor of two, the total number of 
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instances in the processed signal must be a power of two. Figure 2 shows a graphical representation of 

the multilevel DWT process [19] 

 

 

 

 

 

 

Fig. 2. Graphical representation of the multilevel DWT process 

No comprehensive theoretical strategy for choosing the best wavelet family has been presented, leading 

investigators to use several families for decomposing similar wavelet signals [12, 13]. In many cases, 

the choice is made through trial and error [17]. In fact, when there is a high similarity between the 

applied sample signal and the parent wavelet, the wavelet function is considered appropriate to assess 

the signal in question [18]. Symlet and Daubechies families are recognized for their excellent 

performance in analyzing vibration signals and cover a broad range of wavelet orders. Therefore, the 

fourth-order Daubechies (db4) was employed in this study. 

2.3. Convolution neural network 

A Convolutional Neural Network (CNN) is a multi-layer architectural model [19] that typically includes 

a convolution layer, a pooling layer, a fully connected (FC) layer, and a classifier. The process begins 

with an image entering the network through the input layer. The convolution layer then extracts 

important local features using a convolution kernel. Subsequently, the pooling layer reduces feature 

dimensionality, maintains feature invariance, and helps prevent overfitting. In the fully connected layer, 

all 2D features are concatenated into 1D features, which then serve as input. Finally, a classifier (e.g., 

Softmax) is used in the output layer to obtain the classification results [10]. CNNs are particularly 

effective for analyzing and classifying grid-like data, such as images and videos [11]. The network 

relies on convolutional layers, which perform dot product operations between input data, filter weights, 

https://doi.org/10.22060/eej.2025.24182.5658


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.24182.5658 

and local patches, allowing more abstract representations to be learned. Typically, a convolutional layer 

is followed by a pooling layer to reduce data dimensionality while preserving dominant attributes. The 

pooled feature maps are then transformed into a 1D vector using a flattening layer and subsequently fed 

into a fully connected block for classification. Standard CNNs handle 2D inputs. However, for 

processing sequential data, such as signal data from an induction motor, a 1DCNN framework has been 

developed. This framework utilizes similar standard CNN concepts but applies them to 1D input data, 

resulting in a 1D kernel and a 1DCNN output, as illustrated in Figure 3. The mathematical equation for 

a convolutional layer in a 1D convolutional neural network (1DCNN) can be formulated as shown in 

Equation (11) [15]: 

𝑥𝑗
𝑙 = 𝑓(∑ 𝑥𝑖

𝑙−1𝑀
𝑖=1 ∗ 𝑘𝑖𝑗

𝑙 + 𝑏𝑗
𝑙)                                                       (11) 

Where kl
ij symbolizes the convolution kernels, j indicates the number of kernels, M denotes the total 

number of input channels, blj is the bias conforming to the jth kernel, f( ) is the activation function and ∗ 

is the convolution factor.   

 

 

 

 

 

 

 

 

                                                               Fig. 3. One-dimensional CNN (1DCNN) 

The network starts with a 32-filter convergence layer, followed by a max-pooling layer for 

dimensionality reduction, another 64-filter convergence layer, and finally a dense layer for final sorting. 

The loss value decreased steadily on both the training and validation sets as the number of epochs 

increased, confirming that the model learned effectively and did not suffer from overfitting. Especially 

https://doi.org/10.22060/eej.2025.24182.5658


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.24182.5658 

compared to deeper CNN models, our decision to use the current 1D-CNN architecture (as shown in 

Figure 3) was based on achieving the optimal balance between accuracy and computational efficiency. 

While deeper models may result in a slight increase in accuracy, they often require more computing 

resources and longer training time. Our model delivers robust performance with low complexity, 

making it a practical and effective solution for real-time equipment monitoring. The current model 

represents a well-thought-out trade-off between performance and complexity, a key consideration in 

machine learning system engineering. 

3. Experiment 

3.1. Rig description 

The experimental setup used in this study is shown in Figure 4. This setup employs a 0.74-kW, 230-V, 

3-phase, 4-pole induction motor. The motor is directly powered by a Variable Frequency Drive (VFD), 

specifically a Nflixin 9600D (3-phase, 50 Hz, 360V input/output). To apply a load, the rotor shaft is 

connected to a mechanical load, chosen to provide a consistent friction force. Throughout all tests, the 

machine is connected to the VFD. Bearing vibration signals are collected by an ADXL335 

accelerometer, which features three sensors to measure vibration along the X, Y, and Z axes. This 

accelerometer is mounted at the front of the induction motor, as depicted in Figure 5. The accelerometer 

measures vibration in millivolts per gravity (mV/g). These signals using an IN-6009 data acquisition 

system (14-bit resolution, 48 kS/s). Table 1 provides the bearing parameters, which were obtained from 

the datasheet. This paper's experiments were conducted on four bearings: one in a healthy (undamaged) 

condition, and three with simulated faults. Inner race and outer race defects of 2 mm were simulated 

using the Electrical Discharge Machining (EDM) method.  

 

 

Fig. 4 The rig experimental of use in this 
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Additionally, a 4-mm hole was drilled in one of the bearing cages, as illustrated in Figure 6, to simulate 

a cage fault. 

 

 

 

 

 

 

 

 

Table 1. The bearing parameters 

  Type       Outside diameter          Inside diameter        NP           Dc                      Db                     Cos 

  6204              47mm                            20mm                8         7.938 mm           33.5 mm                  1 

 

3.2. The bearing dataset capture method 

Experiments were conducted under four load conditions: 300W, 400W, 500W, and 600W. To acquire 

the datasets, which consist of vibration signals captured by a bearing accelerometer at a sampling rate 

of 2.048 kHz, the analog output of the ADXL335 accelerometer is converted to acceleration in g by 

dividing it by 0.3, based on the sensor's sensitivity. To remove any constant offset and center the signal 

around zero, the arithmetic mean (AM) of the data is calculated and subtracted. This continuous 

calibration step, shown in Equation (12) [14], improves accuracy by highlighting actual acceleration 

changes such as vibrations or abnormal motion. A specialized program was developed in NI LabVIEW 

2020 to process and extract time-domain features, as illustrated in Figure 7. Input analog voltage signals 

were integrated and then divided by the vibration sensor's sensitivity to convert them into g components. 

The signal was then separated into three output signals: X, Y, and Z. 

𝐴𝑀 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖                                                                     (12) 

3.3. Pre-processing of vibration signal 

While Variable Frequency Drives (VFDs) offer precise control over induction motors, they can 

introduce electrical phenomena that negatively affect bearing health and complicate vibration-based 

Fig. 5. ADXL335 sensor Fig. 6. Deformed bearings 
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fault detection [54]. Implementing appropriate mitigation strategies is essential to ensure accurate 

monitoring and prolong the lifespan of motor bearings. To mitigate the VFD effect, the vibration signal 

was decomposed into 8 levels. It was then reconstructed after removing levels D1 and D2, which 

represent high frequencies that do not impact the characteristics of fault frequencies. This is because 

fault frequencies do not typically exceed 500 Hz, according to Equations (1-4). 

 

  

 

 

 

 

 

The table 2 illustrates the signal decomposition levels using Discrete Wavelet Transform (DWT), as 

shown in Figure 8. Figure 9 displays the X, Y, and Z vibration signals at 300 watts in a healthy state, 

both before and after processing. Figure 10, on the other hand, shows the Fast Fourier Transform (FFT) 

of the signal before and after the removal of higher frequencies. Each reconstructed signal will have the 

same number of instances as the primary input signal but will cover a distinct frequency range. This is 

achieved by resampling the detail (or approximation) coefficients by a factor of 2, as they were initially 

created by sampling coefficients by 2 and generating them using low-pass and high-pass filters. For 

instance, to reconstruct the first approximation wave signal (A1 level), only the approximation 

coefficients at that level are needed, while a vector of zeros is supplied in place of the detail coefficients. 

Figure 8 illustrates the concept of signal synthesis. 

Table 2. Level of DWT frequencies 

 

Level        1                 2                 3              4               5               6              7         8           9 

Frequency 

Range (Hz) 4096-2048    2048 –1024      1024–512     512 –256       256 –124       124–64       64–32     32–16       16–0 

Fig. 7. Sample code from the overall block diagram to extract statistics adopting on time-domain 
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The primary purpose of using the Discrete Wavelet Transform (DWT) is not to change the amplitude 

of the main peaks associated with faults, but rather to filter out random high-frequency noise that is not 

related to the mechanical vibrations of the bearing. In an industrial environment, such as the one where 

the data was collected, other motors or power sources (like Variable Frequency Drives, VFDs) can 

generate electromagnetic or mechanical noise that contaminates the signal. 

 

 

 

 

 

 

The Figure 10 shows is a general reduction in the background noise level, especially in the high-

frequency ranges. This reduction, even if not dramatic in these graphs, has a significant impact on the  

performance of the Convolutional Neural Network (CNN) model. By providing a "cleaner" signal to 

the model, we ensure that it learns from the true characteristics of vibrations caused by faults, instead 

of learning random noise features. This reduces the probability of overfitting and increases the model's 

Fig. 8. The concept of signal synthesis 

Fig. 9. The vibration signals blue color (A) before processing and orange color (B) after processing 
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ability to generalize to new data.  The signals shown in Figure 9 are the result of a pre-processing step 

to remove this DC offset, which allows for the isolation of the actual vibration signal centered around 

zero. We have clarified this procedure in the manuscript. We have also correctly added the axis units, 

with the horizontal axis representing Time (in seconds) and the vertical axis representing Acceleration 

(ing). The discrepancy in scale between Figure 9 and Figure 10 was a result of the data visualization 

method.  

4. Statistical Features 

Time-domain analysis is commonly employed to monitor the state of an induction motor. Statistical 

features such as Crest Factor (Cr), Kurtosis (Kur), Root Mean Square (RMS), Skewness (Ske), Standard 

Deviation (Sta), and Variance (Var) are applied in this research's time domain to assess the health of 

the induction motor. These statistical attributes significantly impact pattern recognition capabilities and 

were chosen due to their proven efficacy in previous investigations [4], [9], [15]. The statistical feature 

equations below were derived and utilized to detect early faults in induction motors: 

𝐶𝑟 =
𝑀𝑎𝑥

𝑅𝑀𝑆
                                                                           (13) 

Fig. 10. The Fast Fourier Transform (FFT) of the signal, (A) before processing and (B) after processing         
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𝐾𝑢𝑟 =
1

𝑁
∑ (𝑋𝑖 −𝐴𝑀)4𝑁

𝑖=1

𝑅𝑀𝑆
                                                        (14) 

𝑅𝑀𝑆 = √
1

𝑁
∑ (𝑋𝑖)2𝑁

𝑖=1                                                        (15)      

𝑆𝑘𝑒 =
1

𝑁−1
∑ (𝑋𝑖 − 𝐴𝑀)3𝑁

𝑖=1                                              (16) 

𝑆𝑡𝑎 = √
1

𝑁
∑ (𝑋𝑖 − 𝐴𝑀)3𝑁

𝑖=1                                               (17) 

𝑉𝑎𝑟 = 
1

𝑁
∑ (𝑋𝑖 − 𝐴𝑀)2𝑁

𝑖=1                                                 (18) 

This means there are six features for each output vibration signal axis utilized in the calculations. 

5. Features Selection 

Choosing the right features is crucial for training machine learning algorithms for several reasons. First, 

it significantly impacts performance by enabling the algorithm to better understand data patterns, 

leading to more accurate predictions and fewer errors [16]. Second, it reduces complexity by selecting 

only significant features, thereby lessening the data size and making the model less complex and more 

efficient. This, in turn, speeds up the training process and minimizes resource consumption. Third, it 

helps avoid overfitting, as unnecessary or redundant features can cause the model to over-learn the 

training data, reducing its ability to generalize to new data [17]. Fourth, it promotes interpretability; by 

employing a smaller set of significant features, illustrating the model's decisions becomes simpler, 

which is essential for applications requiring transparency [18]. Fifth, it reduces noise, as unnecessary 

features can obscure true patterns, and removing them improves model quality. Finally, it enhances 

computing performance, as smaller datasets demand fewer computing resources, making the training 

operation more efficient [9]. In summary, selecting good features is essential to improve the model's 

performance and ensure robust and efficient model training [6]. The presented method includes the use 

of a ranking technique identified as information gain (IG) for feature classification. 
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 Entropy, denoted as H, is a measure that quantifies the level of impurity in a given dataset. Building 

on this concept, one can define the information gain (IG) metric, which quantifies the supplementary 

information concerning class Y that is provided by attribute X [11, 12, 13]. This measure accurately 

quantifies the degree to which variable Y's entropy decreases when variable X is considered. The 

formula to calculate this measure is as follows [14]: 

IG = H(Y ) − H(Y |X) _ H(X) − H(X|Y )                              (19) 

The proposed model's performance was then verified, and the number of componential features was 

reduced by 44.44%. Figure 11 depicts the results of the Entropy model. Ten features were selected 

based on these figures: Ske1, Sta2, Var2, RMS2, Crist1, Kur1, Ske2, Kur3, Ske3, and Sta1. The 

remaining features were removed from the dataset matrix due to lower gain. The suggested model's 

precision decreased from 99.5% to 98.64%, which is an insignificant percentage compared to the 

substantial reduction in the number of features, and it does not affect the overall performance of the 

model. 

 

 

 

 

 

 

 

 

 

 

6. Training of Model  

All data points from three defect data integrations were used in the present test. A baseline set of 10 

statistical attributes (Ske1, Sta2, Var2, RMS2, Crist1, Kur1, Ske2, Kur3, Ske3, Sta1) was included, with 

0
.7

1
0

3

0
.6

8
1

5

0
.6

8
1

3

0
.6

5
2

1

0
.4

3
7

2

0
.3

8
7

3

0
.3

7
5

9

0
.3

1
8

7

0
.3

0
4

9

0
.2

9
4

9

0
.2

9
4

5

0
.2

7
0

8

0
.2

6
9

8

0
.2

4
9

9

0
.1

9
6

1

0
.1

9
3

8

0
.1

9
3

4

0
.1

7
3

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sk
e1

St
a2

V
ar

2

R
M

S2

C
ri

st
1

K
u

r1

Sk
e2

K
u

r3

Sk
e3

St
a1

V
ar

1

K
u

r2

R
M

S1

C
ri

st
2

C
ri

st
3

St
a3

V
ar

3

 R
M

S3

Features

Fig. 11. The top 10 statistical features 

https://doi.org/10.22060/eej.2025.24182.5658


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.24182.5658 

each attribute set comprising 3200 instances. For every healthy instance, race cage, outer, and inner 

faults each had 800 instances. Seventy percent of the statistical attributes were chosen as training 

instances, while the remaining 30% were used as test instances. To confirm that the dataset 

representations are effective in fault detection and classification, a Convolutional Neural Network 

(CNN) was employed for the four basic fault levels. The network generates predictions based on 

grouped faults. This includes a 1D convolutional layer followed by a pooling layer. The 1D 

convolutional layer has 32 filters, each with a size of 2. All such layers apply Rectified Linear Unit 

(ReLU) activation functions. The convolutional layer is followed by a Max-Pooling layer with a pooling 

size of 1. The outputs are then flattened and fully connected to a dense layer with a ReLU activation 

function and 80 neurons after the last layer. Finally, an output layer is generated using a Softmax 

activation function that possesses four neurons, representing the four fault levels. Model weights are 

initialized randomly, and the Adam Optimizer is applied for updating model parameters with a learning 

rate of 0.0005 and 80 epochs. 

7. RESULTS AND DISCUSSION 

After extracting and selecting the relevant statistical time-domain features, the dataset was divided using 

a 70:30 split ratio for training and testing. A total of 2,240 feature vectors were used for training, while 

960 vectors were reserved for testing, representing the following class distributions: Healthy (218 

samples), Inner race fault (244 samples), Outer race fault (237 samples), and Cage fault (261 samples). 

Precision measures the proportion of positive cases correctly identified out of all cases predicted as 

positive. Recall measures the proportion of positive cases correctly identified out of all actual positive 

cases. The F1-score provides a balanced assessment of precision and recall by calculating their 

harmonic mean, effectively combining these two metrics into a single value, ranging from 0 (lowest) to 

1 (highest) To evaluate the model's performance, several classification metrics were computed, 

including Accuracy, Precision, Recall, and the F1-score, following the definitions and procedures 

outlined in prior works [64]–[66]. Table 3 presents a summary of these evaluation metrics, while Figure 

12 illustrates the overall accuracy achieved. Accuracy measures the percentage of correct predictions 
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out of the total number of instances assessed, where higher percentages indicate better performance. 

Precision, on the other hand, quantifies the correct identification of positive patterns from all predicted 

positive patterns. Recall rates the proportion of positive patterns that are accurately classified. The F1-

score offers a balanced assessment of Precision and Recall by computing their harmonic average, 

effectively combining these two metrics into a single value, achieving its lowest value at 0 and its 

highest value at 1. Precision and Recall values were above 0.97 for all classes. The F1-score was 

particularly strong: 1.00 for healthy, and 0.98–0.99 for all fault types. The macro and weighted averages 

for all metrics were both 0.99, indicating balanced performance regardless of class imbalance. 

The figure 12 is a classification report that displays the precision, recall, f1-score, and support for each 

individual class (Healthy, Inner race, Outer race, Cage), along with the overall accuracy, macro average, 

and weighted average of these metrics. The "accuracy" value of 0.99 (or 99%) shown in the "accuracy" 

row of this specific Figure 12 refers to the overall accuracy of the model across all classes based on the 

aggregated data in this report. This 0.99 (99%) is essentially a rounded value of the more precise overall 

accuracy of 98.64% that you mention in your text and Table 3. Therefore, Figure 12 directly relates to 

the overall accuracy (98.64%) by providing the detailed breakdown of performance across individual 

classes and then summarizing it with an overall accuracy value (rounded to 0.99). The 98.64% is the 

precise numerical value that this figure conceptually represents as the "accuracy" of the entire model. 

Table 3. Assessment measures of the used CNN learning model at feature selection 

Indicator                                        Percent 

Accuracy                                         98.64 

Precision                                              99     

Recall                                                 99     

F1-score                                             99 
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The figure 13 illustrates the training and validation accuracy across 80 epochs. The model quickly 

converged after around 15 epochs and continued to improve steadily, reaching a training accuracy close 

to 100% and a validation accuracy of approximately 99%, indicating minimal overfitting. The 

corresponding loss curves further support this, with both training and validation loss sharply decreasing 

early and stabilizing around epoch 30. 

. 

Additionally, to better comprehend the correctly and incorrectly classified states, confusion matrices 

were presented in Figure 14. This confusion matrix for the CNN offers valuable insights into the 

correctly and incorrectly classified states. These numbers are used to track performance and determine 

Fig. 12. The accuracy measures 

Fig. 13. Performance evaluation using accuracy and loss 
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the need for model modifications to achieve higher accuracy and lower loss, contributing to the 

development of a more efficient and accurate model. Healthy samples were identified without a single 

error (218/218), while minor misclassifications were observed in the fault classes especially for the cage 

fault, where three samples were incorrectly labeled as inner race faults. The total model accuracy 

reached 98.64% 

The confusion matrix (Figure 14) evaluates the CNN model's performance in classifying healthy and 

faulty conditions. The numbers along the diagonal (218, 238, 233, 258) represent correctly classified 

samples, while the off-diagonal numbers (1, 3, 3, 6) indicate errors. For instance, the model perfectly 

classified all 218 healthy samples but incorrectly predicted 6 inner race faults as cage faults. 

 

 

To further validate the classifier, a multi-class ROC curve was analyzed, as shown in Figure 15. Each 

class achieved an AUC (Area Under the Curve) of 1.00, reflecting perfect separability between fault 

categories based on the learned features. These results collectively highlight the strength of the proposed 

method. The combination of preprocessing, temporal statistical feature extraction and selection, and a 

1D CNN model proved highly effective. Notably, preprocessing helped mitigate the influence of the 

Variable Frequency Drive (VFD), enhancing signal clarity and enabling the network to detect subtle 

fault signatures with high confidence. The high classification performance particularly in distinguishing 

between similar faults such as inner and outer race failures makes this approach promising for real-

world industrial applications, where early and accurate diagnosis is critical to prevent costly downtime. 

While the current setup performs strongly under controlled conditions, future work should explore more 

 

Healthy 218 0 0 0 

Inner 

race 
0 238 0 6 

Outer 

race 
1 0 233 3 

Cage 0 3 0 258 

Fig. 14. Confusion matrix of CNN 
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complex load scenarios, cross-device generalization, and real-time implementation, especially in noisy 

or variable-speed environments. 

 

 

 

 

 

 

 

 

 

 

 

 

An AUC (Area Under the Curve) of 1.00 signifies perfect separability. In the context of this application, 

it means the model can perfectly distinguish between the different classes (Healthy, Inner race, Outer 

race, and Cage faults). The classifier is able to set a threshold such that it correctly identifies all positive 

cases and all negative cases without any overlap. This result reflects a flawless ability to separate the 

fault categories based on the features the model learned from the data. 

7.1. Comparative Analysis 

Table 4 shows a comparative abstract of the best models achieved from the present article, along with 

a list of recent models. Some strategies were considered during this research regarding classifier 

intricacy and computational effort. Rule-based classifiers, like PART classifiers developed by Grover 

and Turk [16], show adequate computational efficiency and accuracy using fewer features, while Hjorth 

parameters effectively diagnose bearing faults. Neural Networks, especially those based on 

architectures like Back-Propagation Neural Networks (BPNN) and Convolutional Neural Networks 

(CNN), such as those described in Huang et al. [15], are adept at modeling non-linear relationships in 

data and handling complex patterns. However, their training process may require substantial 

Fig. 15. Muti-Class AUC 
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computational resources due to their numerous connections and multiple layers. The use of Support 

Vector Machine (SVM) and statistical methods such as one-way ANOVA and the Kruskal-Wallis test, 

as reported in the study by Cascales-Fulgencio et al. [16], is an effective way to classify the importance 

of features in high-dimensional data. However, their computational intricacy may rise as the number of 

features increases. The kNN mechanism, an axiomatic and simple mechanism applied by Jamil et al. 

[67], offers low computational difficulty in the training step. Although, large datasets might require 

more computational resources during the prediction process. Naive Bayes classifiers, including the 

kernel Naive Bayes applied by Alonso-Gonzalez et al. [18], are known for their speed and simplicity, 

making them computationally effective when coping with high-resolution data. As Rajput et al. [19] 

introduced, a Fuzzy Convolutional Neural Network is an effective model for complex pattern 

recognition. However, its multi-layer architecture and convolution operations require high 

computational complexity and longer training time to achieve high performance. The KNN classifier 

and the FCBF feature selection method applied by Jaber, Alaa. Abdulhady [11] demonstrate a balance 

between classification performance and computational efficiency. The simple CNN model used here, 

which contains 10 single time-domain statistical features with 3 dimensions, was applied for appraising 

CNN mechanisms' performance in bearing fault diagnostics. As presented in Table 3, the CNN model 

obtained an accuracy of 98.58%, which ranks near the Fuzzy-CNN model at 16 attributes that achieved 

the most proper performance at 99.87%. Although the model used in this study needs low computational 

power and less complexity, it provided a very high degree of accuracy, thus indicating its high efficiency 

in fault diagnosis. Our model delivers an excellent accuracy of 98.58%, which is sufficient and even 

very suitable for many real-world scenarios. The 1.29% accuracy gap is acceptable for applications 

such as product or content recommendation systems, where an error may lead to a suboptimal 

recommendation but not a catastrophe. In non-critical image classification or preliminary data analysis, 

the focus is often on processing speed and the ability to handle large amounts of data at a reasonable 

cost, and this is where our model clearly excels. The cost-benefit balance becomes the cornerstone of 

decision-making. If a less accurate model delivers the same practical value at a much lower cost, it is 

often the smarter choice. 
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To ensure the reliability and reproducibility of the results, we applied k-fold cross-validation to the 

dataset. The data was divided into five equal subsets, and the model was trained and evaluated five 

times, with one subset used as the test data each time. 

The final results in the Performance section have been updated to include the average accuracy and 

standard deviation across all cross-validation rounds. For example, the results now represent 

98.64%±0.25%. This reporting of variance significantly strengthens the credibility of our claims about 

the model's performance, showing that the model achieves high and stable accuracy, and that the 

variance in performance across validation rounds was low, confirming that the results are not accidental 

but rather reflect the model's true performance. 

 

Table 4. Models ML performance comparison to bearing fault diagnosis 

Author                          Classifier             Feature Type                 Number of features     Accuracy (%) 

Grover and Turk [26]       Rule-based      Time-domain                                    3                      93.82 

Huang, et al. [36]       BPNN               Time-domain features                      4                       91.6 

Cascales, et al. [37]    SVM                Envelope Spectrum features            16                    84.7 

Jamil, et al. [38]         KNN                Time & Frequency-domain               9                     96.2 

Alonso, et al. [39]      Kernel Naive Bayes  Time-domain features                   5                      94.4 

Rajput, et al. [40]       Fuzzy-CNN     Raw vibration signals                       16                    99.87 

J.Abdulhady [11]       FCBF-kNN     Time-domain features                       7                       97 

Current work               CNN              Time-domain features                       10                     98. 64 

 

While Rajput et al. [69] achieved a slightly higher accuracy (99.87%), their work did not address the 

specific challenge of VFD noise. Our methodology features a crucial preprocessing step using the 

Discrete Wavelet Transform (DWT), which specifically targets this noise, ensuring that the data fed to 

the CNN is clean and truly representative of the bearing's actual vibrations. Furthermore, our model 

achieves a very high accuracy of 98.64% using only 10 features, which indicates high efficiency in 

computational resource usage. Secondly, when compared to traditional methods using classifiers like 

SVM, kNN, and BPNN, our approach demonstrated a clear superiority in accuracy (98.64% compared 

to 96.2%, 94.4%, and others). This superiority is due to the CNN's ability to automatically learn 
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complex geometric features from the signals, rather than relying solely on traditional statistical features. 

Therefore, the true innovation of this work lies in the synergistic integration of three key steps that have 

not been combined with the same effectiveness in the referenced works: dedicated preprocessing using 

DWT to remove VFD noise, efficient feature selection based on only 10 statistical features, and robust 

classification using a CNN that performs deep feature learning. This integration highlights the practical 

relevance of our methodology as a comprehensive and effective solution for diagnosing bearing faults 

in real-world environments challenged by noise. 

8. CONCLUSION 

This paper highlights the successful performance of a Convolutional Neural Network (CNN) for 

accurate classification of various bearing faults using time-domain information. We achieved this by 

employing a three-axis vibration sensor. The captured signals were then pre-processed using Discrete 

Wavelet Transform (DWT), specifically by removing levels D1 and D2. These levels represent high 

frequencies that do not affect the characteristics of fault frequencies, as fault frequencies typically do 

not exceed 500 Hz. This step was crucial for mitigating the effect of the Variable Frequency Drive 

(VFD). Next, statistical features were extracted from the three axes, and an optimal selection of these 

features was made using the information gain (Entropy) method. These selected features then served as 

the input to the CNN. For training the CNN model, a dataset of 3200 samples was used. Each of the 

healthy, inner race fault, outer race fault, and cage fault conditions contributed 800 samples. Seventy 

percent of the statistical features were randomly selected as training instances, while the remaining 30% 

were used as test instances. The study achieved an impressive accuracy of 98.64% in fault classification. 

This paper underscores the capability of time-signal representation as a feature transformation technique 

for simplifying bearing fault detection in this domain and paves the way for future studies in this area. 

Ultimately, the current study presents a satisfactory solution for real-life applications in bearing fault 

detection. 
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