| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,662 |
| تعداد مشاهده مقاله | 7,756,370 |
| تعداد دریافت فایل اصل مقاله | 6,371,050 |
بررسی تجربی و عددی تأثیر افزودن الیاف فلزی در بهبود انتقال حرارت هدایت مواد تغییر فاز دهنده | ||
| نشریه مهندسی مکانیک امیرکبیر | ||
| دوره 57، شماره 4، تیر 1404، صفحه 521-542 اصل مقاله (1.52 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22060/mej.2025.24293.7855 | ||
| نویسندگان | ||
| محمد جوزی؛ جعفر جماعتی* | ||
| گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه رازی، کرمانشاه، ایران | ||
| چکیده | ||
| روشهای متعددی برای ارتقاء ضریب انتقال حرارت هدایت مواد تغییر فاز دهنده پیشنهاد شده است. در این مقاله تأثیر استفاده از الیاف فلزی برای بهبود انتقال حرارت هدایت در مواد تغییر فاز دهنده به صورت تجربی و عددی بررسی شده است. در همین راستا، اثر جنس، قطر، طول و کسر حجمی الیاف فلزی در بهبود انتقال حرارت هدایت مواد تغییر فاز دهنده بررسی شده است. نتایج تجربی نشان داد که با افزودن کسر حجمی بسیار کمی الیاف فلزی (حدود دو درصد) میتوان ضریب انتقال حرارت مواد تغییر فاز دهنده را تا 4 برابر بهبود بخشید. در دو نمونهی آزمایشی یکسان، هنگامی که از الیاف مسی بجای الیاف استیل استفاده شود ضریب انتقال حرارت ماده تغییر فاز دهنده 55 درصد بهبود مییابد. نتایج شبیهسازی عددی نشان داد، با افزایش کسر حجمی الیاف از 2/35تا 3/9 درصد ضریب انتقال حرارت مؤثر بیش از 50 درصد افزایش خواهد یافت و هنگامی که زاویهی مؤثر الیاف با راستای انتقال حرارت 15 درجه افزایش مییابد، ضریب انتقال حرارت مؤثر 31 درصد کاهش مییابد. در کار حاضر یک روش جدید برای مطالعهی ریزساختار ترکیبات دوفاز فیبری و تعیین ضریب انتقال حرارت مؤثر آنها ارائه شده است. | ||
| کلیدواژهها | ||
| ذخیره انرژی؛ تغییر فاز دهنده؛ الیاف فلزی؛ ضریب انتقال حرارت؛ مواد غیرهمسانگرد | ||
| عنوان مقاله [English] | ||
| Experimental and Numerical Investigation of the Effects of Metal Fibers on Heat Conduction in Phase Change Materials | ||
| نویسندگان [English] | ||
| Mohamad Jowzi؛ Jafar Jamaati | ||
| Department of Mechanical Engineering, Faculty of Engineering, Razi University, Iran | ||
| چکیده [English] | ||
| Several methods have been proposed to enhance the thermal conductivity coefficient of phase change materials. In this study, the effect of incorporating metallic fibers on the enhancement of thermal conductivity in PCMs is investigated through both experimental and numerical approaches. The impact of fiber material, diameter, length, and volume fraction on the conductive heat transfer performance of PCMs has been investigated. Experimental results demonstrate that the addition of a small volume fraction of metallic fibers (approximately 2%) can improve the thermal conductivity of PCMs by up to four times. In two identical experimental setups, replacing steel fibers with copper fibers resulted in a 55% increase in thermal conductivity. The numerical results indicate that increasing the volume fraction of fibers from 2.35% to 3.9% leads to an improvement of more than 50% in the effective thermal conductivity. On the other hand, increasing the orientation angle of the fibers by 15 degrees relative to the direction of heat flow results in a 31% decrease in thermal conductivity. This study also presents a novel approach for evaluating the microstructure of fibrous composites and determining their effective thermal conductivity. | ||
| کلیدواژهها [English] | ||
| Energy Storage, Phase Change Material, Metal Fibers, Effective Thermal Conductivity, Anisotropic Materials | ||
| مراجع | ||
|
[1] P. IEA, World energy outlook 2022, Paris, France: International Energy Agency (IEA), (2022). [2] Z. Li, Y. Lu, R. Huang, J. Chang, X. Yu, R. Jiang, X. Yu, A.P. Roskilly, Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage, Applied Energy, 283 (2021) 116277. [3] M. Alizadeh, M.H. Shahavi, D.D. Ganji, Performance enhancement of nano PCM solidification in a hexagonal storage unit with innovative fin shapes dealing with time-dependent boundary conditions, Energy Reports, 8 (2022) 8200-8214. [4] A. Reyes, L. Henríquez-Vargas, J. Rivera, F. Sepúlveda, Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material, Renewable Energy, 101 (2017) 225-235. [5] A. Al-Abidi, S. Mat, K. Sopian, Y. Sulaiman, A. Mohammad, Heat transfer enhancement for PCM thermal energy storage in triplex tube heat exchanger, Heat Transfer Engineering, 37(7-8) (2016) 705-712. [6] C. Zhang, Y. Fan, M. Yu, X. Zhang, Y. Zhao, Performance evaluation and analysis of a vertical heat pipe latent thermal energy storage system with fins-copper foam combination, Applied Thermal Engineering, 165 (2020) 114541. [7] V. Safari, B. Kamkari, N. Hewitt, K. Hooman, Experimental comparative study on thermal performance of latent heat storage tanks with pin, perforated, and rectangular fins at different orientations, Thermal Science and Engineering Progress, 48 (2024) 102401. [8] H. Masoumi, S. Mirfendereski, Experimental and numerical investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems, Journal of Energy Storage, 47 (2022) 103561. [9] L. Colla, L. Fedele, S. Mancin, L. Danza, O. Manca, Nano-PCMs for enhanced energy storage and passive cooling applications, Applied Thermal Engineering, 110 (2017) 584-589. [10] M. Amin, N. Putra, E.A. Kosasih, E. Prawiro, R.A. Luanto, T. Mahlia, Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Applied Thermal Engineering, 112 (2017) 273-280. [11] K. Cui, L. Liu, F. Ma, M. Jing, Z. Li, Y. Tong, M. Sun, S. Li, J. Zhang, Y. Zhang, Enhancement of thermal conductivity of Ba (OH) 2· 8H2O phase change material by graphene nanoplatelets, Materials Research Express, 5(6) (2018) 065522. [12] W. Su, J. Darkwa, G. Kokogiannakis, Review of solid–liquid phase change materials and their encapsulation technologies, Renewable and sustainable energy reviews, 48 (2015) 373-391. [13] Y. Lee, S. Hong, J. Chung, Effects of capsule conduction and capsule outside convection on the thermal storage performance of encapsulated thermal storage tanks, Solar Energy, 110 (2014) 56-63. [14] C.R. Abujas, A. Jové, C. Prieto, M. Gallas, L.F. Cabeza, Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application, Renewable energy, 97 (2016) 434-443. [15] Y. Zhuang, Z. Liu, W. Xu, Effects of gradient porous metal foam on the melting performance and energy storage of composite phase change materials subjected to an internal heater: a numerical study and PIV experimental validation, International Journal of Heat and Mass Transfer, 183 (2022) 122081. [16] A. Khorram-Nejad, M. Passandideh-Fard, M. Sardarabadi, The influence of porous media on the melting ability of phase change materials used in a heatsink: An experimental investigation, Journal of Energy Storage, 98 (2024) 112935. [17] A.R. Karimi, M. Siavashi, M. Tahmasbi, A.M. Norouzi, Experimental analysis to improve charge/discharge of thermal energy storage in phase change materials using helical coil and porous metal foam, Journal of Energy Storage, 55 (2022) 105759. [18] A. NematpourKeshteli, M. Iasiello, G. Langella, N. Bianco, Using metal foam and nanoparticle additives with different fin shapes for PCM-based thermal storage in flat plate solar collectors, Thermal Science and Engineering Progress, 52 (2024) 102690. [19] J. Chen, D. Yang, J. Jiang, A. Ma, D. Song, Research progress of phase change materials (PCMs) embedded with metal foam (a review), Procedia Materials Science, 4 (2014) 389-394. [20] J. Gasia, J.M. Maldonado, F. Galati, M. De Simone, L.F. Cabeza, Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system, Energy Conversion and Management, 184 (2019) 530-538. [21] C. Prieto, C. Rubio, L.F. Cabeza, New phase change material storage concept including metal wool as heat transfer enhancement method for solar heat use in industry, Journal of Energy Storage, 33 (2021) 101926. [22] W. Li, Z. Qu, Experimental study of effective thermal conductivity of stainless steel fiber felt, Applied Thermal Engineering, 86 (2015) 119-126. [23] W. Li, Z. Qu, B. Zhang, K. Zhao, W. Tao, Thermal behavior of porous stainless-steel fiber felt saturated with phase change material, Energy, 55 (2013) 846-852. [24] O. Khliyeva, V. Zhelezny, A. Paskal, Y. Hlek, D. Ivchenko, The effect of metal wool on the charging and discharging rate of the phase transition thermal storage material, Eastern-European Journal of Enterprise Technologies, 4(5) (2021) 112. [25] M. Jowzi, J. Jamaati, Experimental Study of the Effect of Adding Metal Fibers (With Different Lengths, Diameters, Materials, and Porosity) On Improving the Thermal Conductivity of Phase Change Materials, The Second International Conference on Computer, Electrical, Mechanical and Engineering Sciences, 2025. (in Persian). [26] E.G. Zaki, A. Dhmees, Paraffin: Thermal Energy Storage Applications, BoD–Books on Demand, 2022. [27] D.W. Hahn, M.N. Özisik, Heat conduction, John Wiley & Sons, 2012. [28] E. Committee, Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique. [29] H. Shen, Q. Ye, G. Meng, Anisotropic fractal model for the effective thermal conductivity of random metal fiber porous media with high porosity, Physics Letters A, 381(37) (2017) 3193-3196. [30] C. Zhan, W. Cui, L. Li, A fractal model of effective thermal conductivity of porous materials considering tortuosity, Energies, 16(1) (2022) 271. [31] J. Wang, J.K. Carson, M.F. North, D.J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous materials, International journal of heat and mass transfer, 49(17-18) (2006) 3075-3083. [32] S.R. Jagjiwanram, R. Singh, Effective thermal conductivity of highly porous two-phase systems, Applied Thermal Engineering, 24(17) (2004) 2727-2736. | ||
|
آمار تعداد مشاهده مقاله: 352 تعداد دریافت فایل اصل مقاله: 215 |
||